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Simple Summary: Patients with primary Sjogren’s syndrome (pSS) are at risk of developing extran-
odal marginal zone lymphoma (ENMZL) of the mucosa-associated lymphoid tissue (MALT) in the
parotid glands. The genetic mechanism underlying development of MALT lymphoma in the context
of pSS is unknown. The aim of our study was to define the genomic landscape of pSS-associated
MALT lymphoma. For 17 localized pSS-associated MALT lymphomas, we analyzed the presence
of nonsynonymous mutations, copy number alterations (CNAs) and MALT1 translocations. pSS-
associated MALT lymphomas were characterized by a low mutational load (median number of
nonsynonymous somatic variants per case was 7, range 2–78) and a limited number of CNAs. Unlike
the recurrent genomic aberrations observed in MALT lymphoma, which were not associated with
pSS, pSS-associated MALT lacked a clear lymphoma-related profile. The data suggest that localized
pSS-associated MALT lymphomas are a distinct type of ENMZL, which are genomically stable and
most likely depend on a stimulatory micro-environment.

Abstract: Patients with primary Sjogren’s syndrome (pSS) are at risk of developing extranodal
marginal zone lymphoma (ENMZL) of the mucosa-associated lymphoid tissue (MALT) in the parotid
glands. Unlike recurrent genomic aberrations observed in MALT lymphoma, which were not
associated with pSS (non-pSS), it is unknown which somatic aberrations underlie the development of
pSS-associated MALT lymphomas. Whole-exome sequencing was performed on 17 pSS-associated
MALT lymphomas. In total, 222 nonsynonymous somatic variants affecting 182 genes were identified
across the 17 cases. The median number of variants was seven (range 2–78), including three cases with
a relatively high mutational load (≥24/case). Out of 16 recurrently mutated genes, ID3, TBL1XR1,
PAX5, IGLL5 and APC are known to be associated with lymphomagenesis. A total of 18 copy number
alterations were detected in eight cases. MALT1 translocations were not detected. With respect
to outcome, only two cases relapsed outside of the salivary glands. Both had a high mutational
load, suggesting a more advanced stage of lymphoma. The low mutational load and lack of a clear
lymphoma-related mutation profile suggests that localized pSS-associated MALT lymphomas are
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genomically more stable than non-pSS MALT lymphomas and most likely depend on a stimulatory
micro-environment.

Keywords: extranodal marginal lymphoma of mucosa-associated lymphoid tissue; Sjogren’s
syndrome; whole-exome sequencing; mutational analysis

1. Introduction

Primary Sjogren’s syndrome (pSS) is a chronic multisystem autoimmune disease with
an estimated prevalence of 0.02–0.25% that predominantly affects adult women [1]. pSS is
characterized by unspecified chronic inflammation of the exocrine glands that results in
diminished gland function [2]. In addition, patients can develop extra-glandular features
such as arthritis, neuropathy and renal or pulmonary involvement.

Although the initial event leading to the inflammatory response in pSS has not fully
been elucidated, T-cell dependent B-cell hyperactivity gives rise to autoantibodies and
increased pro-inflammatory cytokine levels [3]. Antibodies against the ribonucleopro-
tein antigens anti-Ro/SSA and/or anti-La/SSB can be found in ~70% of pSS patients [2].
Rheumatoid factor (RF) is present in approximately half of the patients. In some patients,
RF forms insoluble aggregates when cooled below normal body temperature, leading to
cryoglobulinemia [4].

The presence of cryoglobulinemia, together with low C4 levels and salivary gland
enlargement, are important risk factors for lymphoma development in pSS [5]. Nearly
5–10% of pSS patients develop non-Hodgkin’s lymphoma, of which extranodal marginal
zone lymphoma (ENMZL) of the mucosa-associated lymphoid tissue (MALT) is the most
common [6,7]. MALT lymphoma initially starts as a polyclonal B-cell proliferation in pSS
salivary glands that, over time, develops into an oligoclonal and eventually monoclonal
B-cell expansion [5,8,9]. The majority of salivary gland pSS-associated MALT lymphomas
express stereotypic B-cell antigen receptors that include an immunoglobulin heavy-chain
variable gene region with high affinity for RF [10]. It has been proposed that sustained (auto)
antigen stimulation and inflammation in pSS results in the formation of germinal centers
and the accumulation of genomic aberrations in B-cells due to somatic hypermutation
and class-switch recombination [3,11]. Over time, this leads to a monoclonal expansion of
intra-epithelial B-cells characterized by the expression of Fc receptor-like protein 4 [9,12].
These Fc receptor-like protein-4-expressing B-cells have an aberrant transcriptome that may
put these cells at high risk for malignant transformation [13].

The genetic mechanism underlying the development of pSS-associated MALT lym-
phomas is largely unknown. In MALT lymphoma not associated with pSS (non-pSS),
recurrent chromosomal translocations involving the MALT1 gene have been frequently
observed [11,14,15]. In contrast, the majority of pSS-associated MALT lymphomas lack
recurrent chromosomal aberrations [16]. Analyses of the mutational landscape of splenic
marginal zone lymphoma (SMZL) and non-pSS MALT lymphoma have identified re-
currently mutated genes involved in chromatin remodeling/transcriptional regulation,
NOTCH and NF-κB pathways [17–24]. The mutational profile of non-pSS MALT lym-
phomas showed distinct profiles associated with the anatomical sites of presentation. For
example, non-pSS MALT lymphomas of the salivary gland were characterized by frequent
mutations in TBL1XR1, GPR34 and NOTCH2 [15,24]. However, given that previously
conducted studies have focused on non-pSS MALT lymphomas, mutational analyses of
pSS-associated MALT lymphomas are currently lacking. In a small series of four pSS
patients with cryoglobulinemia but without MALT lymphoma, pathogenic mutations in
small fractions of circulating B-cells were observed in genes that are often associated with
common B-cell lymphomas, such as CARD11, TNFAIP3, CCND3, ID3, BTG2 and KLHL6 [4].

The aim of the current study was to define the genomic landscape of pSS-associated
MALT lymphoma of the parotid gland. The identification of specific recurrent mutations or
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copy number aberrations and subsequent elucidation of the affected pathways will help in
understanding the mechanisms by which B-cells in pSS undergo malignant transformation.

2. Materials and Methods
2.1. Patient Materials

Fifteen fresh-frozen and three formalin-fixed paraffin-embedded (FFPE) MALT lym-
phomas were collected from the parotid glands of 18 pSS patients at the University Medical
Center of Groningen (UMCG). Patients were identified through the electronic database
from the UMCG. All specimens were collected as part of standard clinical care in patients
with symptomatic disease. Matched blood samples obtained for 12 of these patients were
used as germline controls. The use of tissue and clinical data from the included patients
was approved by the Medical Ethical Committee of the UMCG. All patients gave writ-
ten informed consent. Clonality analysis using IgH-PCR (BIOMED-2) was performed, to
confirm the presence of a clonal B-cell process, for all samples on the diagnostic FFPE
material as part of standard care [25]. A review of the samples and estimation of the tumor
cell percentages was carried out by experienced pathologists (AD, EH and BV) based on
morphology, immunohistochemistry for CD3, CD20, CD79a, immunoglobulin light chains,
IgA, IgG and IgM, and B-cell clonality analysis.

2.2. Fluorescence In Situ Hybridization

Fluorescence in situ hybridization (FISH) to identify MALT1 translocations was per-
formed using MALT1 break-apart probes, according to the manufacturer’s instructions
(Vysis-LSI-MALT1-Break-Apart-FISH-Probe-Kit, Abbott, Chicago, IL, USA).

2.3. Whole-Exome Sequencing

DNA isolation from the fresh-frozen tumor samples and white blood cell samples was
performed using a standard salt and chloroform-based procedure. Isolation of DNA from
FFPE tissue sections was performed with the COBAS kit, following the manufacturer’s
protocol (Cobas DNA Sample Preparation kit: Roche Molecular systems, Branchburg, NJ,
USA). Whole-exome sequencing was carried out using the Human Core Exome Enrichment
assay according to the manufacturer’s procedures (Twist Bioscience, South San Francisco,
CA, USA), using a DNA input of 100 ng per sample. Pools containing 16 individual
samples were paired-end sequenced (2 × 150 nt) on a NextSeq 500 run (Illumina, San
Diego, CA, USA). Raw sequencing data were de-multiplexed, trimmed and analyzed using
a previously published in-house bioinformatics pipeline [26].

2.4. Bioinformatics Analysis

In brief, reads were aligned to the human reference genome (GRCh37/hg19) using the
Burrows–Wheeler Alignment (BWA) tool version 0.7.17-r1188. The BAM files produced
by BWA were pre-processed according to the GATK best practices workflow using the
HaplotypeCaller over the batches [27] and a MOLGENIS compute as a workflow tool [28].
Next, base quality score was recalibrated. Variants were called using HaplotypeCaller and
FreeBayes [27,29]. Variants were annotated with 1000 genome phase 3 [30], Cosmic v72 [31],
the Exome Aggregation Consortium (ExAC) 0.3 databases [32] and SnpEFF 3.5 [33]. For one
fresh-frozen tumor sample, whole-exome sequencing resulted in a mean target coverage of
only 7 reads, and this sample was excluded from further analysis.

2.5. Variant Filtering

Variants were filtered using the following quality exclusion criteria: QUAL (Phred
scaled probability score) < 20, Fisher Strand bias > 60, Mapping Quality (MQ) < 40,
MQRankSum < −12.5, (QUAL /Depth (QD) < 2), QD/allele frequency (AF) < 8.0 and
ReadPosRandSum < −20. Next, synonymous variants, variants with a frequency >2% in
the 1000 Genomes Project and variants with a minor allele frequency ≥0.1% in the ExAC
and/or GnomAD databases were excluded [32]. Variants with a total read count <20 and
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variants with a minor allele count of <4 in the tumor sample were considered inconclusive
and excluded from further analysis.

Matched blood samples were used to exclude non-harmful personal variants when
the minor allele count in the blood sample was >3. The results of the two variant callers
were combined into one list, keeping the HaplotypeCaller read counts when the variant
was called by both algorithms [27,29]. Variants called as multi-nucleotide polymorphisms
by FreeBayes were actually combinations of multiple single-nucleotide variants (SNVs)
(and even InDels in a few samples). These multi-nucleotide polymorphisms were split into
their individual variants based on visual inspection of the aligned reads in the Integrative
Genomics Viewer [34]. The individual variants were subsequently filtered as described
above, using read counts indicated in the Integrative Genomics Viewer and information
obtained from UCSC genome browser GRCh37/hg19 [35].

Variants in samples without matched normal blood samples and with a total read
count ≥20 and a minor allele count of >3 were filtered in a similar way, including the step
where multi-nucleotide polymorphisms were resolved into their individual variants.

2.6. Classification of Major and Minor Clonal Variants

Variants that passed all filtering steps were classified into major and minor clonal
variants according to a previously published protocol [26]. In brief, for each tumor sample,
the variant with the highest variant allele frequency (VAF) was determined. All other
variants with a VAF ≥50% of the highest VAF in that sample were regarded as major clonal
variants and considered to be present in the majority of tumor cells. Variants with a VAF
<50% of the highest VAF were regarded as minor clonal variants and assumed to be present
in a subset of tumor cells. Hence, minor clonal variants are unlikely to be driver mutations.
For samples with a low total read count for the variant with the highest VAF (<25), the
mean of the two variants with the highest VAFs was used to determine the cutoff for major
and minor variants.

2.7. Functional Annotation and Additional Filtering Steps

A web-based version of the Open Custom Ranked Analysis of Variants Toolkit (Open-
CRAVAT) was used to link somatic variants to cancer development [36]. A custom R script
was applied to convert the Excel files containing the variant information into a Variant
Call Format file and to enter the data into OpenCRAVAT as a tab-delimited text file. The
OpenCRAVAT modules COSMIC database (module version 91.0.0, data source version
v91), Cancer Gene census (module version 85.0.12, data source version 2019-03-23) and
Cancer Gene Landscape (module version 1.0.9, data source version v2013.03.29) were used
to annotate the filtered variant lists.

Phred-scaled Combined Annotation Dependent Depletion scores were used as an
indication of the variant deleteriousness of SNVs and InDels [37]. A Combined Annotation
Dependent Depletion cut-off value of 15 was used to identify putatively pathogenic variants.
Non-pathogenic SNVs and InDels were removed.

Personal variants could not be removed for tumor samples without a matched blood
sample, which resulted in a higher number of variants. To prevent the inclusion of non-
somatic variants, we focused on variants in genes: (1) carrying somatic variants in at least
one of the samples for which a control DNA sample was available, or (2) annotated by
OpenCRAVAT as a tumor-suppressor gene or an oncogene in another type of cancer [36].

2.8. Copy Number Alterations

Copy number alterations (CNAs) were assessed with the VARSCAN software package
using the on-target reads [38]. VARSCAN infers somatic CNAs using data from matched
tumor-blood pairs. For the unmatched fresh-frozen tumor samples, the analysis was
carried out using sequence data from an unmatched blood sample that was processed in
the same pool.
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3. Results
3.1. Patient Characteristics

Patient characteristics are presented in Table S1. Almost all patients (16 out of 17) were
female. The median age was 62 years (range 40–84 years). In 16 out of 17 patients, there
was a limited stage I/II of MALT disease according to the Ann Arbor classification. In one
out of 17 patients, there was an advanced stage IV of MALT disease. Cryoglobulinemia was
present in 13 out of 17 patients (Table S1). The presence of a monoclonal B-cell population,
indicated by clear clonal peaks, was confirmed by IgH PCR (BIOMED-2) for all patients.
Translocations involving the MALT1 gene were not detected in any of the cases.

3.2. Quality Control

The median target coverage was 130x, ranging from 84 to 163 (Table S2), and >90% of
the target region had a coverage >50x.

3.3. Somatic Variants in Cases with a Matched Blood Sample

In total, 163 nonsynonymous somatic variants (median number of variants = 7, range
2–78) were identified in 138 genes among 12 cases with a matched blood sample (Figure 1,
Table S3). The distribution of these variants was skewed, with 10/12 case having ≤10 vari-
ants, compared to two cases where >30 somatic variants were detected (Figure 1). The VAF
ranged between 2.3% and 54.2%. The nonsynonymous somatic variants comprised 113 mis-
sense variants (69%), 19 frameshifts (12%), 10 disruptive- and in-frame insertions/deletions
(6%), 12 splice variants (7%), 7 nonsense variants (4%) and 2 variants disrupting the starting
codon (1%) (Table S3).
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Figure 1. Number of nonsynonymous somatic variants detected in 17 cases with primary Sjogren’s
syndrome related extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue. The
vertical axis represents the number of somatic variants. The horizontal axis represents the cases,
showing 12 cases with a matched blood sample and 5 cases without a matched blood sample.
(* relapsed outside of the salivary gland, # cases without a matched blood sample).

3.4. Somatic Variants in Cases without a Matched Blood Sample

In total, 59 nonsynonymous somatic variants (median number of variants = 11, range
3–24) were identified in 53 genes of the five cases without a matched blood sample. The
distribution of variants was skewed, with <15 variants detected in four cases and 24 variants
detected in the fifth case (Figure 1). The VAF ranged between 4.9% and 50.0%. The
nonsynonymous somatic variants comprised 50 missense variants (85%), 5 frameshifts
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(8%), 1 inframe deletion (2%) and 3 splice variants (5%) (Table S4). In the 12 cases with
matched control samples, 9 of the 138 genes harboring somatic variants harbored one or
more variants in at least one of the five cases without a matched control.

3.5. Recurrently Mutated Genes

In total, 16 recurrently mutated (>1 case) genes were identified (Figure 2, Table S5). Five
genes are involved in epithelial surface and/or extracellular matrix (MAMDC4, COL14A1,
CAMSAP3, TMEM2 and MUC4). Five genes, all with variants in two cases, were shown
to be associated with lymphoma pathogenesis (ID3, PAX5, TBL1XR1, IGLL5 and APC) in
previous studies [15,39–42]. The nonsynonymous somatic variants detected in TBL1XR1
and PAX5 were all regarded as major clonal variants, i.e., present in the majority of tumor
cells. The nonsynonymous somatic variants detected in ID3 and IGLL5 consisted of both
major and minor clonal variants. The two nonsynonymous somatic variants detected
in APC were regarded as minor clonal variants, i.e., present in a subset of tumor cells
(Table S5).
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Figure 2. Recurrently mutated (>1 case) genes among 17 cases with primary Sjogren’s syndrome
related extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue. The vertical
axis represents the number of cases. The horizontal axis represents the recurrently mutated genes.
This figure shows 5 mutated genes known to be associated with lymphomagenesis (ID3, TBL1XR1,
PAX5, IGLL5 and APC) and 5 mutated genes involved in epithelial surface and/or extracellular matrix
(MAMDC4, COL14A1, CAMSAP3, TMEM2 and MUC4). (* genes associated with lymphomagenesis,
# genes involved in the extracellular surface and/or extracellular matrix).

3.6. Copy Number Alterations

CNA data were available for 14 out of 17 cases. CNAs were detected in eight cases
(57%) (Figure 3), whereas no CNAs were identified in 6 other cases. In total, 18 CNAs were
identified, with a median of two CNAs (range 1–5) per case. Two cases had a copy number
gain in a similar region on chromosome 2 and two cases had a copy number gain in a
similar region on chromosome 19. Two cases had a copy number loss in a similar region on
chromosome 6. The case with the highest number of SNVs also had the highest number of
CNAs. None of the recurrent mutations coincided with any of the identified CNAs.
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related extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue. The vertical
axis represents the cases with copy number alterations. The horizontal axis represents the location
of the copy numbers detected in the displayed chromosomes. This figure shows a total of 18 copy
number alterations, with a median of 2 copy number alterations (range 1–5) per case. (Blue: gain of
copy number, red: loss of copy number).

4. Discussion

In this study on the mutational landscape of pSS-associated MALT lymphoma, an
unexpectedly low number of SNVs and InDels, as well as a low number of CNAs, was
observed in 14 out of 17 cases. The mutational load in the majority of the pSS-associated
MALT lymphomas was <15 variants/case. This is much lower than the median number of
variants observed in non-pSS MALT lymphoma of the thyroid and salivary gland (mean
number of 111 mutations/case without matched germline DNA [15]) and is among the
lowest number of variants reported across various cancers [43]. The read depths of our
whole-exome sequencing data were high enough to enable the detection of nonsynonymous
somatic variants with a VAF above 5% in the tumor samples, which should be sufficient to
detect somatic variants even in cases with only 10% tumor cells.

The mutational landscape of pSS-associated MALT lymphomas displayed a very lim-
ited overlap with the mutational landscapes of SMZL, nodal marginal zone lymphoma
and non-pSS MALT lymphoma [11,14,15,17–21,23,24]. Four genes recently described to be
mutated in the non-pSS MALT lymphoma of the salivary gland, TBL1XR1, CCR6, TNFAIP3
and NOTCH2, were also mutated in a subset of our pSS-MALT lymphomas [15,24]. The
nonsynonymous variants detected in TBL1XR1 and CCR6 were based on the high VAF
considered to be present in the majority of the tumor cells. NOTCH2, a gene mutated in
>25% of SMZL [14,18,19], was mutated in one pSS-associated MALT case. In addition,
variants were detected in ID3 and IGLL5, two genes recurrently mutated in Burkitt lym-
phoma [39,40]. These two genes were mutated in the two cases that relapsed outside of
the salivary gland and carried a relatively high mutational load. Finally, PAX5 has been
associated with aggressive B-cell non-Hodgkin’s lymphoma and APC with adult T-cell
leukemia/lymphoma [41,42].
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Similar to the low mutational load, a limited number of CNAs was observed in the
pSS-associated MALT lymphoma cases. In contrast, in non-pSS MALT lymphomas of
the salivary gland trisomies of chromosome 3 and 18 have been detected in 12% and
36% of cases, respectively [16]. Translocations involving the MALT1 gene, observed in
15–40% of the non-pSS MALT lymphomas irrespective of the site of presentations, with the
t(11;18)(q21;21) being the most common reported translocation [14], were not observed in
this study. Thus, our data indicate a limited overlap of the CNA profiles of pSS-associated
with other non-pSS MALT lymphomas.

The low frequency of both SNVs and CNAs indicates an overall low degree of genomic
instability in pSS-associated MALT lymphoma. Interestingly, three cases of pSS-associated
MALT lymphoma were characterized by a higher mutational load. Unlike the other patients
with a favorable course of pSS-associated MALT lymphoma after treatment, two of the
three patients with a high tumor mutational burden were characterized by severe pSS
activity and systemic relapses of their lymphoma. Of these two patients, one had a stage IV
MALT lymphoma according to the Ann Abor classification at the time of diagnosis. The
high mutational burden appears to be associated with a relapsing and remitting course,
like that observed in non-pSS MALT lymphoma [14,44]. Thus, a high mutational burden
may be associated with an advanced clinical stage of MALT lymphoma. The course of the
disease in the third patient with higher mutational burden is unknown, as the patient was
lost to follow-up. These observations can be translated to a clinical setting and potentially
have value as biomarkers for identification of patients at risk of a more aggressive disease.
However, as the sample size of our study is relatively small, confirmation in larger cohorts
is required to establish this potential association.

The lack of typical lymphoma-associated variants in pSS-associated MALT lymphoma
appears to contradict recent observations of common B-cell lymphoma-associated variants
by single-cell RNA sequencing of circulating B-cells of four pSS patients that produce
pathogenic cryoglobulins [4]. Mutations were identified in 48 genes recurrently mutated in
non-Hodgkin’s lymphoma. Genes mutated in our study as well as in the latter publication
were ID3, KLHL6, IGLL5, NOTCH2, TBL1XR1, CREBBP, ARID1A, APC and MUC16. The
majority of the common variants (18 of 21 somatic variants) observed in our study were
detected in the three pSS-associated MALT lymphomas with a relatively high mutational
load. The limited overlap in somatic variants with the circulating B-cell profile is remarkable,
since the same pool of cells, i.e., B-cells that express stereotypic RF, appears to be involved in
both cryoglobulinemia and pSS-associated MALT lymphoma [10]. A potential explanation
for this discrepancy is that the circulating B-cells and pSS-associated MALT lymphoma
share a common ancestor but follow different evolutionary tracks. This shared ancestor
with a stereotype immunoglobulin heavy-chain variable gene region could be shaped by
the microenvironment, leading to two different outcomes. The hypothesis of different B-cell
populations is clinically supported by the fact that cryoglobulins can be detected in pSS
patients long before overt pSS-associated MALT lymphoma and can persist after successful
treatment. The presence of multiple B-cell subclones is known for other lymphoproliferative
diseases and plasma cell dyscrasias as well [45–47].

The low mutational burden and the lack of a clear lymphoma-related gene signature
in the majority of the samples presented in this study indicate that pSS-associated MALT
lymphomas are relatively genomically stable. Although the possibility that the tumor
cells have a growth advantage under the influence of a few key mutations cannot be
excluded, the low mutational burden suggests that pSS-associated MALT lymphomas
might still be dependent on external stimulatory signals from the inflammatory state of the
micro-environment induced by pSS disease activity.

5. Conclusions

To our knowledge, this study is the first to describe the genomic landscape of pSS-
associated MALT lymphoma. The majority of pSS-associated MALT lymphomas are
characterized by a relatively low mutational burden and a limited number of CNAs. Unlike
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non-pSS MALT lymphoma, the majority of pSS-associated MALT lymphomas do not
show B-cell lymphoma-specific oncogenic aberrations. Therefore, localized pSS-associated
MALT lymphomas are a distinct type of ENMZL, which are most likely still dependent
on the stimulatory signals obtained from the increased inflammatory state of the micro-
environment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14041010/s1, Table S1: Patient characteristics. (RF indicates
rheumatoid factor; SS-A, Sjogren’s syndrome type A antigen and SS-B, Sjogren’s syndrome type
B antigen), Table S2: Quality report of sequencing data generated by whole-exome sequencing for
the 17 patients with primary Sjogren’s syndrome related extranodal marginal zone lymphoma of
mucosa-associated lymphoid tissue. (B indicates blood and T, tumor), Table S3: Somatic variants in
the 12 cases with a matched blood sample. (A.a. change indicates amino acid change; ALT, alternate
allele; CADD score, Combined Annotation Dependent Depletion score; dbSNP ID, reference cluster
ID; HG19, human genome version 19; MNP, multi-nucleotide polymorphism; REF, reference allele;
SNV, single-nucleotide variant; VAF, variant allele frequency and WBC, white blood cell), Table S4:
Somatic variants in the 5 cases without a matched blood sample. (Abbreviations are explained in
Table S3), Table S5. Number of somatic variants and number of major variants in and gene ontology
of recurrently mutated (>1 case) genes among 17 cases with primary Sjogren’s syndrome related
extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue. (* genes associated with
lymphomagenesis, # genes involved in the extracellular surface and/or extracellular matrix).
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