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Abstract: Autophagy is an intracellular degradation process that maintains cellular homeostasis. It is essential for protecting
organisms from environmental stress. Autophagy can help the host to eliminate invading pathogens, including bacteria, viruses,
fungi, and parasites. However, pathogens have evolved multiple strategies to interfere with autophagic signaling pathways or
inhibit the fusion of autophagosomes with lysosomes to form autolysosomes. Moreover, host cell matrix degradation by
different types of autophagy can be used for the proliferation and reproduction of pathogens. Thus, determining the roles and
mechanisms of autophagy during pathogen infections will promote understanding of the mechanisms of pathogen‒host
interactions and provide new strategies for the treatment of infectious diseases.
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1 Introduction

Cellular autophagy is a type of subcellular degra‐
dation pathway that is vital to maintain the health of
eukaryotes (Chun and Kim, 2018; Schille et al., 2018;
Allen et al., 2020; Andriantsitohaina and Papon,
2020). Cellular autophagy refers broadly to the process
of lysosome-mediated cytoplasmic degradation (Wang
and Qin, 2013). Compared with the proteasome, the
lysosome has a more powerful degradation ability.
Therefore, the cellular autophagy pathway can degrade
intracellular substances from soluble proteins to intact
organelles in large quantities, and has advantages for the
degradation of long-lived macromolecules and damaged
organelles (Chang et al., 2013; Chen G et al., 2014;
Kocaturk and Gozuacik, 2018). Cellular autophagy has
important roles in growth and development, immune
defense, programmed cell death, tumor suppression,
and neuropathological inhibition (Mestre and Colombo,

2012; Chew et al., 2015; Tian et al., 2015; Yin et al.,
2016; Dai and Zhu, 2020; Wen et al., 2020).

Depending on the method of wrapping the intra‐
cellular material and the mode of delivery, cellular au‐
tophagy can be classified into macro-autophagy, micro-
autophagy, and chaperone-mediated autophagy (Glick
et al., 2010; Feng et al., 2014; Farré and Subramani,
2016). Macro-autophagy wraps intracellular material by
forming an autophagosome with a bilayer membrane
structure, which eventually fuses with a lysosome (Feng
et al., 2014; Fujioka et al., 2020). Micro-autophagy
directly engulfs specific organelles through deformation
of the lysosome or vesicle surface (Mijaljica et al., 2011;
Schuck, 2020). Chaperone-mediated autophagy intro‐
duces cytoplasmic or organelle proteins into the lysosome
lumen through unfolding via molecular chaperones
(Kaushik and Cuervo, 2018; Tekirdag and Cuervo,
2018).

This review focuses on macro-autophagy (referred
to hereafter as autophagy). Autophagy is a complex
process. First, the Unc-51-like autophagy activating
kinase 1 (ULK1) complex mediates the initiation of
autophagy (Zachari and Ganley, 2017). When cells are
in a normal physiological state, intracellular energy is
sufficient, and the mammalian target of rapamycin
complex 1 (mTORC1) is in an activated state to
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promote the phosphorylation of autophagy-related 13
(ATG13) and ULK1 to inactivate the ULK1 complex,
but when cells are under starvation conditions, mTORC1
activity is inhibited (Li and Yan, 2019). Intermolecular
interactions, such as dephosphorylation of ATG13 and
ULK1, promote the formation of the active ULK1
complex and initiate autophagy (Joo et al., 2011;
Richards and Jackson, 2012; Kamber et al., 2015;
Kandul et al., 2016). Second, the activated ULK1
complex phosphorylates the phosphatidylinositol
3-kinase catalytic subunit type 3 (PI3KC3) complex
to mediate the formation of the pre-autophagosome
structure (PAS) of the endoplasmic reticulum, Golgi
apparatus, and other membranous organelles (Kim
et al., 2011; Kato et al., 2019; Kawabata and Yoshimori,
2020). The PI3KC3 complex further recruits the
ATG16L1 complex, and both are co-located on the
outer membrane surface of the PAS and promote its
expansion (Kirkin and Rogov, 2019). Then, ATG4
cleaves the microtubule-associated protein 1 light chain
3 α (LC3) precursor to form LC3-I, which is deliv‐
ered to the autophagic vesicles, under the action of
E1-like enzyme ATG7 and E2-like enzyme ATG3, by
covalent conjugation of phosphatidylethanolamine
(PE) into LC3-Ⅱ (Tanida et al., 2008; Kourtis and
Tavernarakis, 2009; Kobayashi et al., 2015). LC3-Ⅱ
then participates in the extension of the membrane of
the autophagosome. LC3-Ⅱ can further combine with
the newly formed autophagic membrane to promote the
fusion and expansion of autophagosomes (Lee and
Lee, 2016). Finally, the endosomal sorting complex
required for transport (ESCRT) complex, soluble N-
ethylmaleimide-sensitive factor attachment protein
receptor (SNARE) complex, and Rab guanosine
triphosphatases (GTPases) mediate the movement of
autophagosomes along the microtubule framework.
The autophagosomes then fuse with lysosomes to
form autophagolysosomes, whose contents and inner
membrane are degraded by lysosomal enzymes
(Towers and Thorburn, 2016; Kumsta et al., 2017).
Autophagy plays an important role in the regulation
of physiological activities, such as the reconstruction
of cell structures and the maintenance of normal
growth and differentiation, as well as the process of
resisting adverse external environments (Mizushima
and Komatsu, 2011; Cardenal-Muñoz et al., 2017).

It was believed that autophagy did not selectively
degrade substrates (Reggiori et al., 2012). However,

increasing autophagy-related research has shown that
under certain circumstances, autophagy can specifically
degrade certain types of macromolecules or organelles
in a process known as selective autophagy (Farré and
Subramani, 2016). The pathways of selective autophagy
include the cytoplasm-to-vacuole targeting (Cvt) path‐
way, mitochondrial autophagy, endoplasmic reticulum
autophagy, peroxisomal autophagy, ribosomal autoph‐
agy, and lipid autophagy (Yuan et al., 1999; Kamada
et al., 2000; Shintani and Klionsky, 2004b; Narendra
et al., 2008). In essence, cellular autophagy comprises
type II programmed cell death. The reasons that cells
are selected as targets for autophagy vary, and include
cellular senescence and invading exogenous pathogens.
Numerous studies have shown that selective autophagic
pathways can also destroy these invading pathogens
(Deretic and Levine, 2009). These processes are known
as xenophagy (Bauckman et al., 2015). Xenophagy is
closely related to innate immunity and its receptor is
typified by sequestosome-1/p62-like receptors (SLRs)
(Deretic, 2012). These act as pattern recognition
receptors (PRRs) and usually have one or more LC3-
interacting region (LIR) structural domains, including
sequestosome-1 (SQSTM1, also known as p62), opti‐
neurin (OPTN), neighbor of BRCA1 gene l (NBR1),
and nuclear dot protein 52 (NDP52) (Levine, 2005;
Deretic, 2012). These proteins function as autophagy
adaptor proteins, which are capable of directly capturing
bacteria, producing and transporting antimicrobial
peptides, and acting as inflammatory signals to promote
autophagy, thereby clearing pathogens from invading
cells. In virophagy (a form of xenophagy), the pathogen-
associated molecular pattern (PAMP) of the virus is
recognized by intracellular PRRs, including retinoic
acid-inducible gene I (RIG-I) like receptors (RLRs),
nucleotide-binding and oligomerization domain (NOD)-
like receptors (NLRs), and Toll-like receptors (TLRs)
(Cadwell, 2016; Choi et al., 2018). After pathogen
recognition and binding, they induce apoptosis or au‐
tophagy, modulate and regulate inflammatory responses,
and activate specific signaling pathways (Cadwell,
2016).

When cells are invaded by various microbial
pathogens (mainly bacteria, viruses, fungi, or parasites),
intracellular pathogens are usually endocytosed by host
cells and then enter the cytoplasm. There, the host cells
initiate the autophagic pathway, and autophagic vesi‐
cles wrap pathogens and transport them to lysosomes
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for degradation (Lin et al., 2021). However, recent
studies have revealed that certain pathogenic factors
have evolved multiple strategies to interfere with the
autophagic signaling pathway, enabling or inhibiting
the fusion of autophagosomes with lysosomes to form
autophagolysosomes to evade autophagic degradation,
or even using autophagy to promote their own replica‐
tion (Kimmey and Stallings, 2016; Coppens, 2017;
Abdoli et al., 2018; Xiong et al., 2019; Hu et al., 2020).
Therefore, it is important to determine the relation‐
ship between host cell autophagy and various patho‐
genic factors to clarify the pathogenic mechanisms of
pathogens.

In this review, we focus on important progress in
research on the interaction between autophagy and
pathogenic microorganisms, and describe the direct
scavenging effect of various regulations of autophagic
signaling pathways on pathogenic factors. In addition,
we provide an overview of the mechanisms used by
pathogenic microorganisms to evade or use autophagy
for themselves, thereby promoting their own survival.
These could provide a reference for autophagy research
and reveal new routes for effective anti-infective
therapies targeting autophagy.

2 Bacteria and autophagy

Autophagy can act as an innate immune mecha‐
nism against bacterial infection (Ogawa et al., 2011;
Hu et al., 2020). For healthy cell growth, invading
bacteria are recognized by the SLRs and the selective
autophagy pathway (xenophagy) removes invading
extracellular bacteria, as well as bacteria colonized
in the cytoplasm, phagosomes, or vesicles. However,
this method of killing bacteria is not perfect. By inter‐
fering with the processes associated with autophagy,
the bacteria’s innate aim to survive can be achieved.
This interference process can begin with the fusion of
pathogenic bacteria-infested autophagosomes with
lysosomes. Maturation of the autophagosomes to
autophagic lysosomes is then delayed by the secretion
of associated proteins, which remain in the vesicles of
autophagosome-like structures as a resource for bacte‐
rial proliferation or survival. Alternatively, in macro‐
phages, bacterially secreted proteins promote the
formation of autophagosome-like structures or interfere
with the maturation of autophagosomes, which in turn

allows the pathogens themselves to survive (Deretic,
2010; Bah and Vergne, 2017; Sudhakar et al., 2019;
Hu et al., 2020).

Autophagy plays an important role in the interac‐
tion between pathogenic bacteria and host cells. After
bacterial infection of host cells, the results of the inter‐
action between autophagy and bacteria include pre‐
venting bacterial proliferation or autophagy interacting
with other immune factors (such as inflammatory
factors and interferon- γ (IFN- γ)) to control bacterial
infection (Desai et al., 2015). Bacteria use their viru‐
lence factors, synthesize messenger RNA (mRNA), or
secrete certain proteins and lipids to block the auto‑
phagy process or induce incomplete autophagy processes,
thereby evading the killing effect of autophagy.

2.1 Gram-positive bacterial infection and autophagy

Current research has focused mainly on patho‐
genic Gram-positive bacteria, such as Staphylococcus
aureus, group A Streptococcus (GAS), and Listeria
monocytogenes.

S. aureus infection can cause septic and toxic dis‐
eases (Otto, 2014). S. aureus is rapidly ubiquitinated
upon invasion of human cervical cancer (HeLa) cells
and induces cellular autophagy by binding to the
autophagy receptor proteins SQSTM1, NDP52, and
OPTN, which are marked by the formation of an
apparent co-localization of S. aureus with LC3. How‐
ever, the fusion of autophagosomes and lysosomes is
blocked and complete autophagic flux cannot be per‐
formed (Schnaith et al., 2007). S. aureus can evade
autophagy by activating certain proteins or signaling
pathways. After infection of murine fibroblasts and
human keratinocytes, it activates mitogen-activated
protein kinase 14 (MAPK14), which then phosphory‐
lates autophagy-related 5 (ATG5) to inhibit the fusion
of autophagosomes and lysosomes to avoid autophagic
degradation (Keil et al., 2013; Neumann et al., 2016)
(Fig. 1).

In addition, the autophagy caused by S. aureus
infection of the mouse macrophage cell line RAW264.7
is closely related to the PI3K/protein kinase B (AKT)-
Beclin1 signaling pathway (Lv et al., 2019). After in‐
hibiting this signaling pathway, the level of S. aureus-
induced autophagy is significantly downregulated (Lv
et al., 2019). These observations have shown that
because the autophagosomes that occur in S. aureus-
infected cells cannot fuse with lysosomes, incomplete
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autophagy is triggered. This prevents the autophago‐
somes from being acidified, thereby allowing S. aureus
to proliferate in the autophagosome without being
degraded (Schnaith et al., 2007) (Fig. 1).

The manipulation of autophagy by S. aureus to
avoid being killed is well documented. S. aureus secretes
the virulence factor pore-forming toxin α-hemolysin
(Hla), which activates autophagy in a different way.
This leads to a decrease in intracellular cyclic adenosine
monophosphate (cAMP) levels and promotes a non-
classical autophagic pathway. This autophagic pathway
requires the involvement of ATG5, which is essential
for the development of autophagosomal membranes.
S. aureus can be present in the autophagosome, pre‐
venting its maturation and fusion with the lysosome.
Subsequently, S. aureus escapes from autophagosomes
and enters the cytoplasm where it replicates prolifically,
leading to the death of the host cell and the infection
of neighboring cells (Mestre et al., 2010).

GAS are pathogenic bacteria that exist widely in
nature (Okamoto and Nagase, 2018). After GAS
invade a host cell, most of the GAS in the cytoplasm
are encapsulated in GAS-containing autophagosome-
like vacuoles (GcAVs) and degraded through the au‐
tophagy pathway (Nakagawa et al., 2004). In Atg5−/−

mouse embryo fibroblasts (MEFs), which cannot form
autophagosomes, GAS can survive, proliferate, and
be released from the cells (Nakagawa et al., 2004).
Autophagy can inhibit the growth and proliferation
of GAS. To survive in the cell for a long time, GAS
have evolved a variety of strategies to evade autophagy.
For example, they use certain virulence factors to avoid
autophagy degradation. Streptococcus pyrogenic exotoxin
B (SpeB) is a cysteine protease secreted by Strepto‐
coccus (Hytönen et al., 2001). The M1T1 serotype
GAS use SpeB to degrade SQSTM1, NDP52, and NBR1
proteins in the host cell cytoplasm and prevent recog‐
nition of host cell autophagy-related proteins (Barnett

Fig. 1 Interaction between autophagy and bacteria. After Staphylococcus aureus invades host cells, it is rapidly
ubiquitinated and associates with autophagy receptors sequestosome-1 (SQSTM1), nuclear dot protein 52 (NDP52), and
optineurin (OPTN) to induce autophagy. S. aureus can inhibit the fusion of the autophagosome and lysosome by
activating mitogen-activated protein kinase 14 (MAPK14) and phosphorylating autophagy-related 5 (ATG5) to avoid
autophagic degradation. PI3P: phosphatidylinositol 3-phosphate; ULK1: Unc-51-like autophagy-activating kinase 1;
TORC1: target of rapamycin complex 1; CALCOCO2: calcium-binding and coiled-coil domain 2; LC3: microtubule-
associated protein 1 light chain 3 α; Ub: ubiquitin.
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et al., 2013). Streptolysin O (SLO) is a member of the
cholesterol-dependent pore-forming cytolysin conserved
family (Vita et al., 2020). GAS use SLO to form
pores in the newly formed endosomal membrane to
help them escape into the cytoplasm (Sakurai et al.,
2010). By activating β1 integrin, SLO recruits nicotin‐
amide adenine dinucleotide phosphate (NADPH)
oxidase 2 (NOX2), produces reactive oxygen species
(ROS), and induces ineffective LC3-related phagocy‐
tosis (LAP), leading to insufficient acidification to
evade host autophagic clearance and promoting the
proliferation of GAS (Lu et al., 2015; Cheng et al.,
2019).

L. monocytogenes is a zoonotic pathogen and a
facultative intracellular bacterium, which is used as a
model intracellular parasite (Lecuit, 2020). Upon in‐
fection with L. monocytogenes, host cells activate au‐
tophagy through their own recognition receptors. β2
integrin/macrophage-1 antigen (MAC-1) is a receptor
expressed by macrophages that recognizes a variety of
microbial ligands (Ehlers, 2000). Host cell MAC-1 in‐
duces LAP by activating acid sphingomyelinase
(ASMase) and NADPH oxidase Nox2 to generate ROS
(Gluschko et al., 2018). In addition, LAP promotes
the fusion of Listeria-containing phagosomes and
lysosomes, thereby enhancing the anti-bacterial ability
of macrophages and the host’s immune response
(Gluschko et al., 2018). TLR2 is involved in the auto‑
phagy process produced by Listeria. In Tlr2−/− macro‐
phages, Listeria and LC3 cannot co-localize, and
further studies have shown that TLR2 participates in
this autophagy process through its downstream extra‐
cellular signal-regulated kinase (ERK) signaling path‐
way (Anand et al., 2011). After invading the host cell,
L. monocytogenes, like GAS, is able to use its viru‐
lence factors to assist its escape from the autophago‐
some, and then enters the cytoplasm to continue its
proliferation. Its virulence factor, L. monocytogenes
Lysin O (LLO), is a cholesterol-dependent pore-forming
cytolysin (Anand et al., 2011). In the early stages
of infection, Listeria enters macrophages but its repli‐
cation is inhibited by autophagy induced by LLO (Bir‐
mingham et al., 2007; Py et al., 2007). For a period of
time after infection, with the help of two bacterial
phospholipases C (PLCs), a phosphatidylinositol-
specific PLC (PI-PLC, encoded by plcA) and a broad-
range PLC (PC-PLC, encoded by plcB), Listeria
escapes from the autophagosome (Birmingham et al.,

2007). LLO binds to cholesterol, inserts into the host
cell membrane, and aggregates to form pores to
facilitate the escape of Listeria from the cell. There‐
fore, the autophagy response induced by LLO exhibits
dynamic changes over time during Listeria infection.

Actin assembly-inducing protein A (ActA) is also
a virulence factor of Listeria, and plays an important
role in autophagy escape. ActA shields bacteria from
recognition by autophagy by recruiting the actin-related
protein 2/3 (Arp2/3) complex and the extractable nuclear
antigen/vasodilator-stimulated phosphoprotein (Ena/
VASP) to the bacterial surface to form an artifact. The
camouflage provided by these proteins prevents bacteria
from being recognized by autophagy (Yoshikawa et al.,
2009; Cheng et al., 2018).

Listeria evades autophagy mainly through PlcA
and ActA (Rudnicka et al., 1997; Mitchell et al., 2015).
PlcA blocks the binding of PE to LC3 and presumably
acts by preventing the formation of PI3P (Mitchell
et al., 2015). The internalin K (InlK) is recognized by
decorating the bacterial surface with the major vault
protein (MVP) to escape autophagy. The InlK-MVP
interaction is a two-part process along the same path‐
way as actin polymerization. InlK recruits MVP to the
bacterial surface, followed by ActA replacing InlK,
and actin replaces MVP to modify the bacterium, pre‐
venting the recruitment of ubiquitin (Ub), the recogni‐
tion of p62, and the recruitment of LC3 as a means of
evading cellular autophagy (Dortet et al., 2011).

Mycobacterium tuberculosis (MTB) is an intra‐
cellular parasitic bacterium (Yi et al., 2020). Cellular
autophagy of MTB is an important anti-MTB response
mechanism, operating either directly through the for‐
mation of autophagic lysosomes or indirectly through
the upregulation of intrinsic immunity (Zhai et al.,
2019). MTB infection-induced autophagy in macro‐
phages enhances the acidification and maturation of
Mycobacterium-containing phagosomes, thereby in‐
hibiting the survival of intracellular MTB (Queval
et al., 2017). There is also a mechanism by which MTB
inhibits autophagy in macrophages, thereby avoiding
being killed (Maphasa et al., 2021). MTB can inhibit
the maturation and acidification of autophagosomes
and thus avoid clearance via autophagy. Inhibition of
macrophage phagosome and lysosome binding is one
of the main mechanisms by which MTB inhibits the
maturation of phagosomes (Zhai et al., 2019). After
capturing MTB, autophagic vesicles fuse with lysosomes

23



| J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2022 23(1):19-41

to transport the bacteria into an acidic environment
filled with hydrolytic enzymes and free radicals.
Impaired lysosome function increases susceptibility to
MTB infection by inhibiting macrophage autophagy
and the ability to migrate directionally. The killing of
MTB by autophagic lysosomes is associated with p62,
which transports ribosomal precursors and other ubiqui‐
tinated proteins from the cytoplasm into autophagic
lysosomes for degradation to produce new antimicrobial
peptides (Deretic, 2012).

2.2 Gram-negative bacterial infection and autophagy

Current studies have focused mainly on the Gram-
negative pathogen Salmonella, which causes mainly
gastroenteritis in humans and mammals and contains
two Type III secretion systems (T3SSs), Salmonella
virulence island 1 (SPI-1) and SPI-2 (Kim et al., 2018).
SPI-1 is essential for invasion by Salmonella, and SPI-2
promotes its survival in the host cell (Jennings et al.,
2017). Phagocytic vesicles inhibited by Salmonella are
called Salmonella-containing vacuoles (SCVs) (Stévenin
et al., 2019). Most Salmonella strains exist in SCVs,
and only a fraction escapes from SCVs to replicate in
the cytoplasm. Autophagy acts on Salmonella in two
ways. First, Salmonella escaped from SCVs are ubiq‐
uitinated. Ubiquitination modification recruits a variety
of autophagy adaptor proteins, including SQSTM1/p62,
NDP52, and OPTN (Kishi-Itakura et al., 2020). These
proteins bind to ubiquitinated bacteria through their
Ub-binding domains. Then, new autophagosomes are
attached through interactions with the ATG8 family
members anchored in the autophagosome membrane.
Salmonella-containing autophagosomes are fused with
lysosomes and Salmonella is then killed in a hydrolytic
environment (Mostowy, 2013). Second, SCVs are
punctured via SPI-1, causing the damaged SCVs to be
recognized by the autophagy machinery. In this case,
Salmonella does not need to enter the cytoplasm to be
captured by autophagy (Birmingham et al., 2006).
The formation of pores in SCVs by SPI-1 leads to the
accumulation of multiple cytoplasmic galectins, such
as galectin-8, which monitors the integrity of intracel‐
lular lysosomes (Thurston et al., 2012). SCV is modi‐
fied by galectin-8 to recruit Ub ligases and NDP52 to
the cell membrane, leading to SCV components being
cleared via autophagy (Ravenhill et al., 2019).

Autophagic recognition of bacteria is usually as‐
sociated with ubiquitination, and the E3 ligase could

play a significant role in cellular autophagy by mediat‐
ing ubiquitination. Human leucine-enriched sterile α
motif containing 1 (LRSAM1) recognizes and ubiqui‐
tinates Salmonella typhimurium in the cytoplasm of
HeLa cells through its leucine-rich repeat (LRR) domain
and really interesting new gene (RING) domain,
respectively, and initiates Ub-dependent autophagy,
thereby restricting S. typhimurium infection (Huett et al.,
2012). In addition, the E3 ligase linear ubiquitin chain
assembly complex (LUBAC) produces linear polyu‐
biquitin chains on the surface of S. typhimurium,
recruiting receptors OPTN, NDP52, and SQSTM1/p62,
thereby limiting its proliferation (Noad et al., 2017).
Besides, the RING-between-RING E3 ligase Ariadne-1
homolog (ARIH1) can directly target S. typhimurium
to autophagosomes (Polajnar et al., 2017). Depletion
of LRSAM1 and ARIH1 after S. typhimurium infection
leads to enhanced LUBAC-dependent ubiquitination.
However, this does not inhibit its growth in the cyto‐
plasm (Polajnar et al., 2017). These findings highlight
that host cells can initiate autophagy by recruiting
different E3 Ub ligases on the surface of bacteria to
prevent the cellular proliferation of S. typhimurium.

Legionella pneumophila is a Gram-negative
pathogen that can cause lethal pneumonia or influenza-
like symptoms in humans (Huss et al., 2020). Imme‐
diately upon entry into the host cell phagosome,
ATG7 binds to the bacteria and then to ATG8 to form
Legionella-containing vacuoles (LCVs). LCVs can
fuse with endoplasmic reticulum-derived vesicles,
facilitating the replication of L. pneumophila within
them, a process that requires the involvement of Ras-
related proteins Rab1 and Sec22b (Kagan et al., 2004).

The SNARE protein Syntaxin 17 plays an impor‐
tant role in autophagosome membrane formation by
recruiting ATG14L to the endoplasmic reticulum-
mitochondrial binding site to aid in the formation of
autophagosomes (Hamasaki et al., 2013). In addition,
Syntaxin 17 is essential for the fusion of autophago‐
somes and lysosomes, and its function is dependent on
its C-terminal hairpin structure (Itakura et al., 2012).
The effector protein of L. pneumophila, Lpg1137, is a
serine protease that cleaves Syntaxin 17, thereby block‐
ing autophagy from occurring (Arasaki et al., 2017).
In addition, the RavZ protein blocks the binding of
the ATG8 (LC3) protein to PE on the autophagosome
membrane by hydrolyzing the amide bond between
the glycine residue at the ATG8 C-terminus and the
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adjacent aromatic residue (Choy et al., 2012). This
prevents ATG from lipidating and forming an LC3-PE
form to aggregate in the vesicle, thereby blocking
autophagosome formation (Xie et al., 2008).

3 Viruses and autophagy

Viruses are an important class of pathogens that
are unique in that once they leave the host cell, they
have no replication, transcription, or translation func‐
tions. Autophagy plays a key role in viral infections,
first as an antiviral process, and second in the possible
radicalization of the virus when antiviral methods fail.
Some viruses hijack the autophagic machinery to sur‐
vive within the cell, while others express specific pro‐
teins to evade autophagy and multiply within the host
cell (Orvedahl and Levine, 2008; Ploen and Hildt,
2015; Zhao et al., 2020). In short, viruses in host cells
need to avoid the negative effects of apoptosis and
autophagy as far as possible to prolong their life activ‐
ities, such as replication and spread.

3.1 Antiviral effects of autophagy

Autophagy acts not only as a metabolic pathway
to maintain intracellular homeostasis, but also as part
of the body’s immune defense against viruses. After a
virus has invaded a cell, the cell transports the virus
proteins, nucleic acids, and viral particles through
autophagy to the lysosome for degradation, thereby
maintaining the health of the body. This involves both
innate and adaptive immunity (Choi et al., 2018).

Innate immunity is the body’s first line of defense
against invasion by exogenous microorganisms and is
achieved through the recognition and binding of spe‐
cific molecular structures of pathogenic microorgan‐
isms by membrane-bound PRRs and cytoplasmic PRRs.
This activates downstream signaling pathways to pro‐
duce type I IFN, type III IFN, pro-inflammatory cyto‐
kines, and chemokines, enabling the body to establish
an antiviral state (Mogensen and Paludan, 2001; Farag
et al., 2020). TLRs are classical PRRs that recognize
a wide range of viral nucleic acids and transmit signals
to myeloid differentiation factors 88 (MyD88) by re‐
cruiting Toll/interleukin-1 receptor domain-containing
adapter protein inducing IFN-β (TRIF) or MyD88,
signaling to the downstream nuclear factor-κB (NF-κB)
signaling pathway, and synthesizing inflammatory

factors and IFN regulatory factors (IRFs) to promote
IFN production. In this process, TLRs can induce TRIF
or MyD88 to interact with Beclin1, which disrupts the
binding of Beclin1 to B-cell lymphoma 2 (BCL-2)
and thus promotes autophagy (Shi and Kehrl, 2008).
Autophagy can also be activated directly by PAMPs
and transmit PAMP signals to TLRs to induce an im‐
mune response. RLRs are located in the cytoplasm and
are responsible for the recognition of specific structures
not found in normal cellular RNA, such as the 5'- end
triphosphate of viral double-stranded RNA (dsRNA).
The RLRs, upon sensing the presence of a virus, can
interact with the mitochondrial antiviral signal (MAVS)
through the caspase recruitment domain (CARD), which
in turn activates the IRF3 and IRF7 and the NF-κB
signaling pathway. A number of receptor molecules in
cells that sense DNA virus invasion can also interact
with the autophagic pathway. Cyclic guanosine mono‐
phosphate (GMP)-AMP (cGAMP) synthase (cGAS)
recognizes DNA viruses and synthesizes cGAMP.
Stimulator of IFN response cGAMP interactor 1
(STING) then binds to cGAMP to activate downstream
related regulatory factors and induce NF-κB activa‐
tion. In addition, the endoplasmic reticulum-Golgi in‐
termediate compartment (ERGIC), containing STING,
can provide a membrane source for lipidation of LC3,
thereby facilitating the clearance of cytoplasmic DNA
viruses via autophagy. By contrast, during herpes sim‐
plex virus 1 (HSV-1) infection, Beclin1 interacts with
cGAS to inhibit cGAMP synthesis and IFN production.
This enhances autophagy-mediated degradation of
cytoplasmic pathogen DNA to prevent excessive acti‐
vation of cGAS and sustained immune stimulation.
Thus, in addition to being regulated by signals such as
cGAS-STING, autophagy or autophagy-related proteins
can in turn negatively regulate related signaling path‐
ways (Gui et al., 2019; Liu et al., 2019; Zhang et al.,
2020).

Antigen delivery is a transitional phase in the
shift from innate to adaptive immunity, which is acti‐
vated by peptide fragments on the major histocompati‐
bility complex (MHC) on antigen-presenting cells
(APCs), followed by recognition of antigens by T cells
(Wieczorek et al., 2017). It is expressed in all nucleated
cells, and viral proteins can be delivered to cluster of
differentiation 8-positive (CD8+) T cells via MHC-I-like
molecules after being degraded by the proteasome into
immunogenic peptides. Autophagy limits the delivery
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of MHC-I-like molecules by mediating their internal‐
ization and degradation. Inactivation of the autophagy
factors ATG5 and ATG7 in dendritic cells (DCs) can
lead to an increase in the expression of MHC-I on the
cell surface, making the body more susceptible to the
expression of MHC-I in influenza A virus (IAV) and
lymphocytic choriomeningitis virus (LCMV) infec‐
tion to induce a more intense CD8+ T cell immune re‐
sponse (Loi et al., 2016). In contrast, autophagosomes
are constitutively formed in MHC-II-positive APCs,
such as DCs, B cells, and epithelial cells. They capture
extracellular antigens and deliver them to autophago‐
somes, which deliver antigens from the cytoplasm to
MHC by fusing with MHC-II-containing intranuclear
body compartment (MIIC)-like molecules. These in
turn are then delivered to CD4+ T cells. Studies have
shown that human immunodeficiency virus (HIV)-
infected DCs can use LC3 fusion proteins to specifically
target HIV antigens to autophagosomes, effectively
enhancing and broadening the immune response of
CD4+ T cells, thereby facilitating an endogenous
MHC-II-restricted presentation (Coulon et al., 2016). In
addition, autophagy mediates cross-antigen presentation
of MHC-I and MHC-II types in APCs, facilitating the
exchange of information between cells to generate
effective immune responses against endogenous and
exogenous antigens (Ghislat and Lawrence, 2018).

3.2 Viral hijacking and evasion of autophagy

The life cycle of a virus generally includes the
processes of virus adsorption and invasion, intracellular
replication, transcription and translation, assembly,
and release (Duan et al., 2020). In the case of cellular
autophagy, viruses hijack the autophagy machinery
throughout their life cycle to survive within the cell,
and express specific proteins to escape autophagy and
multiply within the host cell (Ahmad et al., 2018).

The key problem of coronaviruses using auto‑
phagy to promote their own replication lies in deter‐
mining whether the replication of the virus requires
the assistance of autophagy, as illustrated by studies of
mouse hepatitis virus (MHV). In mouse Atg5 knockout
embryonic stem cells (ESCs), Prentice et al. (2004a)
found that both MHV replication and double-membrane
vesicle (DMV) formation were impaired and that viral
reverse transcription complexes (RTCs) co-localized
with endogenous LC3. This suggests that autophagy
occurrence and DMV formation are associated with

MHV replication. Similarly, the same group observed
co-localization of viral RTCs with endogenous LC3 in
another severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2)-related study (Prentice et al., 2004b).
However, this conclusion has been disputed by Zhao
et al. (2007), who also observed co-localization of viral
RTCs with endogenous LC3, but did not find any effect
on the MHV life cycle in bone marrow macrophages
(BMMs) or mouse embryonic fibroblasts (MEFs) de‐
ficient in Atg5. In contrast, Snijder et al. (2006) failed
to detect co-localization of LC3 or green fluorescent
protein (GFP)-LC3 with viral RTCs of SARS-CoV in
SARS-CoV-infected African green monkey kidney
(Vero) cells. A related study showed that knockdown of
Atg5 did not affect SARS-CoV replication (Schneider
et al., 2012). Contradictory results were also seen in
studies of infectious bronchitis virus (IBV). On the one
hand, it has been shown that IBV-induced autophagy
is dependent on ATG5, and that the endoplasmic
reticulum stress sensor inositol-requiring enzyme 1
(IRE1) and mitogen activated protein (MAP) kinase
ERK1/2 are required for IBV-induced autophagy
and play a survival-promoting role in the late stages
of IBV infection (Fung and Liu, 2019). On the other
hand, Maier et al. (2013) found that although overex‐
pression of IBV’s nonstructural protein 6 (NSP6)
induced autophagic signaling, induction or inhibition
of autophagy did not affect IBV replication, suggest‐
ing that classical autophagy might not be important for
viral replication. Thus, there is no definitive answer as to
whether autophagy is required for coronavirus replica‐
tion. However, results so far suggest that the effect of
autophagy on coronavirus might vary considerably
depending on the origin of the cells, as several of the
above studies used cells sourced from different tissues
of the same species or of different species. In addition,
these results suggest that the “need” for autophagy
might not be the same in different cells, and that in
addition to ATG5, important autophagy proteins,
such as LC3 and Beclin1, might play an important
role in viral replication. Furthermore, whether corona‐
viruses can use autophagy to promote their own repli‐
cation, or whether induced autophagy can enhance viral
proliferation, is unclear. Some studies have provided
positive evidence. Guo et al. (2017) found that in Vero
cells, porcine epidemic disease virus (PEDV) was able
to induce autophagy to promote its own replication.
Also, reduced production of infectious viral particles
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was found in cells deficient in Beclin1 or ATG5 or in
cells treated with 3-methyladenine, suggesting that
autophagy induced during PEDV infection was
beneficial to the virus. Zhu et al. (2016) found that
the transmissible gastroenteritis coronavirus (TGEV)
nucleocapsid protein (N) and GFP-LC3 were localized
to mitochondria. The induction of mitochondrial
autophagy using carbonyl cyanide 3-chlorophenylhy‐
drazone (CCCP) depolarized mitochondria and increased
viral titers, suggesting that this pathway might facilitate
viral replication. Human coronavirus (HCoV)-OC43
infection increased autophagic flux in human lung
fibroblast MRC-5 cells. Treatment of the cells with
kurarinone reduced virus-induced autophagic flux and
thus inhibited viral replication (Min et al., 2020).
These results suggest that autophagy can be beneficial
for coronaviruses, promoting their proliferation by
enhancing the autophagic pathway. Conversely, disrup‐
tion of the autophagic pathway can reduce viral repli‐
cation. Notably, coronaviruses might also hijack a
component of autophagy for the purpose of aiding or
facilitating replication, and this activity is not depen‐
dent on the classical autophagic pathway. For example,
it has been found that although the autophagic pathway
is not essential for MHV infection, the non-lipidated
form of LC3-I is closely associated with coronavirus-
induced DMV and is required for MHV replication
(Reggiori et al., 2010).

Middle East respiratory syndrome-coronavirus
(MERS-CoV) is able to reduce Beclin1 activity by ac‐
tivating S-phase kinase-associated protein 2 (SKP2),
which inhibits the fusion of autophagosomes with
lysosomes, thereby blocking the destructive effects of
autophagy on the virus (Gassen et al., 2019). The
membrane-associated papain-like protease 2 (PLP2-
TM) of various coronaviruses induces incomplete au‐
tophagy and inhibits the natural immune response by
interacting with Beclin1 and promoting the interaction
between Beclin1 and STING. Knockdown of Beclin1
partially reverses the inhibitory effect of PLP2-TM,
leading to a reduction in viral replication (Chen XJ
et al., 2014). From these results, it is clear that corona‐
viruses have diverse strategies to resist autophagy.
The structural similarities between the coronavirus
replication site DMV and autophagosomes allow some
coronaviruses to induce the production of autophago‐
somes to assist their own proliferation. In addition, to
avoid damage to the virus by autophagic degradation,

coronaviruses often block subsequent steps of the
autophagic pathway, such as preventing the expansion
of autophagosomes or blocking the fusion between
autophagosomes and lysosomes. Autophagy is also in‐
volved in the body’s immune response (Channappanavar
et al., 2014). Therefore, coronaviruses can also escape
from natural immune “supervision” by inducing au‐
tophagy, allowing some autophagic proteins to interact
with relevant immune signaling pathways, thereby
inhibiting the IFN signaling pathway.

4 Fungi and cellular autophagy

4.1 Autophagy mechanism of Saccharomyces
cerevisiae

In the early 1990s, a group of cell biologists, rep‐
resented by Daniel J. KLIONSKY and Yoshinori
OHSUMI, started the screening and cell biology of
autophagy-related genes using Saccharomyces cerevi‐
siae as a model organism. To date, over 40 autophagy-
related genes have been identified in yeast (Yu et al.,
2020). More than two decades later, S. cerevisiae has
become the most commonly used model organism in
the study of the molecular mechanisms of cellular
autophagy (Feng et al., 2014; Yin et al., 2019). The
macro-autophagy occurring in S. cerevisiae is of sig‐
nificant interest. This process occurs at the PAS, where
the phagophore/isolation membrane expands and grows
into an autophagosome with a bilayer membrane
structure by the regulation of related proteins. At the
same time, the cytoplasmic matrix is encapsulated into
the autophagosomal lumen. Subsequently, the outer
membrane of the autophagosome fuses with the vesicle,
and the inner membrane and contents are degraded by
hydrolytic enzymes into small molecules, such as amino
acids, which are reused by the cell to help it survive
in adverse conditions (Yang et al., 2019). The whole
process of cellular autophagy can be divided concep‐
tually into the following aspects: (1) regulation of cel‐
lular autophagy, (2) formation of autophagosomes in
the PAS, (3) fusion of autophagosomes with vesicles,
and (4) degradation and recycling of inclusions (Levine
and Klionsky, 2004) (Fig. 2).

Under physiological conditions, cellular autophagy
is tightly regulated. Two main pathways are known to
regulate autophagy: the TOR and PI3K pathways (Yin
et al., 2019). In yeast, TOR has two homologs, Tor1
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and Tor2, which can form two protein complexes,
TORC1 (containing either Tor1 or Tor2) and TORC2
(containing only Tor2) (Raught et al., 2001). Both
complexes are involved in the regulation of cell growth
and intracellular metabolism, but TORC1 is more sen‐
sitive to rapamycin (Loewith et al., 2002). In addition,
TORC1 can sense extracellular nutrient conditions.
When cells are in starvation conditions, TORC1 is in‐
hibited and the level of cellular autophagy increases,
thus being the main regulator of cellular autophagy
(Yorimitsu and Klionsky, 2005; González and Hall,
2017).

In cellular autophagy, the formation of autopha‐
gosomes is a key step, and the size and number of
autophagosomes also reflect the level of cellular
autophagy. Here, we focus on the core systems involved

in this step, including the assembly of the backbone
of the PAS, the PI3K signaling system, and the Atg9
recycling system (Li et al., 2020).

4.1.1 Assembly of the PAS backbone

The PAS is the site of autophagosome formation,
and is usually found close to the vesicles. Under
fluorescence microscopy, most Atg proteins can be
seen to co-localize to the PAS. So far, localization of
the PAS appears to be a yeast-specific phenomenon,
because the sites of autophagosome production in other
species are spread throughout the cytoplasm, rather
than being confined to a few sites (Cheng et al., 2014).
It is generally believed that the assembly of Atg
proteins in the PAS initiates from several important
backbone proteins, and the specific process depends
on the conditions of regulatory induction of cellular
autophagy. In the Cvt pathway, which occurs under
eutrophic growth conditions, the PAS assembly signal
is derived from the Cvt complex transport. The main
components of the Cvt complex are precursor Ape1
multimer and its receptor Atg19 (Scott et al., 2001;
Yamasaki et al., 2016). Atg19 binds to Atg11, which
then recruits other related proteins and gradually forms
specialized autophagosome-Cvt vesicles around the Cvt
complex. In this process, Atg11 plays the role of an
assembly protein in PAS formation (Zientara-Rytter
and Subramani, 2020). By contrast, Atg17 plays a major
role when cells are under starvation conditions and non-
selective autophagy is significantly enhanced (Matscheko
et al., 2019). Atg17 is also involved in various aspects
of autophagosome formation, including the regulation
of Atg1 activity and the transport of Atg9 to the PAS
(Kamada et al., 2000; Sekito et al., 2009) (Fig. 2b).

4.1.2 PI3K complex signaling system

PI3K is an important class of intracellular signaling
regulatory molecules that control physiological pro‐
cesses, such as cell growth, differentiation, and trans‐
port of intracellular substances, through phosphoryla‐
tion modification of phosphatidylinositol on the mem‐
brane. Class III PI3K is the oldest class and phosphor‐
ylates phosphatidylinositol to phosphatidylinositol
3-phosphate (PI3P). The yeast genome contains only one
gene encoding PI3K, namely type III PI3K-Vps34
(Jaber and Zong, 2013). Vps34 is involved in the for‐
mation of at least two types of complexes. Class I
complexes contain Atg14 and are involved in cellular

Fig. 2 Regulation of cellular autophagy by the PI3K
complex and Atg9 in Saccharomyces cerevisiae. (a) PI3K
signaling system. PI3K complex targeting of the PAS produces
PI3P to recruit downstream effector proteins. (b) Atg9
recycling system. Atg9 is shuttled and trafficked between
the PAS and the degradation sites. Under energy-enriched
conditions, cis-transport of Atg9 to the PAS is dependent
on Atg1, Atg23, Atg27, actin, and the Arp2-Arp3 complex.
Atg9 forms a complex with Atg23 and Atg27. Atg1 is
responsible for uploading the Atg9-Atg23-Atg27 complex
to the PAS. The complex movement is facilitated by the
Arp2-Arp3 complex. The anterograde transport of Atg9
under starvation conditions is dependent on Atg17 (not shown).
The retrieval transport of Atg9 requires the synergistic
action of the Atgl-Atgl3 complex, Atg2-Atg18 complex,
and PI3K complex. PI3K: phosphatidylinositol 3-kinase;
Atg: autophagy related; PAS: pre-autophagosome structure;
PI3P: phosphatidylinositol 3-phosphate; Arp: actin-related
protein.
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autophagy. Class II complexes contain Vps38 and are
involved in the vacuolar protein sorting (VPS) pathway,
which is responsible for the translocation of proteins
to vesicles via the Golgi apparatus (Kihara et al., 2001).
Both complexes contain Vps34, Vps15, and Vps30/
Atg6 (Kihara et al., 2001). Vps15 is a protein kinase
that forms the regulatory subunit of Vps34. Atg14 links
Vps30/Atg6 to Vps34-Vps15 to form a complex. The
coiled-coil domain (CCD) at the N-terminus of Atg14
executes this function (Matsunaga et al., 2010). In cel‐
lular autophagy, Atg14 localizes the PI3K complex to
the PAS site and recruits downstream proteins through
the PI3P product of the later (Matsunaga et al., 2010;
Obara and Ohsumi, 2011; Harada et al., 2019) (Fig. 2a).

4.1.3 Cyclic transport of Atg9

Atg9 is the only transmembrane protein of the
core autophagy machinery and might be the key to
the origin of autophagosomal membranes (Yamamoto
et al., 2012; Kirkin and Rogov, 2019). Atg9 is an inte‐
gral membrane protein containing six highly conserved
transmembrane domains as well as N-terminal and C-
terminal domains located in the cytoplasm (Guardia
et al., 2020). It participates in the formation of autopha‐
gosomes by cycling between the PAS and peripheral
structures (e. g., mitochondria, endoplasmic reticulum,
and Golgi apparatus) with the assistance of related
proteins. Thus, Atg9 is considered to be a “membrane
carrier” for vesicle formation (He et al., 2006). In
yeast, the majority of Atg9 is located on the surface of
mitochondrial membranes or on components attached
to mitochondria (Reggiori et al., 2005b) (Fig. 2).

The transport of Atg9 from peripheral structures
to the PAS is accomplished with the assistance of other
proteins, and different assisting proteins are required
under different conditions. In the selective cellular au‐
tophagic Cvt pathway, the transport of Atg9 from peri‑
pheral structures to the PAS is blocked when any of
the components of Atg11, the Cvt complex, or the actin
cytoskeleton are missing (Shintani and Klionsky, 2004a;
Reggiori et al., 2005a; He et al., 2006). The actin-
related protein Arp2 interacts with Atg9 and directly
regulates the transport of Atg9 from peripheral struc‐
tures to the PAS. As a subunit of the Arp2-Arp3 com‐
plex, Arp2 likely facilitates the movement of Atg9
and remodels the actin structure to facilitate Atg9
transport (Reggiori et al., 2005a). In starvation-induced
non-selective cellular autophagy, this transport requires

Atg17 (Sekito et al., 2009). Atg17 helps Atg9 localize to
the PAS and complete membrane assembly (Kawamata
et al., 2008; Sekito et al., 2009). The Atg1-Atg13
complex and the PI3K complex I are required for
retrograde transport of Atg9 from the PAS. However,
this process does not require the kinase activity of
Atg1 (Reggiori et al., 2004). The role of Atg1 in this
process is most likely to regulate the balance between
Atg9 assembly and retrieval at the PAS site (Reggiori
et al., 2004). In addition, anterograde transport of Atg9
requires Atg23 and Atg27, which, like Atg9, are local‐
ized to the PAS and some other scattered membrane
structures in the cytoplasm (Backues et al., 2015).
During transport, the three are transferred together as
a complex (Backues et al., 2015) (Fig. 2).

When the autophagosome is completed, Atg9
does not remain on the autophagosomal membrane,
but returns from the PAS to peripheral structures in
the cytoplasm. This retrograde transport relies on the
Atg1-Atg13 complex (Reggiori et al., 2004), the Atg2-
Atg18 complex (Kotani et al., 2018), and the Vps34
complex I (Reggiori et al., 2004). One widely accepted
model is that once the Atg1-Atg13 complex is recruited
to the Atg9-located PAS, Atg1-Atg13 drives Atg9 to
interact with Atg2-Atg18 and the subsequent forma‐
tion of a large multiprotein complex drives Atg9 from
the PAS back to the peripheral structures (Fig. 2).

4.2 Fungal infection of host cells triggers autophagy

In phagocytic cells, PRR- or Fc-γ receptors (FcγR)-
mediated phagocytosis-related autophagy-related mole‐
cules, such as LC3, Beclin1, PI3KC3, and ATG12-
ATG5 complexes, can decorate on the phagosome
membrane, promoting phagosome fusion with lyso‐
somes and the formation of a monolayer membrane
structure. However, this process does not induce cell
autophagy and is defined as LAP (Schille et al., 2018;
Heckmann and Green, 2019). The occurrence of LAP
is independent of the induction of the ULK1 complex
(Martinez et al., 2011). Rubicon and NOX2 act on class
III PI3K complexes and promote phagocytosis with
the participation of the ATG16L complex (Martinez
et al., 2015). The formation of LAP can promote the
presentation of fungal antigens by MHC-II molecules
(Ma et al., 2012). In addition, the occurrence of LAP
requires the productions of NADPH oxidase and ROS
(Heckmann et al., 2017). How ROS induces the
recruitment of LC3 to the phagosome surface and
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why autophagy-related molecules are involved in the
aggregation of phagosomes and lysosomes remain
unclear (Pauwels et al., 2017). However, it is certain
that LAP plays an important role in controlling
pathogen infections (Upadhyay and Philips, 2019).
LAP also participates in the process of promoting
phagocyte maturation. These findings link two conserved
biological behaviors, autophagy and phagocytosis,
to a synergistic mechanism that promotes the elimina‐
tion of fungal pathogens.

When yeast cells invade an organism, they can
form a vacuole that is not recognized by the host’s
lysosome. The vacuole acts as a barrier to protect the
yeast cells from lysosomal action. However, when
yeast cells invade macrophages that are activated by
IFN-γ, the vacuolar membrane of yeast is disrupted,
and the bare yeast cells are wrapped in autophagic
vesicles, which are sent to the lysosome for degrad‑
ation via autophagy, so as to clear the yeast cells from
the organism. However, autophagy is not always good
for the host, and might also be a necessary condition
for the growth and infection of certain fungi. Studies
have found that the Magnaporthe oryzae genome en‐
codes Atg proteins that have been classified into four
major groups, namely an Atg1-Atg13-Atg17 complex,
an Atg9 trafficking system, a PI3K complex, and
two Ub-like conjugation systems (Zhu et al., 2019).
MoAtg2-MoAtg10, MoAtg12, MoAtg14-MoAtg16,
and MoAtg18 have been shown to play an important
role in M. oryzae-induced cell autophagy (Dong et al.,
2009; Liu et al., 2010, 2012, 2017; Zhu et al., 2019;
Li et al., 2021). Host cell autophagy can provide nour‐
ishment for the development and infection of M. oryzae
by degrading organelles and senescent proteins.
Therefore, autophagy plays an important role in the
whole development and infection cycle of M. oryzae
(Liu and Lin, 2008).

Furthermore, studies have shown that IFN-γ acti‐
vates autophagy in human macrophages, leading to an
increase in anti-fungal host defense against M. oryzae
infection. Other studies have reported that activation
of macro-autophagy can promote phagosomal acidifi‐
cation and anti-fungal responses in murine and human
macrophages, suggesting that autophagy might repre‐
sent a promising host-targeting therapeutic strategy
against M. oryzae infection.

Macrophages are an important population of
cells involved in mediating the innate immunity of the

host. Phagocytosis is the most important characteristic
of macrophages, and plays an important role in killing
and clearing fungal pathogens, as well as initiating
and interaction with host cell autophagy (Ma and
Underhill, 2013; Wu and Lu, 2019). The occurrence
of autophagy depends on autophagy-related receptors
on the cell surface, mainly PRRs, FcγRs, complement
receptors (CRs), such as C-type lectin receptors (like
Dectin-1), mannose receptors (MRs), and TLRs (Öhman
et al., 2014). The receptors bind to the corresponding
ligand and activate autophagy-related proteins, thereby
mediating cell autophagy. Dectin-1 receptor-mediated
autophagy is an important part of the host’s defense
against fungal infection (Öhman et al., 2014; Kanayama
and Shinohara, 2016; Tang et al., 2018). The recogni‐
tion of fungal β-glucan by its receptor Dectin-1 triggers
downstream signaling via spleen tyrosine kinase (SyK)-
dependent and Raf-1-dependent pathways to mediate
antifungal immunity, including CARD-containing pro‐
tein 9 (CARD9)–BCL-10–mucosa-associated translo‐
cation lymphoma 1 (MALT1) signaling (Ruland and
Hartjes, 2019) and Raf-1 signaling pathways (Tang
et al., 2018), which mediate the host’s innate immune
response to fungi (Salazar and Brown, 2018). The im‐
mune response can induce cell autophagy by producing
ROS and secreting pro-inflammatory factors.

Studies have found that the Dectin-1/Syk pathway
mediates the occurrence of autophagy via ROS pro‐
duction, LC3-lipidation, and so on (Ma et al., 2012;
Kyrmizi et al., 2013; Tam et al., 2014), which plays an
important role in resisting fungal infection (Smeekens
et al., 2014; Kanayama et al., 2015). Candida albi‐
cans is one of the most common pathogenic Candida
(Duhring et al., 2015). After infection, it can be swal‐
lowed into the cell by phagocytes (mainly macro‐
phages and neutrophils) to induce an inflammatory re‐
sponse and affect the biological function of host cells
(Miramón et al., 2012; Rudkin et al., 2013). The cell
wall component, β-1,3-glucan, of C. albicans is con‐
sidered to be a major PAMP and can be recognized by
the Dectin-1 receptor (Bain et al., 2014). Because of
the dysfunction of the autophagy process in mice with
Atg5 knockout in vaginal cells, the secretion of anti-
C. albicans cytokines was significantly reduced, as was
the recruitment of neutrophils, ultimately leading to a
decreased ability to clear C. albicans (Shroff et al.,
2018). However, mice with Atg5 selectively knocked
out in myeloid cells showed increased susceptibility
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and decreased survival (Nicola et al., 2012). Accumu‐
lating evidence showed that fungal microorganisms
have evolved various ways to avoid the influence of
autophagy, including blocking the signal pathway of
autophagy, disturbing organelles, blocking the fusion
of autophagosomes and lysosomes, and even using
autophagy to evade recognition and relying on au‐
tophagosomes to survive in the cell for a long time.

5 Parasites and autophagy

5.1 Autophagy eliminates parasites

Parasites are an important class of pathogens.
The worms stimulate host cells to maintain a balance
between inducing and evading the host immune re‐
sponse, and host cells also maintain a balance be‐
tween infection and elimination.

Research on the interaction between autophagy
and parasitic infections has focused mostly on serious
intracellular parasitic protozoa, such as Toxoplasma
gondii (Attias et al., 2020). The protozoa of the T.
gondii class comprise a group of parasites that cause
serious infections, and their process of invasion of host
cells includes adhesion, invasion, and the formation
of parasitophorous vacuoles (Portes et al., 2020). Such
parasites can prevent the killing effect of lysosomes
because of the protective effect of parasitophorous
vacuoles, thus creating an autophagy evasion effect
(Coppens et al., 2006). As a part of natural immunity,
when foreign parasites enter the body, autophagy can
encapsulate the invading parasites, mainly through
PRRs in the cytoplasm and on membranes to sense the
invading pathogens, thereby triggering innate immune
signaling to form the first defense barrier (Sasai and
Yamamoto, 2019). In this process, TLR4 initiates
recognition, activates MyD88- and TRIF-dependent
signaling pathways, and initiates the activation of the
inhibitor of NF-κB kinase α (IKKα)-IKKβ-NF-κB
essential modulator (NEMO) complex and the IKKi
complex to regulate nuclear transcription factors NF-κB
and IRF3. These in turn induce the transcription
of inflammatory factors and type I IFNs, thereby
activating the IFN-mediated cellular anti-pathogen
response (Zare-Bidaki et al., 2014). Research has also
revealed that in the RAW macrophage cell line, TLR2
signaling triggers the autophagosome marker LC3
to be rapidly recruited to the phagosome, which then

fuses with lysosomes to destruct and digest engulfed
organisms (Sanjuan et al., 2007).

Type II IFN (IFN-γ) promotes autophagy by
inducing GTPases to participate in autophagy formation.
T. gondii enters host cells to form parasitophorous
vacuoles, which have no receptors that can be recog‐
nized and captured by lysosomes. Thus, they can suc‐
cessfully escape lysosome-mediated phagocytosis
(Fig. 3). T. gondii infection of activated macrophages
induces the expression of the autophagy-related molecule
ATG5, and then recruits IFN-γ to induce p47 GTPase
IIGP1 (also known as Irga6) to the parasitophorous
vacuole membrane. Macrophage GTPases are acti‐
vated to damage the parasitophorous vacuole (Zhao
et al., 2008). The vacuole membrane is disrupted, the
plasma membrane of the worm body is stripped, and
autophagic vacuoles in the cell then wrap the naked
parasite, which is subsequently transported to the
lysosome for degradation of the worm body (Zhao
et al., 2008). Conversely, if autophagy is inhibited by
regulating the PI3K signaling pathway, the ability of
host cells to degrade T. gondii will be impaired, indi‐
cating that autophagy is necessary for the degradation
of T. gondii (Subauste, 2019). One group studied a
culture of T. gondii tachyzoites in skeletal muscle
cells (SkMCs) and found that after increasing the level
of SkMC autophagy, ultrastructural observations
showed that many autophagosome-like structures were
distributed near the parasitophorous vacuole mem‐
brane of the worm, which contains parts of the parasites
to be degraded. This suggests that an increase in the
level of SkMC autophagy has a certain clearance
effect on the infection and development of T. gondii
tachyzoites. Besides the participation of ATG5, Ohshima
et al. (2014) found that human ATG16L1 and mouse
Atg7 and Atg16L1 are involved in the recruitment
reaction mediated by IFN-γ to complete the elimina‐
tion of T. gondii. In addition to its important role in
natural immunity, autophagy regulates the body’s
adaptive immune response and plays an important role
by participating in antigen processing and presentation
of MHC molecules (Fig. 3). Different groups found
that during autophagic killing of T. gondii, IFN-γ
stimulates astrocytes and macrophages to recruit to p47
GTPases to the parasitophorous vacuole, disintegrating
the parasite into fragments (Halonen et al., 2001;
Martens et al., 2005; Ling et al., 2006; Melzer et al.,
2008). Autophagy then regulates the antigen presentation
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pathway of MHC class II molecules and transports the
worm antigens from the cytoplasm to the lysosome to
complete phagocytosis and removal of the worm
debris. When cellular autophagy is inhibited or inter‐
fered with, the ability to eliminate parasites is signifi‐
cantly reduced (Subauste, 2019) (Fig. 3).

5.2 Parasites use autophagy to help their own
development

In the long-term evolutionary process, some
parasites have formed specific mechanisms to induce
incomplete cell autophagy, and the recycled materials
produced by autophagy provide favorable conditions
for parasite replication and development, thereby
achieving intracellular proliferation and growth (Salassa

and Romano, 2019). Alvarez et al. (2008) showed that
during the development cycle of Trypanosoma cruzi,
the process of proliferation and differentiation from
epimastigotes to the formation of trypanosomes requires
many amino acids. Under nutrient deficiency condi‐
tions, T. cruzi can use TcAtg4 and TcAtg8 to induce
host cells to degrade cytoplasm and organelles via the
autophagy pathway to provide a source of nutrients
for their own differentiation and development (Fig. 3).
Although host cell autophagy plays a certain role in
the elimination of T. gondii, it has been shown that T.
cruzi can mediate the degree of host cell autophagy
and provide biological energy for the development of
the parasite by inducing host cell autophagy (Alvarez
et al., 2008; Romano et al., 2009). In cells deficient in

Fig. 3 Interaction between autophagy and parasites. After Toxoplasma gondii infects activated macrophages, the host
cell ATG5 is induced, and then IFN-γ is recruited to induce p47 GTPase IIGP1 into the vacuole membrane of
Toxoplasma. The GTPases destroy the vacuole membrane of Toxoplasma, and the constitutive membrane of Toxoplasma
is separated. The autophagic vacuole in the host cell then encapsulates the exposed parasite, and transports it to the
lysosome for degradation. In the absence of nutritional conditions, the worm is not controlled by the traditional mTOR
pathway, but depends on nutrients obtained by autophagic degradation of host cells to provide energy for its own
development via calcium regulation. ATG5: autophagy-related 5; IFN: interferon; GTP: guanosine triphosphate;
GTPase: guanosine triphosphatase; mTOR: mammalian target of rapamycin; ATP: adenosine triphosphate; CaM:
calmodulin; FKBP12: FK506-binding protein 12; GβL: G protein β-subunit-like protein; PKB: protein kinase B; IGF-1:
insulin-like growth factor-1; TNF-α: tumor necrosis factor-α; PV: parasitophorous vacuole; CaM: calmodulin.
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ATG5, a crucial molecule of autophagy, the growth of T.
gondii is markedly restricted (Wang et al., 2009). It was
speculated that the reason for this is that the autophagy
mediated by T. gondii is closely related to the accumula‐
tion of calcium. In the absence of nutritional conditions,
Toxoplasma cannot be controlled by the traditional
mTOR pathway, but competes with host cells for the
material resources needed for anabolism via calcium
regulation, and uses the nutrients obtained by the
autophagic degradation of host cells to provide energy
for Toxoplasma development (Wang et al., 2009) (Fig. 3).

Normally, the occurrence of calcium regulation
events in infected cells is accompanied by high levels
of PI3P, and Toxoplasma infection can independently
regulate calcium signals. The restriction of PI3P distri‐
bution in the vicinity of the vacuole membrane of the
worm is not necessary as it can be relocated with
Beclin1 and LC3. This process is controlled by the
worm. That is, T. gondii can control the location of
host cell autophagy in a purposeful manner, instead of
extensively and blindly inducing host cell autophagy.
This, to some extent, enhances the ability of the para‐
site to capture and use host cell biological energy. Gao
et al. (2014) found that the invasion of T. gondii
tachyzoites can cause human embryonic fibroblasts
(HEFs) to produce significant amounts of autophagy.
When the autophagy inhibitors chloroquine and ba‐
filomycin were used to treat HEF cells, the invasion
rate of T. gondii was lower than that of the untreated
control group. The results indicated that invasion of
host cells by T. gondii promotes its own proliferation
and development by causing an increase in the level
of host cell autophagy.

Based on current findings, there are two recog‐
nized outcomes of cellular autophagy and intracellular
parasite interactions during parasite infection of host
cells. One is that autophagy successfully reduces the
parasite invasion rate, and the other is that the parasite
uses the formation of autophagic vesicles to provide
substrates for its own energy metabolism, thus pro‐
moting its own reproductive development (Ghartey-
Kwansah et al., 2020a, 2020b).

6 Conclusions

Autophagy is an automatic cellular defense system
that can actively respond to the invasion of pathogenic

microbes, such as bacteria, viruses, fungi, and parasites,
by directly removing them or modulating innate adaptive
immune responses to destroy them. At the same time,
when cellular autophagy is triggered, pathogens can
also escape or use autophagy to promote their own
survival. The regulatory role of autophagy in pathogen
infections has several characteristics. First, there is a
dual regulatory role between microbial pathogens
and the body’s defenses against infections. Second,
the effect of autophagy depends on the cell type,
pathogen characteristics, and the microenvironment
in which pathogens are located.

Therefore, in order to treat infectious diseases,
autophagy should be induced or inhibited in a reason‐
able manner to play an appropriate role, considering the
characteristics of pathogenic microorganisms and their
infections, to achieve the goal of inhibiting pathogen
infections without damaging the organism. At the same
time, regulating autophagy to keep the organism in a
good metabolic state might be an effective strategy to
proactively prevent pathogenic infections. Notably,
deletion of different autophagy-related genes some‐
times produces different symptomatic manifestations.
In conclusion, much work is still needed to explore the
dynamic regulatory roles of autophagy in pathogen in‐
fections, and the fine tuning of these mechanisms could
provide a new theoretical basis and clinical drug targets
for novel antimicrobial and anti-infective research.
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