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Anaplastic lymphoma kinase (ALK) alterations in non-small cell lung cancer (NSCLC) can
be effectively treated with a variety of ALK-targeted drugs. After the approval of the first-
generation ALK inhibitor crizotinib which achieved better results in prolonging the
progression-free survival (PFS) compared with chemotherapy, a number of next-
generation ALK inhibitors have been developed including ceritinib, alectinib, brigatinib,
and ensartinib. Recently, a potent, third-generation ALK inhibitor, lorlatinib, has been
approved by the Food and Drug Administration (FDA) for the first-line treatment of ALK-
positive (ALK+) NSCLC. These drugs have manageable toxicity profiles. Responses to
ALK inhibitors are however often not durable, and acquired resistance can occur as on-
target or off-target alterations. Studies are underway to explore the mechanisms of
resistance and optimal treatment options beyond progression. Efforts have also been
undertaken to develop further generations of ALK inhibitors. This review will summarize
the current situation of targeting the ALK signaling pathway.

Keywords: lung cancer, ALK, rearrangement, tyrosine kinase inhibitor, resistance
1 BACKGROUND

1.1 ALK Signaling Pathway
NSCLC accounts for around 80% of lung cancers, with ALK+ NSCLC accounting for 3%–7% of
these (1). ALK is a proto-oncogene which encodes anaplastic lymphoma kinase that is primarily
expressed in the nervous system. ALK signaling is activated in cancer cells primarily through three
mechanisms: gene fusions, gene amplification, and activating point mutations (2). ALK
rearrangements were first identified in 2007 in NSCLC, where the 3′ region of the ALK gene was
fused with the 5′ sequence of the echinoderm microtubule-associated protein-like 4 (EML4) gene.
The rearrangement results in the expression of the EML4-ALK fusion protein (3). Many kinds of
ALK fusion genes have been found in multiple cancer types (4). In ALK fusions, the partner drives
ALK activity at the level of gene expression and through multimerization of the ALK kinase domain,
which is presumed to promote several biological functions including cell differentiation,
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proliferation, and anti-apoptosis (5). ALK can activate signaling
cascades, such as the mitogen-activated protein kinase (MAPK),
(phosphatidylinositol 3−kinase) PI3K/(protein kinase B) AKT,
MEK/ERK kinase 2/3 (MEKK2/3), Crk-like/CRK SH3 domain-
binding guanine nucleotide-releasing factor (CRKL/C3G),
Janus kinase/signal transducer and activator of transcription
(JAK/STAT), and mitogen-activated protein kinase kinase
5-extracellular signal-regulated kinase 5 (MEK5-ERK5)
pathways (6).

1.2 Diagnosis of ALK Rearrangement
The ALK locus is prone to translocation, and more than 20
different ALK fusion protein partners have been discovered (5).
The detection of ALK rearrangements is widely recognized
in NSCLC. Different methods are now available, with
immunohistochemistry (IHC) and fluorescence in situ
hybridization (FISH) representing validated diagnostic
techniques for the assessment of ALK status (7, 8). As
chromogenic in situ hybridization (CISH) allows concurrent
analysis of histological features and gene rearrangement of the
tumors, it is also a useful method in assessing ALK status (9).
Next-generation sequencing (NGS) can detect a fusion between
any partners, which makes it advantageous. Multiplexed PCR
amplicon-based targeted NGS interrogates fusion transcripts
involving many known driver genes and partners (10).
Furthermore, NGS is able to assess multiple other genes
simultaneously with great sensitivity.

Other than identification of ALK rearrangements from tissue
biopsy, non-invasive genotyping of circulating tumor nucleic
acids has gained attention as an alternative strategy. Compared
to mutations and insertions/deletions, ALK rearrangements are
more complex as they incorporate diverse breakpoints and
multiple fusion partners (11). As DNA shedding in plasma of
patients with advanced disease increases, the sensitivity of ALK
fusion detection in ctDNA improves at disease progression (12,
13). The longitudinal ctDNA assays for early detection of disease
progression in ALK+ patients receiving treatment is under
intense investigation.

1.3 Characteristics of
ALK+ NSCLC Patients
ALK+ NSCLC patients tend to be younger, with no smoking
history, and have adenocarcinoma as the most common
histological subtype (14). A recent meta-analysis confirmed
that there is an increased incidence of thromboembolism in
ALK+ NSCLC patients as compared to non-ALK+ patients (15).
Real-world data also suggested an increased risk of venous
thromboembolism in ALK-rearranged NSCLC patients (16, 17).

Advanced ALK+ NSCLC has different imaging features of
primary tumor and metastatic patterns from those of EGFR+ or
wild-type NSCLC (18). ALK+ NSCLC often presents with central
tumor location, large pleural effusion, and absence of a pleural
tail (19). ALK+ tumors are also prone to nodal metastasis and
lymphangitic carcinomatosis. The radiological features can
clinically help discriminate ALK+ from ALK- tumors, but
genetic evidence is always required.
Frontiers in Oncology | www.frontiersin.org 2
1.4 ALK Variants and Fusion Partners
ALK variants have been reported to influence the efficacy of ALK
TKIs, but results were inconsistent. A prospective study from
Camidge et al. did not find that different ALK variants would
impact PFS for first-line alectinib or crizotinib (20). In two other
studies, ALK V3a/b had a worse OS (21, 22). A recent study also
suggested a prognostic role of ALK variants on treatment
outcome (23). In that study, 64 ALK variants were identified in
59 patients, with V1 (32.8%) and V3a/b (28.1%) being the most
common. Patients with non-V3a/b showed a trend toward
longer OS. Meanwhile, although ALK+ NSCLC patients have a
high PD-L1 expression rate, there is no significant association
with ALK variant subtypes (23). A meta-analysis suggested that
there was no significant difference of patients with the V1 variant
from non-V1 in terms of PFS and OS, while V3 was associated
with shorter OS (24). However, a propensity score analysis did
not find a difference of ALK variants regarding clinical features
and outcomes (25), which was consistent with sensitivity of ALK
variants to alectinib in ALK-transformed cells (26). The
molecular link between ALK variants, the differential response
to TKIs, and resistance mutations support NGS-based detection
of ALK status to guide treatment strategies (27).

Other than ALK variants, other ALK fusion partners include
ATIC-ALK, RANBP2-ALK, NPM1-ALK, TFG-ALK, KIF5B-ALK,
SQSTM1-ALK, TPM4-ALK, and CLTC-ALK (28). Their responses
to ALK TKIs have been reported in several case reports, some of
which were associated with better prognosis (29).

The impact of 5′-ALK on the efficacy of crizotinib was
reported (30). Compared with 3′-ALK fusion alone, patients
with non-reciprocal/reciprocal ALK translocation had a higher
incidence of central nervous system (CNS) metastasis at baseline.
Harboring non-reciprocal/reciprocal ALK translocation was
an independent predictor of worse PFS for crizotinib-treated
ALK\+ NSCLC.

1.5 Treatment Modality
As ALK+ NSCLC is a gene fusion-driven cancer, tyrosine kinase
inhibitors (TKIs) have been developed to treat this unique
disease. Currently, six ALK-target agents have been approved
to treat advanced ALK+ NSCLC, including crizotinib, alectinib,
ceritinib, ensartinib, brigatinib, and lorlatinib. These targeted
agents induce durable responses and improve survival outcomes.
Treatment with ALK inhibitors is recognized as the standard of
care for advanced ALK+ NSCLC.
2 ALK TARGETED THERAPIES IN NSCLC

2.1 First-Generation ALK TKI
The six currently approved ALK TKIs for advanced ALK+ NSCLC
were classified into three generations (Figure 1). The drug targets,
approved indication by FDA, trial design, and primary endpoint of
clinical trials are summarized in Table 1, which can help illustrate
the currently available ALK-TKIs. The development of crizotinib, a
first-in-class and first-generation ALK TKI, revolutionized the
treatment of ALK+ NSCLC (52). Crizotinib is a small-molecule
April 2022 | Volume 12 | Article 863461
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inhibitor of the receptor tyrosine kinases ALK, ROS1, and c-MET.
In phase I and II studies, crizotinib demonstrated durable responses
in advanced ALK-positive NSCLC patients (53, 54), leading to the
accelerated FDA approval in 2016. In a phase III study PROFILE
1007, crizotinib showed improved PFS compared with
chemotherapy in first-line and previously treated patients (34).
However, the pharmacokinetic failure to crizotinib is mainly due
to its poor blood–brain barrier penetration, and CNS is a common
site of progression with crizotinib (55). Crizotinib-treated patients
will virtually develop acquired resistance. L1196M, and G1269A,
and C1156Y mutations alter the structure of the ATP-binding
pocket and thus prevent crizotinib from binding to ALK (56).

2.2 Second-Generation ALK TKIs
The second-generation ALK-TKIs alectinib, ceritinib, ensartinib,
and brigatinib were developed to overcome crizotinib resistance,
Frontiers in Oncology | www.frontiersin.org 3
and they exhibited potent activity to crizotinib-resistant ALK+
NSCLC patients.

2.2.1 Alectinib
Alectinib is a next-generation inhibitor that is highly selective for
ALK (57). Alectinib, which is not a P-glycoprotein substrate, has a
better penetration to the blood–brain barrier compared with
crizotinib (58). Alectinib was approved by the FDA for second-
line treatment in 2015 based on two single-arm trials (NP28761
and NP28673) including 225 patients treated with alectinib 600
mg orally twice daily (59). The J-ALEX trial was the first study to
show that the second-generation ALK inhibitor alectinib provides
a PFS advantage and is more tolerable than crizotinib with the
dose of 300 mg twice daily (37). Alectinib was approved by the
FDA for the first-line treatment of ALK+NSCLC in 2017 based on
the phase III ALEX trial with alectinib 600 mg twice daily (36). In a
TABLE 1 | Pivotal clinical trials of currently approved ALK TKIs in NSCLC.

Drug Targets FDA approval Study Phase Trial design Region Primary endpoint

Crizotinib ALK, MET, ROS1 (31) First line (January 2013) PROFILE 1014 (32) 3 RCT Global PFS
PROFILE 1029 (33) 3 RCT Asia PFS

Later line (August 2011) PROFILE 1007 (34) 3 RCT Global PFS
Alectinib ALK, GAK, LTK (35) First line (November 2017) ALEX (36) 3 RCT Global PFS

J-ALEX (37) 3 RCT Japan PFS
ALESIA (38) 3 RCT Asia PFS

Later line (June 2013) ALUR (39) 3 RCT Global PFS
Brigatinib ALK, EGFR, IGFR1 (40) First line (May 2020) ALTA-1L (41) 3 RCT Global PFS

Later line (April 2017) ALTA (42) 2 RCT Global ORR
Ceritinib ALK, IGFR1, InsR, STK22D (43) First line (May 2017) ASCEND-4 (44) 3 RCT Global PFS

Later line (April 2014) ASCEND-5 (45) 3 RCT Global PFS
Ensartinib ALK, ROS1, TRK1/2/3 (46) First linea eXalt3 (47) 3 RCT Global PFS

Later linea (NMPA 2020) NCT03215693 (48) 2 Single-arm China ORR
Lorlatinib ALK, ROS1 (49) First line (March 2021) CROWN (50) 3 RCT Global PFS

Later line (November 2018) NCT01970865 (51) 2 Single-arm Global ORR, iORR
April 202
2 | Volume
RCT, randomized clinical trial; TKI, tyrosine kinase inhibitor; PFS, progression-free survival; ORR, objective response rate; iORR, intracranial objective response rate; FDA, Food and Drug
Administration; NMPA, National Medical Products Administration.
aNot approved by the FDA.
FIGURE 1 | Timeline of approved ALK TKIs.
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final analysis of the J-ALEX study, compared to crizotinib,
alectinib did not achieve overall survival (OS) benefit (60),
reflecting that the crossover to the post first-line treatment
might greatly influence OS, especially in ALK+ NSCLC who
could get significant benefit from all ALK TKIs. A prospective
real-world study investigated the strategy of switching to alectinib
in ALK+ NSCLC patients that did not experience disease
progression with initial crizotinib (61). The results indicated that
an early switch from crizotinib to alectinib might be a viable
option and may promote better treatment compliance.

Data from J-ALEX suggested that compared with ALEX
wherein 600 mg twice daily was used, alectinib 300 mg twice
daily did not produce a markedly different primary outcome of
PFS in a Japanese population. Since alectinib 300 mg twice daily
will produce fewer adverse events (AEs) and fewer treatment
interruptions, the lower dose is therefore an attractive approach
in the study population (62). The on-target resistance of the
mechanism of alectinib is related with emergence of G1202R and
I1171N/S/T mutations (63).

2.2.2 Brigatinib
In preclinical models, brigatinib (AP26113) has been shown to
overcome resistance to first- and second-generation ALK TKIs (40).
In crizotinib-treated (ALTA trial) and crizotinib-naïve (ALTA-1L
trial) patients with ALK+ NSCLC, brigatinib has shown promising
antitumor activity, including substantial activity against central
nervous system (CNS) metastases (41, 64). In the final analysis of
ALTA-1L, brigatinib demonstrated superior efficacy over crizotinib
regardless of ALK fusion variant or TP53 mutation status, especially
in patients with baseline brain metastases (65). In a network meta-
analysis, brigatinib ranked the highest by efficacy in the CNS
metastasis subgroup compared with alectinib, while alectinib
ranked the highest by efficacy in the overall population (66). In
general, brigatinib is well tolerated; however, the early-onset
pulmonary toxicity has raised some concerns. The ATOMIC
ARI-AT-002 trial (NCT02706626) is ongoing to evaluate the
efficacy of brigatinib against ALK-resistant mutations after
second-generation ALK inhibitor treatment other than brigatinib
in patients with ALK+ NSCLC (67). A phase III ALTA-3 trial
(NCT03596866) comparing brigatinib versus alectinib in the first-
line ALK+ NSCLC is also ongoing (68).

2.2.3 Ceritinib
Ceritinib obtained FDA approval for the treatment of ALK-
positive patients who progressed or were intolerant to crizotinib
in 2014, and as a first-line therapy in 2017. Approval was based
on the ASCEND-1 (69) and ASCEND-2 studies (70). In the
phase II ASCEND-2 study, crizotinib-pretreated ALK+ NSCLC
received ceritinib at a standard dose of 750 mg daily and achieved
an objective response rate (ORR) of 38.6% (70). A phase I, three-
arm ASCEND-8 study demonstrated that ceritinib 450 mg with
food showed similar efficacy and less gastrointestinal toxicity
compared to 750-mg fasted (71). Two randomized Phase III
trials compared ceritinib vs. standard chemotherapy in the first-
line (ASCEND-4) (44) or second-line (ASCEND-5) setting (45).
However, the toxicity profile of ceritinib from ASCEND-4 and
ASCEND-5 indicated a higher frequency of dose interruptions
Frontiers in Oncology | www.frontiersin.org 4
and modifications due to adverse events (AEs) compared to
chemotherapy. Real-world data comparing ceritinib versus
alectinib in ALK+NSCLC found that alectinib exposure was
associated with longer OS compared with ceritinib in ALK+
NSCLC (72). The pharmacokinetic (PK) data from the
ASCEND-8 study (71) led to the FDA approval of ceritinib
450 mg QD, administered with food.

2.2.4 Ensartinib
Ensartinib (X-396) is an aminopyridazine-based small molecule
that inhibits ALK. Furthermore, ensartinib has reported some
activity against ROS1, AXL, and cMET (73). In a phase 1/2 trial,
ensartinib has shown promising clinical activity in ALK+
NSCLC (46). A single-arm phase 2 trial investigating
ensartinib in second-line ALK+ NSCLC demonstrated an ORR
of 52% (48), which led to its approval by the National Medical
Products Administration (NMPA) of China. The phase III
eXalt3 study comparing ensartinib versus crizotinib for the
first-line treatment of ALK+ NSCLC demonstrated that
ensartinib is superior to crizotinib in both systemic and
intracranial diseases (47). Of note, crossover was not allowed
in this trial. A dynamic sequencing of circulating tumor DNA
(ctDNA) in ensartinib-resistant ALK+ NSCLC patients revealed
that ALK-dependent resistance mechanisms of ensartinib were
mainly due to G1269A, G1202R, and E1210K mutations (74).

2.3 Third-Generation ALK TKI
Approximately half of resistance to second-generation ALK-
TKIs is associated with secondary mutations in the ALK kinase
domain (75). Lorlatinib is a 3rdz-generation ALK TKI and is a
small and compact macrocyclic inhibitor. The macrocyclic
formation had an improved metabolic stability and a low
frequency of P-glycoprotein-mediated efflux in vitro. Diverse
compound ALK mutations were identified in lorlatinib-resistant
cells or patient samples after sequential ALK-TKI treatments (76,
77). Lorlatinib can inhibit G1202R mutation, but not compound
mutations (78). Lorlatinib was approved by the FDA in 2018 for
the second- or third-line treatment of ALK+ NSCLC (51). The
phase III CROWN study comparing lorlatinib versus crizotinib
achieved the best-in-class differential PFS benefit of HR 0.28
(50), which led to its first-line approval of the FDA in March
2021. Crossover was not allowed in the CROWN study. This
result may redefine the new potential standard of care in the first-
line setting. As there are no head-to-head comparisons of
lorlatinib to second-generation ALK TKIs, debates were raised
regarding whether lorlatinib is the best first-line treatment for
ALK+ NSCLC (79, 80). Compared with alectinib, lorlatinib was
associated with a higher incidence of grade 3 or higher AEs (81)
mostly related to its higher penetration in the CNS.

2.4 Fourth-Generation ALK TKIs
Under Investigation
The sequential use of ALK TKIs which is active to ALK “single
mutant” will lead to double ALK resistance mutations. Fourth-
generation ALK TKIs such as TPX-0131 and NVL-655 have been
developed, which are “double mutant active.” TPX-0131 is a
compact macrocyclic inhibitor, which was designed to fit
April 2022 | Volume 12 | Article 863461
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completely in the ATP-binding pocket. It may reduce the
susceptibility to a variety of ALK TKI-resistant mutations,
including solvent front, hinge region, gatekeeper, and compound
mutations (82). Other than being sensitive to most single resistant
mutations, TPX-0131 is effective for compound mutations such as
G1202R+L1198F, G1202R+L1196M, L1196M+ L1198F, and
G1202R+C1156F. Another 4th-generation ALK TKI, NVL-655, is
a brain-penetrant small-molecule inhibitor with activity against
solvent front drug-resistance mutations, such as G1202R,
G1202R+L1196M, and G1202R+G1269A (83). Furthermore,
NVL-655 displayed brain penetrance to open up the potential to
treat brain metastases while avoiding off-target CNS adverse events.

2.5 Other ALK TKIs
Entrectinib is a selective inhibitor of TRKA/B/C, ALK, and ROS1
(84). Combined results from twophase I/II basket trials (ALKA-372-
001 and the STARTRK-1 trial) suggested that entrectinib was well
toleratedandactive againstALK+NSCLC(85).Aphase IIbasket trial
STARTRK-2 (NCT02568267) is currently ongoing to evaluate
entrectinib for the treatment of patients with NTRK, ROS1, and
ALK gene rearrangements. Repotrectinib (TPX-0005) is a rationally
designed macrocyclic TKI developed to inhibit ALK, ROS-1, and
TRKA-C (86). It is smaller than lorlatinib and has a high activity in
CNS. The TREDENT-1 study (NCT03093116) for repotrectinib
showed encouraging data in ALK+ NSCLC patients (87).

Other novel ALKTKIs include TQ-B3139 (88),WX-0593 (89),
PLB-1003 (90), SAF-189s (91), and CT-707 (92). Several other
ALK TKIs are under preclinical investigation, such as gilteritinib
(93) and XMU-MP-5 (94). An ALK proteolysis-targeting
chimeric (PROTAC) degrader is also under development. The
six different ALK PROTACs are all based on the second-
generation ALK-TKIs, including ceritinib-based (95–98),
TAE684-based (96), and brigatinib-based ALK PROTACs (99).
During this process, kinase mutations and off-target effects may
occur, which is a major clinical challenge (100). The ongoing
clinical trials investigating novel-generation ALK TKIs in ALK+
NSCLC are summarized in Table 2 (up to December 18, 2021).

2.6 Treatment Options Other Than
ALK TKIs
2.6.1 Chemotherapy
As chemotherapy has limited efficacy in ALK+ NSCLC after
failure of a second-generation ALK TKI, combination therapy
with ALK TKI and chemotherapy has been proposed in ALK+
NSCLC refractory to at least one second-generation ALK TKI.
This strategy has been proved to be a possible choice by several
studies. Crizotinib plus pemetrexed in ALK+ NSCLC patients
with multiple CNS metastases demonstrated better efficacy than
monotherapy (101). Chemotherapy in combination with ALK
TKI proved to be of higher efficacy, suggesting a potential role for
ongoing ALK inhibition (102).

2.6.2 Anti-Angiogenic Drugs
Anti-angiogenic drugs have also been investigated in ALK+NSCLC.
Vascular endothelial growth factor (VEGFR) expression has been
reported to be upregulated in ALK+ NSCLC, which induces
resistance to ALK TKIs (103). A single-arm study of involving 12
Frontiers in Oncology | www.frontiersin.org 5
patients of ALK+ NSCLC demonstrated that crizotinib plus
bevacizumab showed benefit in first-line ALK+ NSCLC, with an
acceptable safety profile (104). In another phase 1/2 single-arm trial,
alectinib plus bevacizumab was also well tolerated (105).

2.6.3 Immune Checkpoint Inhibitors
The PD-L1-positive and strongly positive rates among ALK+
NSCLC patients were 46.7%–50% and 13.3%–16%, respectively
(23, 106). Studies have shown that the ALK oncoprotein is able to
upregulate PD-L1 expression in lung cancer cells. Upregulation of
PD-L1 by EML4-ALK was mediated by activating MEK-ERK and
PI3K-AKT signaling pathways in NSCLC, which suggests a link
between oncogene and PD-L1 expression (107). The expression of
PD-L1 in ALK+ NSCLC has brought immunotherapy drugs such
as immune checkpoint inhibitors (ICIs) into consideration for
ALK+ NSCLC. A real-world analysis of ICIs in ALK+ NSCLC
patients from a Flatiron Health electronic health record
demonstrated limited efficacy of ICIs provided either before or
after TKIs (108). Recent evidence indicated new roles of ALK and
its genetic aberrations in immune evasion and in innate and cell-
mediated immunity (109). The tumor microenvironment of ALK
+ NSCLC suggested a poorly immunogenic “immune desert” of
ALK+ NSCLC that also prevents the successful use of immune
checkpoint inhibitors (ICI) (110). Furthermore, the toxicity of ICI
for ALK+NSCLC patients was too high. The sequential use of ICIs
and crizotinib has also been reported with an increased risk of
hepatotoxicity in retrospective studies (111). The challenge to
researchers is not only to improve the efficacy of ICI in ALK+
NSCLC but also to find immunotherapeutic drugs that have
acceptable toxicity in combination regimens.

2.6.4 Radiotherapy
There are no firm data for concurrent usage of ALK TKIs and
radiotherapy. However, radiotherapy acts as a salvage treatment for
patients who have oligoprogressive metastatic disease while under
targeted therapy (112). In oligoprogressive diseases of ALK+ lung
cancer, continuation of ALK TKIs with local ablative therapy should
be considered for sustained control, which can potentially eradicate
resistant cancer cell clones and confer survival benefit (113). Ablative
and hypofractionated radiotherapy is one strategy for ALK+ lung
cancer, since many ALK+ NSCLC patients treated with ALK TKIs
experienced local disease progression (114). Timing of radiotherapy
remains unclear, especially under different clinical settings.
Furthermore, the safety of the combination of ALK TKIs and
radiotherapy is unclear (115). Case reports using radiotherapy
combined with alectinib and lorlatinib presented radiation-induced
CNSnecrosis, andthis toxicity remains longafter radiation(116,117).
3 DISCUSSION

3.1 How to Choose the Optimal
First-Line Treatment?
There is a continuous debate regarding the choice of the optimal
upfront ALK TKI for the first-line treatment of ALK+ NSCLC, the
subsequent sequencing strategies, and whether these considerations
April 2022 | Volume 12 | Article 863461
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should be based on specific on-target ALK resistance mutations or
not. Our recently published Bayesian network meta-analysis has
compared the efficacy and safety of 6 ALK TKIs and chemotherapy
in the first-line setting (118). Regarding PFS benefit for the first-line
setting, lorlatinib ranks first, while the toxicity of lorlatinib needs to
be paid attention to. However, the goal of treating advanced ALK+
NSCLC should not just be limited to improve median PFS in the
first-line setting. There is no consensus on how to best sequence the
ALK TKIs which are “single mutant active.” Some advocate using
second-generation ALK TKIs due to their favorable toxicity profile,
while leaving lorlatinib, the only third-generation ALK TKI, for
salvage treatment (Figure 2).

ALK+ NSCLC has a high tendency for brain metastases
compared to non-oncogene-driven NSCLC subtypes (119).
Compared with first-generation ALK TKI, second- and third-
generation ALK TKIs have a better efficacy of brain metastases.
Ceritinib demonstrated an intracranial ORR of 35%–73% and an
intracranial disease control rate (DCR) of 61%–86% in ALK-TKI
naïve and -pretreated patients (44, 45, 69, 70). The intracranial ORR
Frontiers in Oncology | www.frontiersin.org 6
and intracranial DCR of alectinib in clinical trials were 54%–81%
and 78%–90%, respectively (36, 39, 120, 121). Brigatinib showed an
encouraging activity in the CNS, with an intracranial ORR of 42%–
73% and an intracranial DCR of 83%–93% (42). A meta-analysis
investigated the role of ALK TKIs in the treatment of ALK+NSCLC
patients with brain metastases, who had been pretreated with
radiotherapy or not and/or chemotherapy (122). The results also
confirmed better intracranial control with second-generation ALK
TKIs (alectinib, brigatinib, and ceritinib) compared with crizotinib.
Ensartinib demonstrated an intracranial ORR of 63.6%–70% and an
intracranial DCR of 98%–100% (47, 48). Lorlatinib had an
intracranial ORR of 61%–66% in the first-line setting (50).
Lorlatinib also showed substantial intracranial activity in second-
generation ALK TKI-pretreated patients, with or without baseline
CNS metastases (123, 124). This evidence suggested that
withholding brain radiotherapy in patients with asymptomatic
brain metastases and use of radiotherapy during progression
could be an option. Prospective trials are warranted to confirm
the validity of this strategy.
TABLE 2 | Ongoing clinical trials of novel ALK TKIs against ALK-arranged NSCLC.

Clinical trial identifier Study design Intervention Setting Primary endpoint Phase Status

NCT04009317 260 participants
Parallel assignment
Randomized, open label

TQ-B3139 vs. crizotinib First line PFS 3 Recruiting

NCT04632758 330 participants
Parallel assignment
Randomized, open label

WX-0593 vs. crizotinib First line PFS 3 Recruiting

NCT04056572 135 participants
Single-group assignment
Non-randomized, open label

TQ-B3139 Second line ORR 2 Recruiting

NCT04641754 176 participants
Single-group assignment
Non-randomized, open label

WX-0593 Second line ORR 2 Recruiting

NCT04211922 104 participants
Single-group assignment
Non-randomized, open label

Alkotinib Second line ORR 2 Recruiting

NCT02568267 60 participants (basket)
Single-group assignment
Non-randomized, open label

Entrectinib (RXDX-101) Second line ORR 2 Recruiting

NCT03093116 500 participants (basket)
Single-group assignment
Non-randomized, open label

Repotrectinib (TPX-0005) Second line DLT, RP2D, ORR 1/2 Recruiting

NCT04849273 210 participants
Single-group assignment
Non-randomized, open label

TPX-0131 Second line DLT, RP2D, ORR 1/2 Recruiting

NCT04237805 280 participants
Single-group assignment
Non-randomized, open label

SAF-189s (foritinib) First/second line DLT, ORR 1/2 Recruiting

NCT03130881 60 participants
Single-group assignment
Non-randomized, open label

PLB1003 Second line DLT 1 Recruiting

NCT03607188 18 participants
Single-group assignment
Non-randomized, open label

Alkotinib Second line DLT 1 Recruiting

NCT05055232 120 participants
Single-group assignment
Non-randomized, open label

XZP-3621 Second line Toxicity, DLT, MTD 1 Recruiting

NCT02695550 40 participants
Single-group assignment
Non-randomized, open label

CT-707 Second line DLT, toxicity 1 Unknown
April 2022 | Volu
me 12 | Artic
PFS, progression-free survival; ORR, objective response rate; DLT, dose-limiting toxicity; RP2D, recommended phase 2 dose; MTD, maximum tolerated dose.
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3.2 Resistance Mechanism of ALK TKIs
There are two main categories of resistance mechanisms to ALK
TKIs, namely, on-target alterations such as ALK mutation/gene
amplification and off-target changes such as bypass signaling
pathways (75). Substitution with ALK-destabilizing mutations
could activate the ALK signaling pathway, which confers drug
resistance to inhibitors (125). Inherent ALK resistance mutations
are only found in a proportion of patients with acquired resistance
to ALK-TKI, for first- and second-generation ALK-TKIs. ALK
mutations such as somatic kinase domain mutations are the
primary resistant mechanism. Two major ALK mutations after
first-generation ALK TKI crizotinib were L1196M (7%) and
G1269A (4%) (75), which alter 3D conformation and hinder TKI
binding (126). Resistance to second-generation ALK TKIs is
associated with specific mutations, such as G1202R, I1171N,
S1206Y, and E1201K, for which not all TKIs are equally effective.
In patient samples post-ceritinib, secondary mutations were
detected in 56% of the cases, with 17% of double mutations:
G1202R (21%), F1174 C/L (17%), and C1156Y (8%) (75).
Acquired mutations of alectinib have been identified in 53% of
the patients: G1202R (29%), I1171T/S (12%), V11180L (6%), and
L1196M (6%) (75). Although brigatinib showed activity against
G1202R, which is a frequent mutation associated with alectinib-
resistant cancer (127), it is worth noting that G1202R has also been
detected in brigatinib-resistant samples, raising the question of how
clinically useful brigatinib is against this solvent front mutation
(128). Of note, G1202R was not the most common ALK mutation
in ensartinib-resistant patients, in which G1269A (6.6%) was the
more identified than G1202R (2.8%) among 14.2% of the patients
with secondary ALK mutations post second-line ensartinib (74).
On-target resistance to the third-generation ALK inhibitor lorlatinib
is primarily mediated by compound ALK mutations (129).
Interestingly, some compound mutations that lead to lorlatinib
resistance result in re-sensitization to first- or second-generation
ALK TKIs, such as I1171N + L1256F, and C1156Y + L1198F which
lead to re-sensitization to alectinib and crizotinib, respectively (76,
130). Patients with secondary ALK mutations refractory to the
previous ALK TKI can be treated with other ALK TKIs. This re-
sensitization phenomenon supported the sequential and possibly
alternating use of different ALK TKIs.

ALK-independent mechanisms are only partially understood
and particularly challenging, as they may result in refractoriness to
Frontiers in Oncology | www.frontiersin.org 7
further ALK inhibition. ALK-independent resistance mechanisms
involve bypass pathways, such as EGFR, cMET, and AXL, or
histological transformation into small cell lung cancer (SCLC)
(131–133). Mechanisms of resistance to novel generation ALK
TKIs are complex and diverse, reflecting the selective genetic
pressure of drugs (134). In a prospective MATCH-R study,
adaptive mechanisms driving resistance to lorlatinib were
explored by a longitudinal assessment of tumor biopsies and
ctDNA and the development of patient-derived xenograft (PDX)
and cell lines (135). Epithelial–mesenchymal transition (EMT)
mediated resistance in two patient-derived cell lines, and a novel
bypass mechanism of resistance caused by NF2 loss-of-function
mutations was described.

3.3 Toxicity Considerations
Clinical trials have established that ALK TKIs are generally safe
and well tolerated. First-generation crizotinib has demonstrated
a spectrum of toxicities, such as visual disorders (diplopia,
photopsia, blurred vision), as well as QTc prolongation and
bradycardia, while most of the AEs are grades 1–2 (136).
Gastrointestinal toxicities were associated with different ALK
TKIs, such as vomiting, nausea, and diarrhea. Brigatinib was
characterized by a peculiar and early-onset interstitial lung
toxicity (137). The most common AEs of lorlatinib were
notably hypercholesterolemia (81%) and hypertriglyceridemia
(60%), with cases of grade 3–4 toxicities occurring in 16% of
patients. Special AEs of lorlatinib include CNS effects such as
changes in mood, mental status, and peripheral neuropathy
(138). Although different ALK TKIs share some common AEs,
they have some unique toxicities, which should be taken into
account to identify the right drug for the right patient. Finding
ways to tackle these toxicities will play an essential role in drug
strategies for ALK+ NSCLC patients.

A list of different parameters could potentially affect the
interpretation of toxicity (139). Among them, the drug dose is one
of the reasons which influence the tolerability and toxicity of ALK
TKIs. As toxicity is related to drug dose, fewer toxicities were noted
with the 300-mg dose than with the 600-mg dose of alectinib (62).
Exposure-response analyses indicated that a lower dose of alectinib
and crizotinib could result in diminishing treatment efficacy (140).
Therefore, monitoring drug dose and toxicity might influence the
treatment outcome of patients receiving ALK TKIs.
FIGURE 2 | Treatment strategy for ALK+ NSCLC.
April 2022 | Volume 12 | Article 863461
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3.4 Beyond Advanced NSCLC
The treatment strategyof advancedALK+NSCLChasbroughtALK-
targeted therapy into early and locoregional (N2) stages. As acquired
resistance of targeting ALK in the advanced stage setting emerges
inevitably, TKIs are able to inhibit cancer cell proliferation, hinder
tumor growth, and control cancer metastasis, but not to eradicate or
cure the disease. There are no clear data regarding the frequency in
early-stageor locoregionaldisease (141). Inhibiting theALKsignaling
pathway at earlier stages still facesmany challenges.Neoadjuvant and
adjuvant ALK TKIs in ALK+ NSCLC have yielded mixed results
(142). Table 3 shows the clinical trials of ALK TKIs in neoadjuvant
and adjuvant settings (up to December 18, 2021).
4 CONCLUSIONS

In this “precision medicine” era, although the detection of
oncogenes is common practice and the administration of targeted
agents is a recognized option, molecular results should be
interpreted with caution. The integration of the roles including
pathologists, molecular biologists, and clinicians is needed. The
treatment algorithm of ALK+ NSCLC is becoming more complex.
New-generation TKIs have better CNS penetration across the
blood–brain barrier, resulting in superior intracranial response
rates and preventing brain metastases. A head-to-head
comparison between all ALK TKIs is still lacking, but novel ALK
TKIs are being developed to overcome resistance to currently
available ALK TKIs, hypothesizing a defined sequential ALK TKI
strategy in this disease. After failure of targeted therapies,
chemotherapy might still be a valid option, while the role of
immunotherapy is yet to be clarified. Overcoming the challenges
for the development of more potent drugs will be essential to
improving the survival rate of ALK+ NSCLC in the future.
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