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Abstract: We previously showed that cats that were infected with non-pathogenic Puma lentivirus
(PLV) and then infected with pathogenic feline immunodeficiency virus (FIV) (co-infection with the
host adapted /pathogenic virus) had delayed FIV proviral and RNA viral loads in blood, with viral
set-points that were lower than cats infected solely with FIV. This difference was associated with global
CD4* T cell preservation, greater interferon gamma (IFN-y) mRNA expression, and no cytotoxic T
lymphocyte responses in co-infected cats relative to cats with a single FIV infection. In this study,
we reinforced previous observations that prior exposure to an apathogenic lentivirus infection can
diminish the effects of acute infection with a second, more virulent, viral exposure. In addition,
we investigated whether the viral load differences that were observed between PLV /FIV and FIV
infected cats were associated with different immunocyte phenotypes and cytokines. We found that the
immune landscape at the time of FIV infection influences the infection outcome. The novel findings
in this study advance our knowledge about early immune correlates and documents an immune
state that is associated with PLV /FIV co-infection that has positive outcomes for lentiviral diseases.

Keywords: feline immunodeficiency virus (FIV); puma lentivirus (PLV); innate immunology; CDS;
FAS (death receptor; CD95)

1. Introduction

Feline immunodeficiency virus (FIV) infection, which is a pathogenic lentivirus of domestic cats,
causes fatal immune dysfunction that is characterized by progressive depletion of CD4" T lymphocytes
that is similar to HIV infection of humans [1,2]. More than two dozen felid species have demonstrated
seroreactivity against FIV antigens, and FIV that was isolated from puma (Puma concolor) has been
characterized genetically as Puma lentivirus (PLV) infection in domestic cats causes a nonpathogenic
disease that results in initially high viral titers, but marked diminution early in infection [3-6].

Previously, we found that cats that were infected with non-pathogenic PLV and then infected
with pathogenic FIV (co-infection with the host adapted /pathogenic virus) had delayed FIV proviral
and RNA viral load detection in blood, with an overall viral set-point decrease compared to cats
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infected solely with FIV. This difference was associated with global CD4* T cell preservation and
greater interferon gamma (IFN-y) mRNA expression, but not cytotoxic T lymphocyte responses in
co-infected cats relative to cats with single FIV infection [7,8]. Co-infected cats also had accelerated
anti-FIV capsid antibody development soon after FIV infection when compared to cats with single
PLV or single FIV infection [9], and multivariate analysis implicates immediate anti-PLV immune
responses involving CD8" T cells, CD25* cells, IL-4, IFN-y, and the death receptor (FAS) as correlates
of attenuated disease in co-infected cats [10]. Furthermore, co-infection results in a severe bottleneck
restricting virulent FIV infection in the face of prior PLV infection, as evidenced by genomic analysis,
suggesting a redistribution of viral infection and viral fitness [11,12]. Taken together, we hypothesize
that the differences in available cell targets and early immune activation parameters are plausible
explanations for these observations. Therefore, the current study aimed to compare lymphocyte and
cytokine responses in blood, bone marrow, and lymphoid tissues of cats that were acutely infected
with a pathogenic FIV isolate vs. those acutely that were infected with a nonpathogenic PLV isolate,
followed by co-infection with pathogenic FIV.

2. Materials and Methods

2.1. Viral Stocks

Stocks of FIV-C36 and PLV-1695 were prepared, as described previously [7]. Briefly, stocks of
FIV-C virus were propagated by co-culture of retropharyngeal cells from an FIV-C positive cat and
domestic cat MYA-1 cells with a final titer of 1072 tissue culture infectious dose 50 (TCIDsg)/mL.
Stocks of PLV-1695 were similarly propagated by the co-culture of PLV-infected puma PBMC with
domestic cat MYA-1 cells, resulting in a titer of 10*7 TCIDsp/mL.

2.2. Animals

Twenty-four specific-pathogen-free (SPF) cats were used from a breeding colony at Colorado State
University (CSU). Animals were randomized by litter and gender and they were housed in groups
of six per pen in isolation rooms of an AAALAC-international accredited animal facility. All of the
procedures were approved by the CSU Institutional Animal Care and Use Committee prior to initiation
(approval number: 01-246A-08, 1 March 2008).

2.3. Study Design

The cats were divided and housed in the following four groups (n = 6 per group): (1) cats receiving
only PLV-1965 (PLV), (2) cats receiving PLV-1695 followed by FIV-C36 one month later (CO), (3) cats
receiving only FIV-C36 (FIV), and (4) cats receiving sham inoculations of media (SHAM).

Blood samples were obtained by venipuncture of the cephalic vein on conscious animals at —5, -2,
0,1, 2,3, and 4 weeks (post-FIV inoculation; FIV PI) (Figure 1). Bone marrow samples were collected
from the humerus following ketamine/acepromazine/butorphanol anesthesia at —2 and 2 weeks FIV
PI (Figure 1). At —4 weeks FIV PI, 12 26-week-old cats were inoculated intravenously (IV) with 1 mL
of PLV, as previously described [7], while the remaining 12 cats received 1 mL of culture supernatant
from un-infected MYA-1 cells IV. Four weeks later (week 0), six of the PLV-inoculated animals and
six of the SHAM controls received 1 mL of FIV stock IV that had been diluted 1:80 in a 0.9% NaCl
solution. The remaining 12 animals received 1 mL of culture supernatant from un-infected MYA-1 cells
IV. The study termination was eight weeks post-PLV inoculation and four weeks post-FIV challenge.
Animals were humanely euthanized, and bone marrow, thymus, and mesenteric and prescapular
lymph nodes were collected at necropsy (see Figure 1 below).
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Figure 1. Study timeline.

2.4. Physical Examinations

Animals were monitored daily for clinical signs of illness, as well as general health throughout
the study. Physical examinations, including weight and temperature measurements, were performed
at each blood collection.

2.5. Cell Isolation

Cells were isolated and purified from peripheral blood, bone marrow, and tissues throughout
the study for flow cytometry analysis. Peripheral blood mononuclear cells (PBMC) and bone marrow
cells were purified on a Histopaque 1.077 (Sigma, St. Louis, MO, USA) gradient, according to the
manufacturer’s instructions. Tissue cells were purified using a 100 um cell strainer.

2.6. Hematology

Total white and red blood cell counts were measured using a Coulter Z1 (Coulter, Miami, FL,
USA). One hundred-cell differential counts were performed using a microscope (Olympus BX40 clinical
microscope, Center Valley, PA, USA).

2.7. Flow Cytometry

Percentages of PBMC and tissue cells positive for each subset examined were determined by flow
cytometry using monoclonal or polyclonal antibodies (Table 1). Markers were selected to identify the
significant subsets of lymphocytes, including T cells in various states of activation and maturation,
and B cells (Table 2). Antibodies were conjugated to fluorochromes using Zenon kits, according to
manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). 2 x 10° to 1 x 10° PBMCs were blocked
using goat serum (MP Biomedicals, Solon, OH, USA) at a 1:10 dilution and were incubated for 30 min
at4 °C. After washing, the cells were incubated for 30 min at 4 °C with the primary antibody at varying
dilutions (Table 1). Cells were then washed three times in flow buffer (phosphate buffered saline + 5%
fetal bovine serum) and were resuspended in 200 pL of a buffer with 1% paraformaldehyde for fixation.
Samples were analyzed on a DAKO Cyan ADP (Beckton-Dickinson, Brea, CA, USA). Gates were set to
eliminate small particles, neutrophils, and eosinophils using forward and side scatter. A total of at
least 10,000 cells were counted, and the percentage of cells that were stained with each antibody was
determined. Gates were set based on the isotype controls (Table 1) when used at the same dilution as
the antibody, such that 1% or fewer cells were positive.

List mode files were analyzed using Flow]Jo (Tree Star Inc., San Carlos, CA, USA). For PBMC,
absolute cell counts were determined by multiplying the percent of gated cells expressing each subset
by the total white blood cell count minus the absolute neutrophil, eosinophil, and basophil counts,
as determined by blood smear differential counts.
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Table 1. Antibodies used for flow cytometry.

40f15

Source

Cell Receptor Species Against Antibody Clone Isotype Dilution
CD4 Anti-feline Southern Bioech  MouseIgGl  1:100
CD8 Anti-feline SO‘gI}:)‘;r: f]éigtSeCh MouseIgG1 ~ 1:100

CD134 Anti-feline Cls(frrlgt;’]g ‘ Mouse IgG1 1:10
B220 Anti-mouse Southern Botech  RatlgGaa 1:100
FAS Anti-feline Iéizesi];%r{l: Mouse IgGl1 1:500

CD21 Anti-human B%iﬂigrg_ig, ien Mouse IgG1 1:5

CD45RA Anti-feline Aflflllvrﬁ‘éfl‘:s?;y Mouse IgG1 1.7

MHC II (HLA-DR, DP, DQ) Anti-human B%{;ﬁ“;g;g;r‘ Mouse IgG1 1:10

Wayne Thompkins
CD25 Anti-feline North Carolina Mouse IgG2a 1:20
State University
CD14 Anti-human CIE;ZI;?%( . Mouse IgG1 1:20

FAS: death receptor (CD95); MHC: major histocompatibility complex; HLA-DR: Human Leukocyte Antigen-antigen
D Related; DP: DP chain; DQ: DQ chain.

Table 2. Cell subsets examined in the different tissue compartments and the proposed function of
each phenotype.

Cell Subsets Examined Tissue Compartments Examined Proposed Function

CD4* Blood, Thymus, MLN, PLN T cells, helper of cytotoxic
CD8* Blood, Thymus, MLN, PLN Cytotoxic T cells, NKT cells
CD14* Blood, Thymus, MLN, PLN Monocytes, Macrophages, myeloid DC
CD4+ CD134* Blood, Thymus, MLN, PLN Activated CD4" T cells
CD8* FAS* Blood Activated CD8" T cells
CD4*" MHC II* Blood, Thymus, MLN, PLN Activated CD4* T cells
CD4" CD45RA* Blood, Thymus Naive CD4" T cells
CD8" CD45RA* Blood, Thymus Naive CD8" T cells
CD4* CD8* Thymus Double-positive T cells
CD4~ CD8~ Thymus Double-negative T cells
CD4* CD25* Blood Activated or Regulatory CD4* T cells
B220* CD21* Blood B cells

MLN = mesenteric lymph node, PLN = peripheral lymph node.

2.8. Genomic DNA Extraction

DNA was extracted from tissues using a bead-based disruption/homogenization system and
the DNeasy Blood and Tissue Kit (QIAGEN, Valencia, CA, USA). Briefly, 40 mg of tissue were placed
in Lysing Matrix A tubes (M.P. Biomedicals, Irvine, CA, USA) before adding 450 pL tissue lysis
buffer ATL (QIAGEN) and 50 uL proteinase K (QIAGEN). Tissues were homogenized by high-speed
bead disruption in the FastPrep®-24 instrument (M.P. Biomedicals) for 40 s at a speed setting of 6.0.
The resulting homogenate was centrifuged at 14,000 x g for 10 min, and the supernatant was transferred
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to a new microcentrifuge tube. DNA was extracted as per the manufacturer’s instructions. DNA was
eluted with 100 uL. H,O and stored at —20 °C until use.

DNA was extracted from 1 million PBMCs using the Qiamp blood mini DNA kit (QIAGEN).
DNA from each sample was eluted with 50-100 pL of H,O and stored at —20 °C until use.

2.9. RNA Extraction & cDNA Synthesis

RNA was extracted from tissues using the FastRNA pro-green kit (M.P. Biomedicals, Irvine, CA,
USA) with FastPrep®—24 homogenizer (M.P. Biomedicals), following the manufacturer’s protocol.
Briefly, 100 mg of tissue was homogenized in RNApro™ Solution and Lysing Matrix D using
the FastPrep®-24 instrument for 40 s at a setting of 6.0. RNA was then purified according to the
manufacturer’s instructions, resuspended in 100 uL RNase-free H,O and stored at —80 °C. Cellular
RNA was then converted to cDNA using random primers and Superscript II (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. RNA was extracted from 2 million bone marrow
cells were resuspended in 0.5mL Trizol (Sigma, St. Louis, MO, USA) at 4 million cells/mL. RNA was
purified by phenol:chloroform extraction and ethanol precipitation. Viral RNA was extracted from
plasma using the QIAamp viral RNA kit (QIAGEN, Valencia, CA, USA) spin protocol.

2.10. Quantitation of Proviral Load, mRNA Viral Load, & Cytokine Transcripts by Real-Time qPCR

Briefly, 5 uL of tissue extracted DNA was quantitated by comparison to standard curves that were
generated using plasmids containing the FIV-C gag or the PLV pol. The number of cell equivalents
for each DNA sample was determined, as described by Terwee et al. [7]. FIV and PLV mRNA was
quantified in tissues by qPCR using the previously described FIV-C gag and the PLV pol assays [13,14].
While these assays target two different lentiviral genes, the abundance of gag and pol-containing
mRNAs during feline lentiviral infection are similar, suggesting that these assays are reasonable for
comparing viral mRNA levels of FIV and PLV. [15] To allow for the accurate comparison between
samples, viral mRNA expression was normalized to mRNA expression of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) for each sample using the 2—ACt method, in which ACt is the cycle at which
the threshold is reached for GAPDH that was subtracted from the cycle threshold for viral mRNA.
Conversion of ACt to 2—ACt produced a value that indicates the fold abundance of viral mRNA
relative to that of GAPDH mRNA.

Cytokine mRNA expression was quantitated by qPCR, as previously described [7]. Expression of
IL-10, IL12p40, and IFNy mRNA was quantitated relative to GAPDH mRNA expression using this the
2—ACt method. All of the qPCR assays in the study were performed in triplicate, and qPCR efficiencies
were within the accepted range of 90-110%.

2.11. Statistical Analyses

To evaluate the effects of infection, time, and the interaction on the response variables, we utilized
repeated measures ANOVA after the log transformation of the data. To achieve this, we split the
experiment into a PLV group (at week 0), a CO group, and a SHAM group (week 0 to week 4) and
analyzed these independently. Analyses were undertaken using the program R (http://www.r-project.
org/). Individual time point differences between the FIV and CO groups in blood and tissues were
evaluated using the Student’s f-test. Linear regression was used to predict the effect of previous PLV
infection on decreased FIV proviral and viral loads in the CO group. T-tests and linear regression
analyses were analyzed with PRISM software (GraphPad Software, LaJolla, CA, USA). For all of the
analyses, a P < 0.05 was considered to be statistically significant.
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3. Results

3.1. Prior PLV Infection Results in Lower FIV Proviral Loads in PBMC, Bone Marrow, and LNs, and Decreased
Plasma Viremia

FIV proviral loads were significantly lower at three and four weeks, and FIV plasma viremia was
significantly lower at two and four weeks FIV Pl in CO versus FIV cats (Figure 2A,B; p-values < 0.05).
FIV proviral loads were trending lower in the bone marrow of the CO versus FIV cats at two and
four weeks FIV PI (P = 0.084 and P = 0.196, respectively; Figure 2C). Decreased proviral loads were
also noted in the mesenteric and prescapular lymph nodes four weeks FIV PI in CO versus FIV cats
(Figure 2D, E). Viral load differences were not found in the thymus (Supplementary Figure S1). In all
of the tissues, the range of viral loads was narrower in CO than FIV cats.

A, Blood Proviral Loads B. Plasma viremia C. Bone Marrow
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Figure 2. Feline immunodeficiency virus (FIV) proviral loads (A) and FIV plasma viremia (B) were
statistically decreased at various times post FIV infection (FIV PI) in CO versus FIV cats. At 3
(P =0.016) and 4 (P = 0.049) weeks FIV PI for FIV proviral loads, and at 2 (P = 0.048) and 4 (P = 0.011)
weeks FIV PI for plasma viremia. However, no statistical differences were found by group and time
(P =0.190). Bone marrow proviral loads (C) were not statistically different by group and time (P = 0.182),
but a trending difference was noted between CO and FIV cats at 2 weeks FIV PI (P = 0.084) and no
difference was found at 4 weeks FIV PI (P = 0.196). Proviral loads in mesenteric (P = 0.0367) (D) and
prescapular (P = 0.0152) (E) lymph nodes were lower in the CO as compared with FIV cats at 4 weeks
FIV PL Bars indicate statistical differences (P <0.05) between groups.

3.2. Global and Naive CD4" T Cells are Preserved by Co-Infection Compared to FIV Infection

Global CD4* cells were increased in the CO when compared to the FIV cats at 2 and 4 weeks FIV
PI (P < 0.05, Figure 3A). CD4" subset preservation was documented in the naive CD4*CD45RA* cell
compartment at 2 weeks FIV PI in the CO verses FIV cats, but not to the same extent as the global
CD4" cells (Figure 3B, P = 0.001).CD4*CD45RA™ cells in the CO cats decreased at four weeks; and
therefore, no longer differed between the groups (P = 0.332).
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Figure 3. CD4" cells were preserved in the blood of CO as compared with FIV cats at 2 weeks
(P = 0.0492), and approached preservation at 4 weeks (P = 0.0612) FIV PI. At 2 and 4 weeks FIV PI,
control SHAM cats had higher CD4* cells than FIV cats (P = 0.002 and P < 0.0001, respectively), and CO
cats (2 weeks, P = 0.0090; 4 weeks, P = 0.0034) (A). Naive CD4*CD45RA™* cells were also preserved
in the CO cats compared with FIV cats at 2 weeks (P = 0.0012), but not at 4 weeks (P = 0.332) FIV PL
At 2 and 4 weeks FIV PI, SHAM CD4*CD45RA" cells were greater than FIV cats (2 weeks, P = 0.0069;
4 weeks, P = 0.0012), yet the SHAM was only different than the CO cats at 4 weeks FIV-PI (P = 0.0062)
CD4" cells (B). Bars indicate statistical differences between the indicated groups. Significant differences
were noted among the three groups over time (CD4" cells, P = 0.0004; CD4*CD45RA™ cells, P = 0.0012).

3.3. Prior PLV Infection Resulted in Greater CD8* Cell, CD8*FAS™ cell, and large granular lymphocytes
Numbers During Early FIV Infection Compared With SHAM Animals

Global CD8* cells (Figure 4A) were higher in the CO cats as compared with the FIV cats at 0,
1, and 2 weeks FIV PI (p-values <0.05); however, by 4 weeks PI all of the groups had similar CD8*
cell numbers. CD8* cells in the CO and SHAM cats were similar at all time points (0—4 weeks),
whereas the FIV cats had decreased levels compared with SHAM cats at 0, 1, and 2 weeks FIV PI
(p < 0.05). CD8*FAS* cell numbers were greater in the CO than FIV cats at 0, 1, and 2 weeks FIV PI
(p-values < 0.05), and this difference was more pronounced than that seen in the global CD8" cell
population (Figure 4B). By four weeks FIV PI, CD8*FAS™" cells in the FIV cats increased. CD8*FAS*
cells in the CO cats were higher than the SHAM cats at all of the time points (0—4 weeks, P <0.05),
and the FIV cats had higher levels as compared with SHAM cats at 2 and 4 weeks FIV PI (P <0.05).
As previously noted [13], large granular lymphocyte (LGL)numbers mirrored the CD8*FAS™ cell
populations, and significant differences were trending at one week (P = 0.074) and were significant at
two weeks FIV PI between the CO and FIV cats (P = 0.002; Figure 4C). LGLs were higher in the CO
versus SHAM cats at 2, 3 and 4 FIV PI (P <0.05). However, no significance was found in LGL numbers
between the FIV and the SHAM cats at any time point.
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Figure 4. CD8" cells are higher in the blood of CO compared with FIV cats at 0, 1 and 2 weeks FIV-PI
(P =0.0015, P = 0.045, P = 0.011, respectively). CD8" cells in CO cats are similar to SHAM cats at all
time points (P > 0.05), whereas FIV cats had decreased levels compared with SHAM cats at 0, 1 and
2 weeks FIV PI (P = 0.005, 0.0136, and 0.003, respectively) (A). CD8*FAS™ cells in the CO cats were
higher than SHAM cats at all of the time points (0 week, P = 0.00098; 1 week, P = 0.0198; 2 weeks,
P =0.0292; 4 weeks, P = 0.00135), and higher in FIV as compared with SHAM cats at 2 and 4 weeks FIV
PI (P = 0.02577, 0.00088, respectively) (B). Large granular lymphocyte (LGL) numbers mirrored the
CD8*FAS™ cell populations, and differences were trending at one week (P = 0.074) and were significant
at two weeks (P = 0.002) FIV PI between CO and FIV cats. Significant differences in LGLs were trending
at one week (P = 0.074) and were significant at two weeks FIV PI in between the CO and FIV cats
(P =0.002). LGLs were higher in the CO than SHAM cats at 2, 3, and 4 FIV PI (P = 0.0076, 0.0059,
and 0.0044, respectively). However, no significant difference was found in LGL numbers between
the FIV and sham inoculations of media (SHAM) cats at any time point (C). Bars indicate statistical
differences between the indicated groups. Significant differences were also noted among the three
groups over time (CD8" cells, P = 0.0005; CD8"FAS™ cells, P = 0.0004; LGLs, P = 0.003).

3.4. Cytokine Differences in PBMC Between Co-Infected and FIV-Infected Cats FIV PI

PBMC IFN-y expression was significantly higher in CO than FIV cats at 0, 2, and 3 weeks FIV
PI (p-values < 0.05; Figure 5A), despite no overall differences among the groups over time. IL-10
mRNA expression was significantly different among all groups over time, and significantly higher
IL-10 expression was appreciated at 0, 2, and 3 weeks (p-values < 0.05) in CO as compared with FIV

cats (Figure 5B). No differences were seen among groups for IL-12 mRNA expression (Supplementary
Figure 52).
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Figure 5. Peripheral blood mononuclear cell (PBMC) interferon gamma (IFN-y) expression was higher
in the CO as compared to FIV cats at 0, 2 and 3 weeks FIV PI (p-values <0.05) (A), while no differences
were found among the groups over time (P = 0.2269). PBMC IL-10 mRNA expression was appreciated
at 0, 2, and 3 weeks FIV PI in the CO when compared with FIV cats (P = 0.003), 2 (P = 0.044), and 3
(P = 0.005) Significant differences were noted for IL-10 expression among the three groups over time
(P =0.0001) (B). Bars indicate statistical differences between the CO and FIV cats.

3.5. Tissue Lymphocyte Phenotypes Differ Between Co-Infected and FIV-Infected Cats

3.5.1. Thymus

At 4 weeks FIV PI, Thymic CD4*CD45RA" cell percentages among live cells were trending
lower in the CO when compared to FIV cats (P = 0.059, Figure 6A), and both the FIV and CO cats
(p-values < 0.05) had higher CD4*CD45RA™* cell percentages than SHAM cats. CD4*CD8* double
positive cell percentages in the CO cats were also trending higher as compared with the FIV cats
(P =0.071, Figure 6B), and both the FIV (P = 0.004) and the CO (P = 0.0165) cats had lower CD4*CD8*
double positive cells compared with the SHAM cats. No differences were found in the thymus among
single CD4* and CD8* cells between FIV and CO cats (Supplementary Figure S3).

Al CD4"CD45RA" cells B. CD4*CD8" cells
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Figure 6. Thymic CD4*CD45RA™ cell percentages were trending lower in the CO compared to FIV cats
(P =0.059), and both the FIV (P <0.0001) and CO cats (P = 0.0014) had higher CD4*CD45RA" live cell
percentages than the SHAM cats at 4 weeks FIV PI (A). CD4*CD8* double positive cell percentages in
the CO cats were trending higher when compared with those in the FIV cats (P = 0.071), and both the
FIV (P = 0.004) and CO (P = 0.0165) cats had lower CD4*CD8* double positive cells compared with
SHAM cats (B). Bars indicate statistical differences between the indicated groups.

3.5.2. Prescapular Lymph Node

At 4 weeks FIV PI, and similar to observations in the peripheral blood, CD4* cell percentages
were significantly preserved in prescapular lymph nodes (PLNs) in CO when compared to FIV cats
(P = 0.0475, Figure 7A). While the CD4" cell percentages in the CO cats were not different from the
SHAM cats (P > 0.05), the FIV cats were different (P < 0.05). While CD8" cell percentages did not vary
among groups (data not shown), the CD4/CDS8 ratio differences were significantly lower in the FIV
when compared with CO cats (P = 0.020, Figure 7B), presumably due to the differences in the CD4*
cells between the groups.
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Figure 7. Prescapular lymph node CD4* live cell percentages ((A) P = 0.0475) and CD4/CD8 ratios
((B) P =0.02) were higher in CO when compared to FIV cats at 4 weeks FIV PI. CD4" live cell percentages
and CD4/CDS8 ratios were also higher in the SHAM compared to FIV cats (CD4*: P = 0.008; CD4/CD8

ratio: P = 0.0011), but not between the SHAM and the CO cats.

3.6. PLV Infection Alters the Immune Landscape at the Time of FIV Inoculation

To understand the possible reasons for attenuation of FIV proviral and the viral loads in CO
versus FIV cats, we evaluated blood cell and cytokine differences between the groups four weeks after
PLV inoculation (at week 0 FIV PI). After four weeks of PLV infection, the cats in the PLV group had
decreased B220"CD21* B cells (Figure 8A, P = 0.026) and CD4*MHC II* (Figure 8B, P = 0.0287) cells,
and increased CD8*FAS* (Figure 8C, P < 0.0001) and CD4*CD134" cells as compared with SHAM cats
(Figure 8D, P = 0.0206). IL-10 (Figure S8E, P = 0.0001) expression was also increased in PBMC at this

time point.
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Figure 8. Significantly different blood cells and cytokines are seen between Puma lentivirus
(PLV)-infected (PLV) and control cats (SHAM) four weeks after PLV inoculation (at week 0 FIV
PI). B220* CD21* cells (A) and CD4*MHC II* cells (B) were decreased in the PLV cats compared
to the SHAM cats. CD8*FAS™" cells (C) and CD4*CD134" cells (D) were increased in the PLV cats
when compared to SHAM cats. PBMC IL-10 mRNA expression (E) was statistically increased in PLV

compared to SHAM cats.
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3.7. Significant Differences Between Co- and FIV-Infected Cats at the Time of FIV Exposure Predict Future
Outcomes of FIV Infection

We performed linear regression analysis to determine if the cell phenotypes and cytokines that
we found to be different between the PLV cats (CO) and SHAM cats at the time of FIV inoculation
(week zero) correlated with the immune or viral attributes of FIV infection. Among the cells that were
different between FIV and CO cats at time zero, we found that higher CD8*FAS* (Figure 9A) and
CD4"CD134" (Figure 9B) cell numbers in PLV-infected cats at time 0 could predict lower FIV proviral
loads in blood at one week FIV PI. We also found that higher B220"CD21* (Figure 9C) cell numbers at
week zero could predict lower FIV plasma viremia at one week FIV PI and higher IL-10 expression
could predict lower FIV proviral loads in blood two weeks FIV PI (Figure 9D). Cell phenotypes at week
0 were not predictive of viral loads, viremia, or circulating immunocyte populations at four weeks
FIV PL
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Figure 9. Linear regression analysis to determine cell phenotypes and cytokine expression that was
different between the PLV (CO) and SHAM cats at week zero or time of FIV inoculation could predict
future outcomes of FIV infection in CO cats. Higher CD8*FAS* (A) and CD4*CD134" (B) cell numbers
in the blood of CO cats (those previously infected with PLV) at week 0 could predict lower FIV proviral
loads in blood at one week FIV-PI, and that higher B220*CD21* (C) cell numbers in blood at week
zero could predict lower FIV plasma viremia at one week FIV PI. Higher IL-10 mRNA expression in
PLV-cats at week 0 predicted lower FIV proviral loads at two weeks FIV PI (D).
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4. Discussion

In previous studies, we documented that prior exposure to apathogenic PLV infection resulted
in the preservation of CD4" T cells and increased PBMC IFN-y mRNA expression when compared
with cats that were infected solely with FIV [7]. Increased pro-inflammatory cells and mediators [10],
and attenuated proviral loads in the CO vs. FIV cats [7] were seen three weeks FIV PI. However,
adaptive immune responses raised against PLV were not implicated in these differences, and G to
A substitutions, due to cytidine deaminase activity, were also not found to be responsible for the
bottleneck of FIV infection three weeks post-PLV infection [11,12].

The current study was designed to identify immunologic phenotype variations between CO and
FIV cats during acute viral replication and to gain a better understanding of the potential mechanisms
underlying the differences between these two scenarios. We again noted a blunting of FIV viral loads
in blood and peripheral tissues and a dampening of CD4 depletion when PLV infection preceded FIV
challenge. We hypothesized this could be due to changes in the susceptible target cell population at the
time of FIV challenge in PLV versus naive cats, and/or this impact could be due to the immunological
state induced by PLV infection. While we found evidence of peripheral cell subset changes on the day
of challenge, the preponderance of evidence suggests that the innate immune landscape at the time of
challenge contributed to different infection outcomes.

Circulating CD4*CD134" cells (activated CD4 T lymphocytes) and B cells varied between PLV
and SHAM cats at the time of FIV challenge. CD4*CD134" cells were higher in PLV versus SHAM
cats at the time of challenge (Figure 8), a finding that correlated with lower FIV viral loads one week
FIV PI (Figure 9). While CD4*CD134* cells represent the primary cell type infected during acute FIV
infection [7,16,17], the expansion of this population during PLV infection did not result in higher viral
loads following FIV exposure. It is possible that this subset of activated CD4* lymphocytes possessed
anti-viral activity that contributed to a lower viral setpoint [18]. PLV-infected cats had statistically
lower numbers of B cells in circulation on the day of FIV challenge than the SHAM cats. It is possible
PLV triggered B cell apoptosis or B cell shifting from peripheral to central sites. FIV has been shown to
infect CD21" B cells, so lower circulating B cells in PLV could result in the decreased susceptibility to
FIV challenge, though B cell tropism is typically considered to occur late in FIV infection [19].

CD4*CD45RA™ cells rapidly decreased in the FIV cats by two weeks FIV PI, but transient
preservation was seen in CO cats. These findings might be explained by the fact that CD4*CD45RA*
cells are preferentially infected during acute FIV infection that is similar to acute syncytium-inducing
variants of HIV infection [20,21]. None of the CD4" cell subsets that were examined in this study
(CD4"CD45RA™, CD4*CD134", and CD4* MHCII) could be attributed to global CD4* maintenance
in CO cats. Thymic CD4*CD45RA™ cells trended lower in the CO versus FIV cats. Peripheral naive
T cells were shown to be replenished by naive thymic T cells in mice [22], and similar mechanisms
may underlie our observations in this system. The lower thymic double positive cell percentages in
the CO versus FIV cats might indicate a greater infection in the thymus of FIV compared with CO
cats, but this did not correlate with our findings of no difference in proviral loads between the two
groups. By 26 days post simian/human immunodeficiency virus, infection in rhesus macaques marked
decreases in double positive cells were seen in the thymus [23]. However, differences could be due to
differential changes in other thymic cell types.

CDS8*FAS* T cells were increased at the time of FIV inoculation in PLV when compared to
SHAM cats, and this increase is inversely correlated with viral loads at one week PI (Figure 9A)
suggesting an acute impact of these cells on the establishment of viral infection. We previously
determined that CD8*FAS™* cells were analogous to LGLs in FIV and that these cells correlated with
dampening of FIV viremia [24,25]. We believe that these cells are analogous to anti-viral CD8" T
cells in HIV-infected individuals [26] and CD8"* T cells in SIV-infected long-term non-progressing
(LTNP) rhesus macaques [27]. Our findings bolster the conclusion that CD8" T cells represent an innate
immune cell type [27].



Viruses 2018, 10, 210 13 of 15

IL-10 expression at the time of FIV infection was greater in the PLV when compared to SHAM cats
(Figure 9E), and the predicted suppression of proviral loads two weeks FIV Pl in the CO cats. IL-10
is a complex cytokine that is induced during acute HIV infection and has potent anti-inflammatory
properties in chronic HIV [28]. Higher IFN-y expression was identified in CO when compared to FIV
cats at several points post-FIV infection. Activated CD8" T cells, CD4* T cells, NK cells, and CD8*FAS*
cells primarily produce IFN-y during HIV-1 and FIV infection [29-33]. This type II interferon has been
associated with variable expression during acute and chronic HIV infection, and has not been correlated
with a significant control of disease [34]. In SIV-infected sooty mangabey monkeys (SMM), IFN-y
elevation was more transient, and IL-10 was more prominent during acute control of SIV infection
compared SIV infected macaques that did not control infection [35]. Although we were unable to
detect differences between CD4"CD25* between FIV and CO cats in this study, in comparison to SMM
infection indicates that IL-10 expression during acute infection may be more relevant to subsequent
viral control than IFN-y. Similarly, regulatory T cell-induced IL-10 expression was shown to be
responsible for decreased IFN-y expression following the stimulation of CD4* and CD8* HIV-1-specific
T cell immune responses of HIV-1-exposed-uninfected infants [36]. Overall, these findings show
a complex interplay of cytokines that vary in intensity and at the stage of lentivirus infection, providing
evidence that innate immune processes are associated with the early suppression of viral replication
during co-infection.

This study reinforced previous observations that prior exposure to an apathogenic lentivirus
infection can diminish the effects of acute infection with a second, more virulent, viral exposure.
In addition, it investigated immunocyte phenotypes and cytokines that could distinguish the
characteristics between PLV /FIV and FIV during the acute phases of the infection. Overall, circulating
blood cell types at the time of infection are less relevant to FIV susceptibility than the inflammatory
immune environment that is induced by prior lentiviral exposure. Additionally, as virus attenuation
in HIV and SIV long-term non-progression is at least partly due to innate viral immunity [27,37],
we have also identified non-virus-specific entities at play at the time of FIV inoculation in PLV-infected
cats. These innate immune parameters (i.e., cytokines, LGLs/CD8*FAS" cells) that are present during
the first week of infection are key to defining differences in infection outcomes and could be used in
therapeutic interventions to reduce disease severity in susceptible populations. Follow-up studies will
evaluate non-infectious means to produce these biologically relevant and resistance phenotypes.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com/1999-4915/10/4/
210/s1.
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