
Demethylator phenotypes in acute myeloid leukemia

Andrew D. Kelly1, Jozef Madzo1, Priyanka Madireddi1, Patricia Kropf2, Charly R. Good1, 
Jaroslav Jelinek1, and Jean-Pierre J. Issa1,2

1Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at 
Temple University, Philadelphia, PA, 19140, USA

2Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA

Abstract

Acute myeloid leukemia (AML) often harbors mutations in epigenetic regulators, and also has 

frequent DNA hypermethylation, including the presence of CpG island methylator phenotypes 

(CIMP). Although global hypomethylation is well-known in cancer, the question of whether 

distinct demethylator phenotypes (DMPs) exist remains unanswered. Using Illumina 450k arrays 

for 194 patients from The Cancer Genome Atlas we identified two distinct DMPs by hierarchical 

clustering: DMP.1 and DMP.2. DMP.1 cases harbored mutations in NPM1 (94%), FLT3 (71%) and 

DNMT3A (61%). Surprisingly, only 40% of patients with DNMT3A mutations were DMP.1, 

which has implications for mechanisms of transformation by this mutation. In contrast, DMP.2 

AML was comprised of patients with t(8;21), inv(16), or t(15;17), suggesting common 

methylation defects connect these disparate rearrangements. RNA-seq revealed up-regulated genes 

functioning in immune response (DMP.1) and development (DMP.2). We confirmed these findings 

by integrating independent 450k datasets (236 additional cases), and found prognostic effects by 

DMP status, independent of age and cytogenetics. The existence of DMPs has implications for 

AML pathogenesis and may augment existing tools in risk stratification.
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Introduction

Epigenetic control of cell fate has long been studied in the context of organism development 

and cancer with non-random DNA methylation marks controlling various differentiation 

states 1, 2. Aberrant hypermethylation has been shown to affect tumor suppressor genes in 

cancer, and widespread hypermethylation defining a CpG island methylator phenotype 
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(CIMP) can be observed in many tumor types 3–6. Many examples of specific DNA 

hypermethylation states have been shown to have clinical consequences in terms of therapy 

response and prognosis 6–8. Loss of DNA methylation in cancer has also been widely 

described for many years, however, the genomic targets, causes, and consequences of DNA 

demethylation remain unclear 9.

Acute myeloid leukemia is a heterogeneous and lethal disease in which studying the DNA 

methylome is a promising avenue for understanding cancer epigenetics and for clinically 

stratifying patients. While the overall somatic mutation burden in AML is low, some of the 

most frequently altered genes are epigenetic regulators. Approximately 25% of AML cases 

harbor mutations in the DNA methylation writer, DNMT3A 10. Mutations in the 

demethylase, TET2 have been reported in ~10% of cases, and IDH1/2 mutations occur in 

10–15% of AML 10. Each of these genes has been reported to affect the leukemic 

methylome. DNMT3A has been shown to drive hypomethylation in the context of FLT3-

ITD mutations 11, 12. TET2 has been reported to cause targeted DNA demethylation in some 

differentiation-related regions, and IDH1/2 mutations have been associated with 

oncometabolite formation causing hypermethylation via a TET-dependent mechanism 13. In 

addition, our group recently identified a TET2 associated (TET2-DMC-low) profile and a 

mutation-independent hypermethylation signature (A-CIMP) associated with favorable 

outcomes 6, 14.

In this study we sought to identify and characterize distinct DNA demethylator phenotypes 

(DMPs) in AML. To this end we studied TCGA AML samples profiled for DNA 

methylation, genetic mutations, gene expression, and clinical outcomes, and identified two 

distinct DMPs with important mechanistic and clinical implications in AML biology. We 

validated our findings in independent data and propose that DMPs may be used to augment 

existing clinical features for patient risk stratification and for understanding AML 

pathogenesis.

Methods

DNA methylation array data

DNA methylation data on the Illumina HumanMethylation 450k array platform were 

obtained for 194 AML patient samples from the TCGA data portal 10. Methylation data for 

24 normal peripheral blood samples (GSE51388) were used to identify CpG sites which are 

normally methylated 15. Pre-processing of Level 1 data was done using functional 

normalization implemented by the minfi R package 16. We excluded CpG sites with NA 

values and were left with 375324 sites for analysis. In order to enrich for sites which lose 

methylation in cancer, we applied filtering criteria to obtain the subset of probes which show 

variable methylation in AML but high methylation in normal blood (average beta-value > 

0.8 in normal blood and beta-value standard deviation > 0.2 in AML). To extend our analysis 

and increase statistical power for validation we merged multiple AML sample cohorts 

(TARGET, GSE62298, GSE58477, and GSE64934) interrogated with Illumina 450k arrays 

to compile a superset of 236 additional cases 10, 11, 17–19. We merged tables of beta values 

for these cases using R. To identify previously published epigenetic signatures we performed 

hierarchical clustering of the cases on methylation status of CpG sites for A-CIMP, I-CIMP, 
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and TET2-DMC 6, 14. To test for the methylation status of differentiated leukocyte fractions 

we used data on the 450k array for both myeloid and lymphoid lineages (GSE35069) and 

selected for CpG sites of interest using R 20.

Characterizing hypomethylated CpG sites for protein binding and LINE-1 elements

Hypomethylated CpG sites were queried for protein binding using ChIP-seq peak data for 

CTCF in normal CD34+ hematopoietic progenitors, and SPI1 (PU.1) in HL-60 cells. Data 

were downloaded from the UCSC genome browser and peaks were overlapped with CpG 

sites interrogated by the Illumina 450k platform using hg19 probe coordinates in BED 

format with the intersection function in the Table Browser 21, 22. LINE-1 repetitive elements 

were mapped to CpG sites measured by the 450k array using RepeatMasker 23.

RNA-seq analysis

Level 3 RNA-seq data (per-gene read counts) were obtained for 176 available cases from the 

TCGA data portal 10. Count data were processed with the edgeR package to determine 

differential expression 24, 25. Genes identified as significantly up-regulated in demethylator 

AML clusters were queried for functional annotation enrichments using GeneCoDis 26–28. 

GeneCoDis annotations for Biological Process (BP), Molecular Function (MF), and 

Transcription Factors were analyzed with a false discovery rate (FDR)-corrected 

hypergeometric test. We filtered the annotations for those with at least 3 query genes 

present.

Statistics

Unsupervised hierarchical clustering was performed in R using Ward’s method implemented 

in the hclust function 29. Comparisons for binary variables (e.g. mutation status) across 

groups were tested using Fisher’s Exact Test. Continuous clinical variables (e.g. age, blast 

count) were compared using Student t-tests. Kaplan-Meier and Cox regression analyses were 

done using the survival package in R 30. Differences in Kaplan-Meier curves were compared 

using the log-rank test. Quantitative DNA methylation differences were defined as a 

difference in average beta-value across conditions greater than 0.1 and an FDR < 0.05. 

Differential expression analysis for RNA-seq data was done using the edgeR package and 

significance was defined as an FDR-corrected p-value < 0.05 with a fold-change of 2. Odds 

ratios for context-specific DNA hypomethylation (e.g. LINE-1 repeats, gene bodies, etc.) 

were calculated in R using the following formula:

OR(x) = # hypomethylated CpGs in DMP type x/ # nonhypomethylated CpGs in DMP type x
# hypomethylated CpGs in nonDMP type x/ # nonhypomethylated CpGs in nonDMP type x

Data availability

The TCGA and TARGET data used in this study – including Illumina 450k arrays, RNA-

seq, and clinical annotations – are publicly available in the Genomic Data Commons (https://

gdc.cancer.gov/). Other DNA methylation datasets used are available in the Gene Expression 

Omnibus (GEO): GSE51388, GSE62298, GSE58477, GSE35069, and GSE32251. ChIP-seq 
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data for HL-60 and CD34+ cells are available on the UCSC Genome Browser (https://

genome.ucsc.edu/).

Results

Distinct demethylator phenotypes in subsets of AML patients

To study associations between DNA hypomethylation and AML biology we analyzed 

Illumina 450k arrays interrogating 194 TCGA leukemia samples. Patient characteristics are 

presented in Supplementary Table S1. To enrich for CpG sites that lose methylation (i.e. 

‘demethylate’) in cancer, we selected for those with high methylation in normal peripheral 

blood, and variable methylation across the AML cohort (see methods). Hierarchical 

clustering of the samples based on these 2,606 sites revealed two distinct groups showing 

profound hypomethylation: DMP.1 and DMP.2 (Figure 1a). Analysis of the distributions of 

DNA methylation levels for these clusters showed a significant shift of density to lower 

values (Figure 1b). To rule-out potential cell of origin artifacts, we performed the same 

analysis using data obtained from bone marrow-derived hematopoietic stem cells as the 

normal comparator and obtained similar results (Supplementary Figure S1). For downstream 

exploration of DMP biology we refined a classifier of each DMP using differential 

methylation analysis (Figure 1c). From this, we identified signatures of 213 DMP.2 CpG 

target sites, and 811 DMP.1 target sites (FDR<0.05 and beta-value difference > 0.2; 

Supplementary Tables S2 and S3). Re-classifying the AML samples on the DMP.1 targets 

revealed a cluster of 31 DMP.1 patients, and the remaining 163 were DMP.1-negative (DMP.

1-neg; Fig. 1d top). The same analysis done using the DMP.2 markers identified groups of 

38 DMP.2 and 156 DMP.2-negative (DMP.2-neg) cases (Fig. 1d bottom). Importantly, DMP.

2 and DMP.1 were mutually exclusive phenotypes (i.e. no cases were identified as both 

DMP.2 and DMP.1).

Genome-wide DNA methylation specificity in DMP+ AML

From a DNA methylation perspective, we next sought to explore the features of all 

interrogated genomic loci, not just those selected by the initial filtering criteria. To this end 

we performed differential methylation analysis for DMP.1 and DMP.2 for specific genomic 

compartments. Using an average beta-value difference threshold of 0.1 with an FDR < 0.05 

we identified 3,857 sites in CGIs, and 31,763 sites in non-CGIs that lose methylation in 

DMP.1 AML compared to DMP.1-neg (Figure 1e top). There was also a relatively small 

number of CpG sites that gained methylation in DMP.1 (Figure 1e top). The same analysis 

for DMP.2 revealed 3,504, and 9,530 CGI and non-CGI sites, respectively, that lost 

methylation compared to DMP.2-neg (Figure 1e bottom). In contrast to DMP.1, however, 

DMP.2 leukemias demonstrated relatively more hypermethylation compared to DMP.2-neg 

(1,250 and 5,029 CpGs in CGI and non-CGI regions, respectively; Figure 1e bottom). We 

performed a genomic localization enrichment analysis using odds ratios to identify whether 

certain features (e.g. CGIs, non-CGIs) were more or less likely to demethylate in DMPs 

compared to DMP-neg leukemias (see methods). This analysis revealed that DMP.1 

demethylation is more pronounced overall compared to DMP.2 by virtue of higher 

magnitude odds ratios, however, DMP.2 showed more specificity for CGI (versus non-CGI) 

demethylation (Figure 1f). An extended analysis of odds ratios for demethylation revealed 
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no specificity for promoters, enhancers, gene bodies, LINE-1 repetitive elements, PU.1 

binding sites, or CTCF binding sites for either DMP, but that the magnitude of enrichments 

at regulatory elements was generally higher for DMP.1 – i.e. the odds ratios were generally 

higher for DMP.1 sites compared to DMP.2 sites (Supplementary Figure S2).

DMP status is associated with DNMT3A mutations and cytogenetic risk

We examined somatic alterations present in the DMPs and found that compared to DMP-

neg, the DMP.1 cases were significantly enriched for mutations in DNMT3A, and FLT3 
(61% vs. 22% and 71% vs. 17%, respectively, Fisher’s Exact P<0.001; Figure 2a). 

Strikingly, nearly all DMP.1 cases also harbored mutations in NPM1 (94% vs. 19%, Fisher’s 

Exact P<0.001; Figure 2a). In contrast, DMP.2 cases were characterized by a relative 

absence of somatic mutations, which was statistically significant for DNMT3A, NPM1, 

IDH1, IDH2, and TP53. (0% vs. 22%, 19%, 13%, 14%, and 13%; Fisher’s Exact P<0.001, 

<0.001, 0.04, <0.01, and <0.01, respectively; Figure 2a). Genomic rearrangements were also 

significantly different between DMPs, with DMP.1 cases showing significant enrichment for 

intermediate cytogenetic risk, and no cases harboring any favorable risk abnormality (Figure 

2a). DMP.2, however, was characterized by all except one case harboring either t(8;21), 

inv(16), or t(15;17), suggesting a common epigenetic link between different good-risk 

cytogenetic aberrations (97% vs. 0%, Fisher’s Exact P<0.001; Figure 2a). Within DMP.2, 

the three cytogenetic abnormalities clustered separately by DNA methylation, with many 

CpG sites losing methylation in all cases, and a subset showing less demethylation in 

t(15;17) positive cases (Supplementary Figure S3a).

We next analyzed the data for the presence or absence of known epigenetic signatures; A-

CIMP and TET2-DMC-low are favorable prognostic factors, while I-CIMP is a non-

prognostic hypermethylation profile associated with IDH1/2 mutations (Supplementary 

Table S4–S6) 6, 14. In this analysis we found both DMPs to be I-CIMP-negative (0% in both 

vs. 22% in DMP-neg; Fisher’s Exact P<0.001), but DMP.2 cases were enriched for A-CIMP, 

and almost entirely overlapping with TET2-DMC-low (42% vs. 18%, and 89% vs. 3%; 

Fisher’s Exact P<0.01, <0.001, respectively; Figure 2a). The enrichment for A-CIMP+ 

leukemias in DMP.2 is consistent with the observed DNA methylation data (Figure 1e 

bottom); CpG sites which have low methylation in normal blood hypermethylate readily, 

while sites with high methylation in normal blood demethylate in this context, suggesting a 

widespread reprogramming phenomenon in CGI DNA methylation.

The observed co-occurrence and mutual exclusivity of different genetic mutations in DMP+ 

cases also revealed striking patterns. DMP.1 AML was enriched for co-occurrence of NPM1, 

FLT3, and DNMT3A mutations (Figure 2b). In contrast, nearly every DMP.2 case had one of 

three recurring favorable risk rearrangements. The sole outlier case was positive for A-

CIMP, TET2-DMC-low, and a FLT3 mutation, but lacked other common alterations in AML 

(Figure 2c).

From a clinical perspective we also observed important differences between DMP.1, DMP.2, 

and DMP-neg. Bone marrow blast percentage did not differ by DMP status, however, both 

DMP.1 and DMP.2 patients were significantly younger compared to DMP-neg, with DMP.2 

patients being the youngest (median age, years: DMP.1=55, DMP.2=49.5, DMP-neg=61; 
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P<0.001; Figure 2a). In addition, Kaplan-Meier survival analysis demonstrated DMP.1 status 

was not associated with overall survival (OS) in this cohort (median OS, months: DMP.

1=11.5, DMP.1-neg=19; log-rank P=0.51; Figure 2e), but DMP.2 leukemia patients had 

significantly improved OS (median OS, months: DMP.1=11.5, DMP.2=not reached, DMP-

neg=12.4; log-rank P<0.001; Figure 2e). Because of the near-perfect overlap between 

methylation and cytogenetic risk, we could not assess whether their prognostic effects were 

independent in this dataset. When we examined whether there were differences between 

cytogenetic groups within DMP.2, we found that neither genetic mutations, nor overall 

survival varied by specific cytogenetic rearrangement (median OS, months: t(15;17)=not 

reached, t(8;21)=30.6, inv(16)=not reached, other=not reached; log-rank P=0.77; 

Supplementary Figure S3b). Furthermore, the subset of DMP.2 FLT3 mutation-positive 

cases did not have significantly different outcomes compared to FLT3 wild-type cases 

(median OS, months: FLT3-ITD=not reached, FLT3-TKD=not reached, Wild-type=not 

reached; log-rank P=0.75; Supplementary Figure S3c).

DNMT3A mutated AML is not always DMP.1

Given the observation that many DNMT3A mutant cases are DMP-neg, we sought to 

characterize this interesting subset (Figure 2d). We isolated the DNMT3A mutant leukemias 

and found that only 19/47 (40%) were DMP.1, with the rest being DMP.1-neg (Figure 3a). 

From a genetic perspective we found that the DMP.1-neg leukemias had a mix of the 

canonical DNMT3A R882 mutations, and non-R882 mutations (Figure 3a). Importantly, the 

DMP.1-neg cases also often had co-occurring mutations in IDH1, IDH2, or TET2 – three 

genes reported to cause aberrant hypermethylation – and relatively few FLT3 mutations 

(Figure 3a). We tested these observations statistically and found that the enrichments for 

IDH1, IDH2, and TET2 were not individually significant, but reached significance when 

aggregated (57% in DMP.1-neg vs. 16% in DMP.1; Fisher’s Exact P=0.006; Figure 3b). This 

analysis also revealed significantly fewer mutations in FLT3 and NPM1 in DMP.1-neg AML 

(14% in DMP.1-neg vs. 84% in DMP.1 and 32% in DMP.1-neg vs. 95% in DMP.1, 

respectively; Fisher’s Exact P<0.001 for each; Figure 3b). From a clinical perspective, the 

DNMT3A mutant cases did not differ in OS by DMP.1 status (median OS, months: DMP.

1=8.2, DMP.1-neg=12.0; log-rank P=0.98; Figure 3c).

DMP.1 and DMP.2 AML have distinct gene expression signatures

To examine the transcriptomic differences between DMP.1 and DMP.2 we studied gene 

expression changes measured by RNA-seq. We performed differential expression analysis 

using edgeR (see methods) comparing DMP.1 to DMP.1-neg, and DMP.2 to DMP.2-neg and 

found there was generally more transcriptional up-regulation than down-regulation in both 

DMPs. In DMP.1 leukemias we identified 236 genes significantly up-regulated, and 68 

down-regulated compared to DMP.1-neg (FDR<0.05; Fold-change>2; Figure 4a). For DMP.

2 AML, 310 genes were up-regulated and 83, were down-regulated (FDR<0.05; Fold-

change>2; Figure 4c). Importantly, the differentially expressed genes identified between the 

two DMPs were entirely mutually exclusive.

Performing a gene set enrichment analysis for the up-regulated genes revealed that both 

DMPs had up-regulated genes functioning in ion transport, but that cell-cell signaling, 
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immune response, JUN, and GATA1 target genes were specific to DMP.1, while gene 

ontology categories for development, FOXO4, LEF1, ELSPBP1, and other transcription 

factor targets were specific to DMP.2 AML (Figure 4b and d for DMP.1 and DMP.2, 

respectively).

We then tested whether there was a significant overlap between differentially methylated, 

and differentially expressed genes in this dataset. For DMP.1 AML 66 out of 236 up-

regulated genes were also found to be hypomethylated compared to DMP.1-neg (Fisher’s 

Exact P=0.007). In contrast, only 16 of 310 up-regulated genes in DMP.2 leukemias were 

also significantly hypomethylated relative to DMP.2-neg (Fisher’s Exact P=0.48). This 

observation is consistent with the overall higher enrichments for DNA demethylation at 

regulatory elements for DMP.1 compared to DMP.2 (Supplementary Figure S2). 

Interestingly, gene set enrichment analysis of the subset of hypomethylated and up-regulated 

genes further confirmed the association between DMP.1 and immune response genes, and 

DMP.2 and developmental genes (Supplementary Tables S7 and S8 for DMP.1 and DMP.2, 

respectively). In addition, we queried DNA methylation status at DMP.1 and DMP.2 sites in 

multiple differentiated leukocyte fractions from healthy donors including NK cells, CD4+ T-

cells, CD8+ T-cells, CD19+ B-cells, CD14+ monocytes, granulocytes, neutrophils, and 

eosinophils (Supplementary Figure S4). We found that the CpG sites demethylated in both 

DMPs are mostly methylated in normal leukocyte fractions, however, there are subsets of 

these sites that show low methylation levels, most markedly in the lymphoid fractions, 

further suggesting that DMP.2 demethylation defines a phenotype poised for differentiation 

(Supplementary Figure S4b). In contrast, the DMP.1 CpG sites with low methylation in 

healthy leukocyte fractions also tended to have low methylation in BM-HSCs 

(Supplementary Figure S4a).

Finally, we queried the RNA-seq data to explore gene expression levels of several known 

epigenetic regulators: DNMT1, DNMT3A, DNMT3B, TET1, TET2, and TET3 

(Supplementary Figure S5). Although there were subtle differences in expression of 

DNMT1, and TET1 across DMPs (Supplementary Figure S5a and S5d), the most striking 

result was significant down-regulation of DNMT3A in DMP.1 leukemias with concurrent 

up-regulation of TET2 (Supplementary Figure S5b and S5e). The down-regulation of 

DNMT3A did not vary according to mutation status. We also observed a significant down-

regulation of DNMT3B in DMP.2 AML (Supplementary Figure S5c). There was a 

significant up-regulation of MPO within this subset as well, consistent with data reported by 

Itonaga et al. suggesting that MPO is a key maturation marker of AML blasts 

(Supplementary Figure S5g) 31. TET3 expression was statistically identical across the 

DMPs.

Validation of DMPs in independent methylation data

In order to validate our findings we queried additional AML datasets on the 450k platform, 

including TARGET, GSE62298, GSE58477, and GSE64934 (see methods). We integrated 

the validation datasets to form a superset consisting of 236 AML cases, and used our 

identified DMP signatures to classify the patient samples by hierarchical clustering. Based 

on DMP methylation status we found groups of 50, and 45 leukemias positive for DMP.1 
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and DMP.2, respectively (Figure 5a and b). Consistent with our previous analyses, these 

phenotypes were mutually exclusive.

We then sought to characterize these cases based on genetic mutations and clinical 

outcomes. We confirmed relative enrichments for DNMT3A and NPM1 mutations in DMP.

1, however, unlike in the TCGA cohort, the majority of cases did not harbor NPM1 
mutations (57% vs. 5% in DMP-neg and 18% vs. 3% in DMP-neg, respectively; Fisher’s 

Exact P<0.001, 0.06, for DNMT3A and NPM1, respectively; Figure 5c). We speculate this is 

due to the relative rarity of NPM1 mutations in the pediatric TARGET dataset, however, 

DMP.1 leukemias still carried the highest percentage of mutations compared to DMP.2 and 

DMP-neg. DMP.2 leukemias, in contrast, lacked DNMT3A mutations, and were 

significantly enriched for favorable cytogenetics, however, not all DMP.2 cases harbored 

these rearrangements (65% vs. 1% in DMP-neg; Fisher’s Exact P<0.001; Figure 5c). We 

also examined DNMT3A mutant cases in isolation and found that 80% were positive for 

DMP.1. We further considered a recent study published by Cauchy et al. which identified a 

FLT3-associated epigenetic signature 18. We sought to see whether the DMP.1 signature 

could recapitulate this FLT3 phenotype by hierarchical clustering of DNA methylation for 

the AML cases published in the Cauchy study, and found that demethylation of the DMP.1 

sites was present in two patients, one of which harbored a FLT3 mutation (Supplementary 

Figure S6). Thus, it is likely that the FLT3 and DMP.1 DNA methylation signatures are 

independent. Importantly, within this external cohort we confirmed that DMP.1 

demethylation does not occur in cases with IDH1/2 or TET2 mutations (Supplementary 

Figure S6).

In addition to validation of mutational signatures, we found that in this cohort DMP.1 

patients had significantly inferior overall survival compared to DMP-neg, while patients 

with DMP.2 disease had significantly better outcomes (median OS, months: DMP.1=13.1, 

DMP.2=not reached, DMP-neg=22.8; log-rank P<0.001; Figure 5d). We also found that 

patients with intermediate or poor risk cytogenetic abnormalities who had DMP.2 disease 

had significantly better OS compared to DMP-neg (median OS, months: DMP.2=not 

reached, DMP-neg=20.3; log-rank P=0.03; Supplementary Figure S7).

Because both DMPs were associated with survival and neither was completely defined by 

gene mutations, we tested whether the DNA methylation effects were independent from 

cytogenetics and age in this cohort. First we performed univariate Cox regression analysis 

using available clinical covariates and gene mutations and found that only DMP status 

(DMP.1 HR=2.00, 95% CI: 1.20–3.35, P=0.008; DMP.2 HR=0.38, 95% CI: 0.22–0.65, 

P=0.001), age > 60 (HR=2.37, 95% CI: 1.50–3.73, P<0.001), and cytogenetic risk 

(HR=1.94, 95% CI: 1.38–2.74, P<0.001) were associated with outcome (Figure 5e). In 

multivariate Cox regression models both DMP.1 (HR=1.69, 95% CI: 0.99–2.86, P=0.05) and 

DMP.2 (HR=0.49, 95% CI: 0.26–0.93, P=0.03) were associated with survival independent of 

each other, age and cytogenetic risk (Figure 5f). These data suggest that DMP status may be 

useful to augment existing clinical covariates in stratifying patients with AML.
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Discussion

Although numerous studies have investigated the complexities of aberrant hypermethylation 

in cancer, there is a relative gap in knowledge in the biology surrounding losses of DNA 

methylation. In this study we interrogated genome-wide DNA methylation data to identify 

demethylator phenotypes in AML. We found two distinct and non-overlapping DMPs: DMP.

1 and DMP.2. Although both types of leukemia were characterized largely by demethylation 

of normally methylated non-CGI CpGs, the specific genomic targets of demethylation were 

non-random and were associated with gene expression, mutational, and clinical signatures. 

Interestingly, the identification of DMP-positive leukemia did not materially differ between 

using normal bone marrow-derived hematopoietic stem cells versus normal whole peripheral 

blood as controls. This suggests that DMP demethylation is cancer-specific as the same CpG 

sites that lose methylation in DMP-positive AML are methylated in both normal peripheral 

blood cells (differentiated) and hematopoietic stem cells (undifferentiated).

The DMPs were genetically distinct with most DMP.2 patients harboring t(8;21), inv(16), or 

t(15;17). In our validation cohort, approximately one-third of DMP.2 patients did not have 

one of these rearrangements, and importantly, the DMP.2 methylation profile was associated 

with better survival independent of cytogenetic risk. This result suggests that a possible 

epigenetic mechanism may underlie the improved curability in patients harboring good-risk 

genomic rearrangements. This possibility is further alluded to by the observed up-regulation 

of genes enriched for organism development, and targets of specific hematopoietic 

transcription factors, including LEF-1 and GFI1 32, 33. The biological connection between 

the three cytogenetic abnormalities is likely a common differentiation “proneness”. This is 

further supported by the observation that some DMP.2 CpG sites are demethylated in certain 

differentiated leukocyte fractions derived from healthy individuals. We speculate that 

leukemias harboring demethylation at these sites may be epigenetically poised to 

differentiate regardless of the specific cytogenetic rearrangement that led to transformation.

In contrast to DMP.2, DMP.1 was associated with relatively poor clinical outcomes and was 

enriched for co-occurring DNMT3A, NPM1, and FLT3 mutations. Although the role of 

DNMT3A in writing DNA methylation marks is well-established, the strong association 

between NPM1 mutations and DNA demethylation may merit further investigation into a 

possible mechanistic relationship. In addition, we identified an intriguing subset of 

DNMT3A-mutation-positive leukemias which did not demethylate at DMP.1 CpG sites. 

These cases showed an enrichment for mutations in IDH1, IDH2, and TET2, all of which 

have been previously implicated in hypermethylation in cancer 6, 13, 34. Of equal interest, 

this same population of patients lacks hypermethylation at I-CIMP CpG sites, suggesting a 

possible co-dependency between DNMT3A and TET demethylases in regulating the 

methylome. RNA-seq data support this speculation by virtue of marked down-regulation of 

DNMT3A with up-regulation of TET2 in DMP.1 leukemias. The fact that DNMT3A mutant 

AML does not necessarily show global hypomethylation and that IDH1/2 mutant AML does 

not necessarily show hypermethylation raise questions as to methylation independent 

mechanisms of transformation by these mutations. Indeed, it was recently reported that a 

RAS signaling signature was upregulated in IDH and DNMT3A co-mutated leukemias, and 

that patient-derived primary cells were sensitive to MEK inhibition 35.
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In addition to epigenetic regulators, the other key transcriptomic finding in DMP.1 AML was 

up-regulation of immune response genes. Based on analysis of transcriptomic data alone, 

immune activation and viral response were among the most significantly enriched functions, 

with specific genes including the chemokines CXCL9 and CXCL10, and interleukins IL-3 

and IL-15. Analysis of genes which were both up-regulated and hypomethylated confirmed 

this functional enrichment. Thus the transcriptional programs of DMP.1 and DMP.2 are 

distinct, and may contribute to leukemia which is primed to proliferate via an immune 

response profile in the case of DMP.1, or primed to differentiate in the case of DMP.2, 

thereby contributing to their clinical differences 36, 37.

In summary we present evidence of two DNA demethylation signatures in AML which have 

mutually exclusive genetic backgrounds and clinical characteristics. Our data suggest an 

epigenetic link between different good-risk genomic rearrangements, and a methylation 

profile associated with DNMT3A mutations, and up-regulation of immune response genes. 

We found that both DMPs were prognostic - independent of age and cytogenetic risk - in an 

independent validation cohort. Future studies should validate the clinical relevance of these 

DMP signatures and attempt to integrate them with other established risk markers, and DNA 

methylation profiles in AML. In addition, the possible interactions between DNMT3A 
mutations and TET demethylases should be further explored from a molecular mechanistic 

perspective. More globally, the presence of demethylator phenotypes in cancer add to the 

complexity of epigenetic deregulation and should be examined across all cancer types in the 

same way CIMP was examined by the TCGA.
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Figure 1. Identification of demethylator phenotypes in AML
a) Hierarchical clustering of 194 AML cases and 24 normal peripheral blood controls based 

on 2,606 CpG sites with high methylation in normal blood (average beta-value > 0.8) and 

variable methylation in AML (beta-value standard deviation > 0.2). b) Density plot of 

distribution of DNA methylation levels in DMP.1, DMP.2, and DMP-neg leukemia. Vertical 

bars indicate median value. c) Volcano plot showing differentially methylated CpG sites 

between DMP.1 and DMP.2 cases from (a) which are used as a refined DMP classifier. d) 

Hierarchical clustering of the cases based on the CpG sites identified in (c) classify patients 

as DMP.1/DMP.1-neg (top), and DMP.2/DMP.2-neg (bottom). e) Differential methylation 

analysis comparing DMP.1 (top) and DMP.2 (bottom) to DMP.1-neg cases for CGI (left), 

and non-CGI (right) sites. The data show widespread demethylation (blue dots) and minimal 

hypermethylation (brown dots) in DMP.1, while there is less demethylation and more 
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hypermethylation in DMP.2. Dashed red lines correspond to LOESS regression. f) Summary 

odds ratios of genomic region specificity of demethylation for DMP.1 and DMP.2 compared 

to DMP-neg. DMP.1 demethylation is more pronounced at both CGI and non-CGI sites 

compared to DMP.2, but neither compartment is more likely to hypomethylate. DMP.2 

shows a relative preference for demethylation of CGI sites. Blue squares represent point 

estimates of odds ratios with blue lines representing 95% confidence intervals around the 

estimate.

Kelly et al. Page 14

Leukemia. Author manuscript; available in PMC 2018 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Genetic mutations, epigenetic signatures, and clinical outcomes in DMPs
a) Enrichments for common gene mutations, cytogenetic abnormalities, previously 

published epigenetic profiles, and clinical features are plotted for DMP.1, DMP.2, and DMP-

neg. Per-case (epi)genetic spectra are plotted for DMP.1 (b), DMP.2 (c), and DMP-neg (d); 

each column represents one patient with red boxes indicating positivity for the mutation/

alteration. e) Kaplan-Meier analysis of overall survival stratified by DMP status. * P<0.05, 

** P<0.01, *** P<0.001.
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Figure 3. Genetic and epigenetic characteristics of DNMT3A-mutant AML
a) Per-case (epi)genetic spectra are plotted for DNMT3A-mutant AML cases, and are 

divided by DMP.1 status. Red squares indicate presence of specified mutations/alterations. 

Each column represents data from a single patient. b) Barplot showing mutational 

enrichments for DNMT3A-mutant AML stratified by DMP.1 status. c) Kaplan-Meier 

analysis of overall survival for DNMT3A-mutant cases stratified by DMP.1 status. * P<0.05, 

** P<0.01, *** P<0.001.
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Figure 4. Distinct gene expression profiles in DMP+ AML
Volcano plots showing differentially expressed genes for DMP.1 versus DMP.1-neg (a), and 

DMP.2 versus DMP.2-neg (c) leukemias. Gene set enrichment analysis was done using 

GeneCoDis for up-regulated genes in DMP.1 (b), and DMP.2 (d) AML.
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Figure 5. Validation of DMPs in independent DNA methylation datasets
Hierarchical clustering of AML cases from independent datasets based on markers for DMP.

1 (a), and DMP.2 (b) confirmed the presence of both DMPs in a subset of patients. Color 

bars above each heatmap correspond to the different datasets-of-origin (see methods). c) 

Plots of enrichments for available genetic and demographic data in DMP.1, DMP.2, and 

DMP-neg. d) Kaplan-Meier analysis of the validation cohort revealed differences in overall 

survival based on DMP.1 and DMP.2 status. e) Univariate cox regression analysis for age, 

genetic features, and DMP status. f) Multivariate Cox regression for significant covariates 

from univariate analyses in (e). For Cox regression analyses, the point estimate for the 

hazard ratio is plotted along with the 95% confidence interval. * P<0.05, ** P<0.01, *** 

P<0.001.
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