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The locus coeruleus (LC) is a dorsal pontine region, situated bilaterally on the floor of
the fourth ventricle. It is considered to be the major source of noradrenergic innervation
in the brain. These neurons are highly sensitive to CO2/pH, and chemical lesions of LC
neurons largely attenuate the hypercapnic ventilatory response in unanesthetized adult
rats. Developmental dysfunctions in these neurons are linked to pathological conditions
such as Rett and sudden infant death syndromes, which can impair the control of the cardio-
respiratory system. LC is densely innervated by fibers that contain glutamate, serotonin,
and adenosine triphosphate, and these neurotransmitters strongly affect LC activity,
including central chemoreflexes. Aside from neurochemical modulation, LC neurons are
also strongly electrically coupled, specifically through gap junctions, which play a role in
the CO2 ventilatory response.This article reviews the available data on the role of chemical
and electrical neuromodulation of the LC in the control of ventilation.
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INTRODUCTION
Locus coeruleus (LC) is pontine region situated bilaterally on
the floor of the fourth ventricle, and produces the majority
of noradrenaline (NA) in the forebrain. The LC region is a
densely packed nucleus, comprising about 1500 neurons per
side (Aston-Jones et al., 1984). The first description of the LC
was published by Reil (1809), but the term LC was proposed
by the anatomists Wenzel and Wenzel in 1812 (reviewed by
Russell, 1955). In addition to NA, the cell bodies also secret
several neuropeptides (Sutin and Jacobowitz, 1991), among
which are vasopressin, somatostatin, neuropeptide Y, enkephalin,
neurotensin, CRH, and galanin (for review, see Olpe and
Steinmann, 1991). This nucleus has been described in a wide
variety of animals, such as frogs, birds, rodents, and primates
(González and Smeets, 1993).

LC NA neurons projects broadly throughout the neuraxis, from
spinal cord to neocortex (Swanson and Hartman,1975; Foote et al.,
1983; Berridge and Waterhouse, 2003). In fact, it is estimated that
∼50% of all the noradrenergic projections in the central nervous
system (CNS) originate in the LC which are directed toward the
forebrain, cerebellum, brainstem and spinal cord (Aston-Jones
et al., 1995; Berridge and Waterhouse, 2003). LC is the primary
source of an extensive, yet regionally specialized, noradrenergic
innervation of the forebrain (Berridge and Waterhouse, 2003) and
it is considered a major wakefulness promoting nucleus with acti-
vation of the LC resulting in an increase in EEG signs of alertness
(Samuels and Szabadi, 2008).

The alerting effect of LC activation results from dense excitatory
projections to the cerebral cortex, dorsal raphe, pedunculopon-
tine tegmental nucleus and the laterodorsal tegmental nucleus,

and from substantial inhibitory projections to sleep-promoting
GABAergic neurons of the basal forebrain and the ventrolat-
eral preoptic area (Samuels and Szabadi, 2008). Additionally,
LC also modulates autonomic function through direct output to
sympathetic and parasympathetic preganglionic neurons of the
intermediolateral cell column of the spinal cord and to projec-
tions innervating other autonomic nuclei (Nygren and Olson,
1977; Westlund et al., 1983; Jones and Yang, 1985), among
which known examples are the Edinger-Westphal Nucleus (Breen
et al., 1983), paraventricular nucleus (Swanson and Sawchenko,
1983; Jones and Yang, 1985), caudal raphe (Hermann et al.,
1997), and rostroventrolateral medulla (Van Bockstaele et al.,
1989).

LC is innervated by fibers that contain many neurotransmitters
such as opiates, glutamate, gamma-aminobutyric acid (GABA),
serotonin, epinephrine, and the peptide orexin/hypocretin (Aston-
Jones et al., 1995). The nucleus paragigantocellularis lateralis (PGi)
is a source for glutamate, GABA,enkephalin, corticotrophin releas-
ing hormone (CRH), and epinephrine. A strongly inhibitory
GABA and enkephalin input originates from the dorsomedial ros-
tral medulla, whereas orexin/hypocretin inputs originate in the
hypothalamus (Horvath et al., 1999), as do histaminergic inputs
(Pollard et al., 1978).

Because of these widespread projections, LC is implicated in
the control of many physiological functions, including control of
respiration (Oyamada et al., 1998; Fabris et al., 1999; Hilaire et al.,
2004; Putnam et al., 2004; Viemari et al., 2004; Biancardi et al.,
2008; de Carvalho et al., 2010; de Souza Moreno et al., 2010; Gar-
gaglioni et al., 2010; Biancardi et al., 2014; Patrone et al., 2014)
and cardiovascular function (Sved and Felsten, 1987; Yao and
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Lawrence, 2005; Biancardi et al., 2014; Patrone et al., 2014). LC
is considered a central CO2/pH chemoreceptor site in amphib-
ians and mammals (Noronha-de-Souza et al., 2006; Gargaglioni
et al., 2010; Santin and Hartzler, 2013) and more than 80% of
its neurons are chemosensitive, responding to hypercapnia with
an increased firing rate (Pineda and Aghajanian, 1997; Oyamada
et al., 1998; Filosa et al., 2002). Local acidification of noradrener-
gic LC neurons increases respiratory frequency and phrenic nerve
discharge in cats (Coates et al., 1993). Lesion of approximately
80% of noradrenergic neurons of LC by using 6-OHDA elicited
a large decrease in the response to CO2, of approximately 64%,
due to a decreased tidal volume (VT), indicating that this nucleus
exerts a profound effect on the hypercapnic ventilatory response
(Biancardi et al., 2008). The objective of this review is to sum-
marize the available data on the role of chemical and electrical
neurotransmission in the LC in the control of ventilation during
CO2 challenge.

ELECTRICAL MODULATION OF THE LC
The traditional concept of cell communication is based on the
presumption that the electrical coupling was a “primitive” form of
signaling commonly present in invertebrates, since the chemical
synapses are characterized as the predominant form of intercellu-
lar signaling in the CNS of vertebrates (Naus and Bani-Yaghoub,
1998). However, studies have shown that electrical coupling
appears to be an important signaling mechanism for several
functions, including cardiorespiratory regulation. In this regard,
electrical communication is present in regions of the CNS involved
in the generation and modulation of respiratory rhythm, inspira-
tory motoneuron synchronization, central chemoreception and
cardiovascular control (Davidson and Baumgarten, 1988; Nattie,
1999; Solomon et al., 2001; Solomon, 2003; Rash et al., 2007;
Pierce et al., 2010). In fact, the presence of gap junctions has
been reported in many regions that are considered CO2/pH
chemosensitive such as the caudal medullary raphe, retrotrape-
zoid nucleus (RTN), dorsal motor nucleus of the vagus (DMV),
nucleus of the solitary tract (NTS), and the LC, thus implying
that electrical coupling may constitute an important mecha-
nism for CO2 drive to breathe (Dean et al., 1997; Rekling and
Feldman, 1997; Solomon et al., 2000; Dean et al., 2001, 2002;
Solomon and Dean, 2002).

Gap junctions are formed by proteins that create intercel-
lular channels; these transmembrane pores facilitate the direct
exchange of small molecules, metabolites, adenosine triphos-
phate (ATP) and ions between cells in direct contact (Hooper and
Subak-Sharpe, 1981; Loewenstein, 1981; Picoli et al., 2012). These
channels are composed by a combination of two hemichannels
(connexons), each connexon containing a group of six proteins
called connexins (Cx). These proteins fold in a hexameric struc-
ture creating a hydrophilic channel that connects the cytosol of
neighboring cells (Davidson and Baumgarten, 1988; Solomon and
Dean, 2002; Picoli et al., 2012).

Cells that communicate via electrical synapses, in most cases,
express more than one Cx isoform (Solomon and Dean, 2002),
thus each connexon may consist of a single or multiple iso-
forms of Cxs (homomeric or heteromeric connexons, respectively;
Bruzzone et al., 1996; Kumar and Gilula, 1996; Laird, 2006). The

physiological properties of the gap junction depend on the pro-
tein isoforms that are present in the connexon (Kumar and Gilula,
1996; Bruzzone and Ressot, 1997), which can explain the differ-
ences in sensitivity to intracellular pH (pHi), intracellular calcium
and phosphorylation (Goodenough et al., 1996). Among the 15
connexin isoforms identified in the CNS of adult and newborn
rats (Beyer et al., 1990; Dermietzel and Spray, 1993; Bruzzone et al.,
1996; Dahl, 1996; Condorelli et al., 1998), Cxs 26, 32, and 36 are
the most abundantly expressed in neuronal cells (Dermietzel et al.,
1989; Belliveau et al., 1991; Belliveau and Naus, 1995; Condorelli
et al., 1998; Solomon et al., 2001).

A striking characteristic of the LC neurons is the cell-to-cell
coupling via gap junctions (Christie et al., 1989; Christie and
Jelinek, 1993; Travagli et al., 1995; Ishimatsu and Williams, 1996;
Oyamada et al., 1999; Alvarez-Maubecin et al., 2000; Ballantyne
and Scheid, 2000). The cellular coupling facilitates the commu-
nication between neurons and it is important to coordinate the
firing of the LC neurons, since it seems that the entire nucleus
fires simultaneously in response to sensory inputs (Nestler et al.,
1999). In fact, this synchronism is important for increase of NA
release from LC neurons (Christie et al., 1989; Travagli et al., 1995;
Ishimatsu and Williams, 1996; Alvarez-Maubecin et al., 2000).
According to Rash et al. (2007), the LC neurons of adult rats
express Cx32 and Cx36, while the presence of Cx26, an isoform
which is sensitive to CO2, is still controversial topic in the field
(Alvarez-Maubecin et al., 2000). Previous studies have shown that
Cx36 expression in the CNS increases during the first week of
life and reduces in adults (Sohl et al., 1998; Belluardo et al., 2000;
Solomon, 2003). This Cx participates in the astrocytic and neu-
ronal differentiation during development (Hartfield et al., 2011)
and also plays an important role in learning and memory con-
solidation (Frisch et al., 2005). Regarding Cx32, this isoform is
only detected between 5 and 10 days postnatal (Dermietzel et al.,
1989; Belliveau et al., 1991; Belliveau and Naus, 1995; Nadarajah
et al., 1997; Solomon et al., 2001) and is hypothesized to par-
ticipate in central CO2 chemoreception (Solomon et al., 2001).
Further studies are needed to clarify the role of Cx36 and Cx32 in
the LC.

Oyamada et al. (1998) demonstrated that transversal brainstem
slices of newborn rats presented 83% of LC neurons being mod-
ulated by the respiratory rhythm and this modulation depends
on the activation of an excitatory amino acid pathway. Also there
are evidences that LC neurons exhibit spontaneous depolariza-
tions that do not depend on the chemical synaptic transmission
(Williams and Marshall, 1987; Dean et al., 2001) and this electri-
cal synchronization is interrupted when a gap junction blocker is
administered (Christie et al., 1989; Travagli et al., 1995; Ishimatsu
and Williams, 1996; Oyamada et al., 1999; Alvarez-Maubecin et al.,
2000; Ballantyne and Scheid, 2000; Andrzejewski et al., 2001;
Ballantyne et al., 2004), reinforcing the role of the electrical cou-
pling in the maintenance of endogenous rhythmic activity of LC
neurons (Hayashida et al., 2010).

Recently, Nichols et al. (2008) demonstrated using newborn
brainstem slices that carbenoxolone (CARB, a gap junction
blocker) decreases the percentage of LC neurons that are respon-
sive to CO2, as well as the magnitude of this response (chemosen-
sitivity index – CI) during postnatal development. In addition,
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Rash et al. (2007) reported that LC neurons are strongly elec-
trically coupled during early post-natal development, suggesting
that gap junctions may play an important role in the chemosen-
sitive response of LC neurons during development. However, the
function of gap junctions may differ among other chemosensi-
tive nuclei, since the synaptic blockade of NTS neurons by CARB
perfusion reduces the ventilatory response to hypercapnia in 7–
10 week-old awake rats but not in >10-week-old rats (Parisian
et al., 2004). In the RTN, CARB perfusion decreases the ven-
tilatory response to CO2 in younger animals, but increases the
hypercapnic ventilatory response in older animals (Hewitt et al.,
2004).

The pattern of development regarding the ventilatory response
to CO2, present a clear and important change in the ven-
tilatory response to hypercapnia during the neonatal period
in rats, especially when comparing young versus older ani-
mals (Putnam, 2001). The LC of rats younger than 10 days
(P10) has a high percentage of chemosensitive neurons (70–
80%) and the magnitude of the response to hypercapnia is high
(approximately 235%) compared with older neonates (125%;
Hartzler et al., 2007). Additionally, the percentage of LC neu-
rons and the CI is not affected by CARB in rats younger than
P10 (Hartzler et al., 2007; Nichols et al., 2008). On the other
hand, the CO2 chemosensitive response of LC neurons of older
neonates (>P10) is reduced by 20% in the presence of CARB,
without affecting the CI, suggesting that the electrical coupling
increases the responsiveness to CO2 of LC neurons in newborn
rats (Hartzler et al., 2007; Nichols et al., 2008; Gargaglioni et al.,
2010).

A recent study by our group investigated the participation
of gap junctions in the CO2 ventilatory response in unanes-
thetized adult rats by bilaterally microinjecting CARB into the
LC of Wistar rats (Patrone et al., 2014). During normocapnic
conditions, the gap junctions have no regulatory role on ven-
tilation, since CARB microinjection did not change the resting
ventilation (Patrone et al., 2014). Regarding hypercapnic ventila-
tory response, our findings corroborate the literature since CARB
(1 mM or 3 mM) microinjection into LC neurons resulted in a
significant reduction, approximately 24 and 20%, respectively, in
the ventilatory response to 7% CO2. This result was confirmed
by the lower slopes of the 1 and 3 mM CARB CO2 sensitivity
curves compared to the curve for vehicle-injected rats (Figure 1).
Therefore, our data suggest that gap junctions in the LC are
important for modulation of the CO2 drive to breathe in adult
rats.

Recent studies have also addressed whether LC electrical
synapses are involved in cardiovascular regulation. Microinjection
of CARB in LC did not affect cardiovascular parameters dur-
ing normocapnia, suggesting that gap junctions in LC neurons
are unlikely to play a role in the tonic control of cardiovascu-
lar function. However, heart rate decreased after CO2 exposure
in the group treated with 3 mM CARB, indicating a possible
role of LC neuronal gap junctions in the regulation of heart rate
during CO2 challenge. Summarizing, electrical synapses in LC
neurons, specifically through gap junctions, play a role in the CO2

drive to breathe and also modulate heart rate under hypercapnic
conditions.

FIGURE 1 | Effect of bilateral intra-LC microinjections of vehicle

(aCSF/100 nL) or carbenoxolone (300 μM, 1 mM, or 3 mM/100 nL) on

CO2 sensitivity (relationship between and PaCO2). Values are
expressed as mean ± SEM. The 1 and 3 mM carbenoxolone sensitivity
curves presented lower slopes than the vehicle curve (P < 0.01). With
permission from Elsevier (Patrone et al., 2014).

NEUROCHEMICAL MODULATION OF THE LC
GLUTAMATE
Glutamate is an endogenous amino acid that acts as a major exci-
tatory neurotransmitter in the mammalian CNS (Ruggiero et al.,
2011) and participates in the central generation and transmis-
sion of respiratory rhythm (Bonham, 1995). Glutamate receptors
are divided into two subtypes, ionotropic and metabotropic.
Ionotropic receptors can be further divided in NMDA (N-methyl-
D-aspartate) and non-NMDA (AMPA and Kainate). The NMDA
receptors bind simultaneously with glutamate and glycine, result-
ing in the influx of Na+ and Ca2+, whereas the non-NMDA recep-
tors are more rapidly depolarized, causing a Na+ influx (Bowie,
2008). The metabotropic receptors are G-protein coupled, and
they can be divided in mGlu I, II, and III. These receptors appear
to be related with presynaptic regulation, and they also modulate
the transmission of the respiratory rhythm to phrenic motoneu-
rons; however, they are not involved in respiratory rhythmogenesis
(Liu et al., 1990).

Glutamate is a primary excitatory neurotransmitter in the
LC (Singewald and Philippu, 1998), and several studies identi-
fied different subunits of ionotropic glutamate receptors, with
the majority belonging to the non-NMDA category (Sato et al.,
1993; Wisden and Seeburg, 1993; Petralia et al., 1994). Experi-
ments using anesthetized rabbits demonstrated that activation of
LC neurons with L-glutamate increased the respiratory frequency
and discharge rate of the phrenic nerve, while decreasing duration
of inspiration and expiration (Li et al., 1992).

The major glutamatergic afferents to the LC come from the
lateral nucleus paragigantocellularis (Ennis et al., 1992). Another
important source of glutamate inputs are neurons localized in the
lateral hypothalamus, which are also responsible for producing
orexin (Peyron et al., 1998). A previous study performed by Henny
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et al. (2010) demonstrated that a subset of orexinergic terminals
have the ability to release glutamate in addition to orexin, and
do play a role in postsynaptic targets via glutamatergic synapses,
including terminals in the LC. More recently, it was demon-
strated that catecholaminergic neurons of the rostral ventrolateral
medulla (RVLM), most likely C1 neurons, establish a glutamater-
gic synapse with LC (Holloway et al., 2013). LC noradrenergic
neurons are important for wake-promoting systems; therefore,
glutamatergic signaling and LC neurons could be important to the
state-dependent control of breathing (Gonzalez and Aston-Jones,
2006).

Recently, we have investigated the role of glutamatergic inputs
in the LC modulation of the ventilatory response to hyper-
capnia in unanesthetized rats by applying Kynurenic Acid (KY,
an antagonist at ionotropic glutamate receptors) or α-methyl-
4-carboxyphenylglycine (MCPG, an antagonist at metabotropic
glutamate receptors; Taxini et al., 2013). Microinjections of MCPG
did not affect cardiorespiratory responses during normocap-
nia or hypercapnia. Remarkably, microinjection of KY into the
LC amplified pulmonary ventilation during 7% CO2, indicating
that glutamatergic inputs on LC neurons cause an inhibition of
the hypercapnia-induced hyperpnea. Our results are compara-
ble to previous evidence in the literature that glutamate acts on
ionotropic glutamatergic receptors in the LC and RVLM, thus
inhibiting the ventilatory response to hypoxia (Dillon et al., 1991;
Ferreira et al., 2004). Despite the fact that glutamate is classi-
cally known as an excitatory neurotransmitter in the CNS, there
is also evidence that glutamate acts on NMDA receptors exert-
ing a “functionally inhibitory” role, by suppressing circuit-level
neural activity through the activation of GABAergic interneurons
(Fitzgerald, 2012). Thus, inhibition of NMDA receptors by antago-
nist drugs may activate GABAergic neurotransmission as observed
in rat prefrontal cortex (Homayoun and Moghaddam, 2007). Pre-
sumably, the increased ventilatory response to CO2 after NMDA
blockade could be linked to inhibition of inhibitory interneu-
rons presents in the LC, which accounts for approximately 8%
of LC neurons (Iijima and Ohtomo, 1988; de Carvalho et al.,
2010). A second possible explanation is that the projections
from the LC to the central respiratory pattern generator, or
directly to the respiratory premotoneurons, may be mediated
by LC GABAergic neurons (Figure 2). Therefore, the attenu-
ation of the hypercapnic ventilator response, mediated by LC
ionotropic receptors, can be the result of excitatory projections
to glycinergic Bötzinger (BÖTZ) neurons, which participates in
the termination of inspiration (Champagnat et al., 1982; Bon-
ham, 1995; Schreihofer et al., 1999). Thus, a possible role of
LC glutamatergic mechanisms could be in limiting the extent
of hypercapnia-induced hyperpnea. However, the interaction
between the LC neurons and the glycinergic BÖTZ neurons is
still unclear.

With respect to cardiovascular regulation, glutamatergic recep-
tor antagonism did not affect blood pressure and heart rate
during normocapnia and hypercapnia, supporting previous find-
ings which demonstrate that the inhibition of LC neurons (Sved
and Felsten, 1987; Miyawaki et al., 1991) or electrolytic lesions
of this nucleus (Anselmo-Franci et al., 1998) have no effect on
cardiovascular parameters.

SEROTONIN
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter
involved in many physiological functions such as the sleep–wake
cycle, mood, appetite, and neurovegetative control. Serotonin can
also be linked to emotional disorders such as anxiety and depres-
sion (Jacobs and Azmitia, 1992; Brown and Gershon, 1993; Jouvet,
1999; Saper et al., 2001; Jones, 2005). Serotoninergic neurons are
located mainly in the raphe nuclei and project to almost all brain
areas and the spinal cord (Törk, 1990; Baumgarten and Göthert,
1997).

Extensive reciprocal projections are reported between raphe
and LC neurons (Pasquier et al., 1977; Pickel et al., 1977;
Cedarbaum and Aghajanian, 1978; Morgane and Jacobs, 1979;
Baraban and Aghajanian, 1981; Vertes and Kocsis, 1994; Luppi
et al., 1995; Peyron et al., 1996; Kim et al., 2004). In fact, LC
neurons receive dense serotonergic projections coming mostly
from dorsal raphe (DR) and pericoerulear 5-HT neurons (Aston-
Jones et al., 1991a; Kaehler et al., 1999; Kim et al., 2004), and
these projections are important for controlling sleep–wake cycle,
vigilance, analgesia, cognition, depression, pain and anxiety (Red-
mond and Huang, 1979; Segal, 1979; Charney and Redmond,
1983; Uhde et al., 1984; Mokha et al., 1985; Meltzer and Lowy,
1987; Seiver, 1987; Kim et al., 2004). Stimulation of central 5-HT
neurons causes reductions in the LC spontaneous and pain-
evoked activity (Segal, 1979) and 5-HT, when applied in the LC,
attenuates the excitatory responses of this nucleus to sensorial,
neurochemical and electrical stimuli (Bobker and Williams, 1989;
Aston-Jones et al., 1991a).

Administration of the 5-HT1A receptor antagonist WAY-100635
in anesthetized rats suppressed LC activity. Interestingly, this effect
can be prevented by lesioning central 5-HT neurons (injection of
5,7 DHT intracerebroventricularly) or by 5-HT2 receptor antag-
onism, indicating that the suppressant effect of WAY-100635 on
noradrenergic neuron firing is dependent on intact 5-HT neurons
and also involves an over-activation of excitatory 5-HT2 recep-
tors in inhibitory neurons projecting to LC (Haddjeri et al., 1997;
Szabo and Blier, 2001).

Recently, we have demonstrated that hypercapnia induces an
increase in 5-hydroxyindole-3-acetic acid (5-HIAA) levels and
serotonergic turnover (5-HTTIA/5-HT ratio) in the LC of rats
(de Souza Moreno et al., 2010). In this study, we also microin-
jected WAY-100635, Ketanserin (5-HT2A antagonist), or DOI
(5-HT2A agonist) into the LC of unanesthetized rats to ver-
ify the role of 5-HT receptors in the CO2 ventilatory response.
Antagonism of 5-HT receptors in the LC had no effect on
resting breathing parameters (de Souza Moreno et al., 2010).
Microinjection of WAY-100635 into the LC decreased the ven-
tilatory response to CO2, possibly due to inhibition of nora-
drenergic neurons. The reduction of the response to CO2 by
WAY-100635 may be due to its direct antagonism of presynap-
tic 5-HT1A receptors, leading to an increase in 5-HT release
and consequential activation of postsynaptic 5-HT2A receptors
in the LC.

Another possible explanation for our results is that WAY-
100635 may decrease the glutamate evoked activation of LC
neurons. In this regard, Aston-Jones et al. (1991a) has previously
demonstrated that 5-HT decreased glutamate evoked activation
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FIGURE 2 | Schematic drawings depicting possible mechanisms of

glutamatergic signaling in the locus coeruleus (LC). (A) Hypercapnia
increases glutamate release in the LC, which directly activates LC
gabaergic neurons. Inhibition of NMDA, AMPA, and Kainate receptors by
KY may inhibit LC GABAergic neurons, which project to the central
respiratory pattern generator (CPG), or directly to the respiratory
premotoneurons, causing an increase in the activity of these neurons,
promoting an increase in ventilation. (B) Another possibility is that
hypercapnia increases glutamate release in the LC, which possibly

activates noradrenergic neurons that induce GABA release. Inhibition of
NMDA, AMPA and Kainate receptors by KY may decrease the release
of excitatory neurotransmitter of LC, probably noradrenaline (NOR),
leading to inhibition of GABAergic interneuron, which in turn may
reduce the activation of the glycinergic Bötzinger (BÖTZ) neurons,
causing an increase in the hypercapnic ventilatory response. LC, locus
coeruleus; PGC, nucleus paragigantocellularis; KY, kynurenic acid; MCPG,
α-methyl-4-carboxyphenylglycine. With permission from Wiley Online
Library (Taxini et al., 2013).

www.frontiersin.org August 2014 | Volume 5 | Article 288 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Physiology/archive


de Carvalho et al. Neurochemical and electrical modulation of the locus coeruleus

of LC cells using extracellular recordings from single neurons
in an anesthetized preparation. Moreover, Bobker and Williams
(1989) showed that the receptors mediating this inhibition are the
5-HT1A and 5-HT1B subtypes, probably located presynaptically
in the PGi terminals, since LC receives afferent excitatory gluta-
matergic inputs from the PGi nucleus (Ennis and Aston-Jones,
1987). Therefore, this interaction between glutamate and 5-HT
may play a role in preventing a strong inhibition of LC during
hypercapnia.

In fact, microinjections of Ketanserin in the LC increased the
hypercapnic hyperpnea, whereas the 5-HT2A receptor agonist DOI
evoked an opposite effect. Therefore, we suggested that release
of 5-HT is increased in the LC during CO2 challenge and that
5-HT negatively modulates the LC stimulatory role in the hyper-
capnic ventilatory response, probably acting through postsynaptic
5-HT2A receptors or presynaptic 5-HT2A in GABAergic terminals.
The possible action of 5-HT on GABAergic terminals corrobo-
rates previous study that reported that GABAA receptor antagonist
bicuculline on LC neurons blocked the inhibitory effects of intra-
venously injected DOI on LC firing (Chiang and Aston-Jones,
1993).

ATP
ATP is an important intracellular energy source for all cells and
is present in all mammalian neurons (Edwards and Gibb, 1993).
Burnstock (1972) proposed the concept of purinergic signaling,
after the observation that a purine nucleotide could act as a neu-
rotransmitter in non-adrenergic, non-cholinergic (NANC) nerves
supplying the gut and urinary bladder. Currently, it is established
that ATP acts as a sole neuromodulator or is co-released with other
neuromodulators in the peripheral and in the CNS (Abbracchio
et al., 2009).

In the CNS, ATP acts on regions involved in cardiovascular
and respiratory regulation, including the LC (Thomas and Spyer,
2000; Thomas et al., 2001; Gourine et al., 2002, 2005; Antunes
et al., 2005; Yao and Lawrence, 2005). LC neurons are of particular
interest as purinergic signaling targets because ATP can act as a
neuromodulator on neurons terminating within the LC or as a co-
transmitter of recurrent axonal collaterals or dendrites of intrinsic
LC neurons (Tschöpl et al., 1992; Nieber et al., 1997; Poelchen
et al., 2001). Poelchen et al. (2001) reported for the first time that
ATP and NA are co-released from recurrent axon collaterals onto
LC neurons producing biphasic synaptic potentials consisting of
early depolarizing (epsp = excitatory postsynaptic potential) and
late hyperpolarizing (ipsp = inhibitory postsynaptic potential)
components, respectively.

P2 purinergic receptors are activated by ATP (Burnstock,
1997) and are classified into P2X (ligand-activated cationic chan-
nel, ionotropic receptor) and P2Y (G-protein-coupled receptor,
metabotropic receptor) subtypes (Abbracchio and Burnstock,
1994; Fredholm et al., 1994; Mateo et al., 1998). The LC contains
more P2X receptors, and the P2X population consists mainly of
the P2X2, P2X3, and P2X6 subtypes (Yao et al., 2000). Although
P2X7 receptors have been found in LC area and it appeared that
these receptors are located in astrocytes (Khakpay et al., 2010).
A short stimulation of the P2X7 receptors leads to activation of
cationic currents as the other subtypes of P2X receptors although a

repeated or prolonged ATP exposure also opens a large pore which
allows the passage of organic cations and dye molecules (Virginio
et al., 1999).

ATP evokes the release of NA (Poelchen et al., 2001) and ATP
within LC, when acting on presynaptic P2X receptors (Boehm,
1999), and inhibits the release of NA and ATP, when act-
ing on presynaptic P2Y receptors (von Kügelgen et al., 1994,
1995; Poelchen et al., 2001). In LC neurons, activity of NA on
postsynaptic α2-adrenoceptors has been shown to mediate hyper-
polarization (Aghajanian and Vandermaelen, 1982; Poelchen et al.,
2001), while activation of both P2X and P2Y receptors by ATP
has been shown to depolarize LC neurons (Harms et al., 1992;
Shen and North, 1993; Scheibler et al., 2004). Thus, ATP may be
released to provide an excitatory counterbalance to the inhibitory
noradrenergic drive of these neurons (Illes et al., 1994).

There is evidence that tyrosine hydroxylase (TH) co-localizes
with P2X receptors in the LC (Yao et al., 2000) indicating the pres-
ence of P2X receptors in LC noradrenergic neurons. Moreover,
α,β-meATP (a P2X receptor agonist) excites LC neurons in in vitro
preparations of the pons (Tschöpl et al., 1992; Shen and North,
1993), increasing the frequency of spontaneous action potentials
in LC (Tschöpl et al., 1992).

On the other hand, Kuwahata (2004) demonstrated that ATP
produced a hyperpolarizing response or a transient hyperpolar-
izing response that preceded the depolarization in LC neurons.
However, AMP-PNP (adenosine 5′-(β,γ-imido) triphosphate,
which is more resistant to dephosphorylation than ATP, only depo-
larizes LC neurons. According to Kuwahata (2004) adenosine is the
likely source of the ATP-induced hyperpolarizing response in LC
neurons.

Despite the excitatory effects of ATP in LC neurons, lit-
tle is known about the physiological consequences of ATP
when administered in the LC in vivo, with antinociception
being an exception (Fukui et al., 2004). A recent study by our
group focused on the role of ATP in the cardiorespiratory con-
trol through P2 receptor-mediated mechanisms in the LC of
unanesthetized rats (Biancardi et al., 2014). In this study we
provided the first functional evidence that purinergic neuro-
modulation within the LC is important for cardiorespiratory
control in unanesthetized animals. In normocapnic conditions,
ATP release within the LC may occur to maintain respiratory
frequency (Biancardi et al., 2014). We observed that PPADS
(ATP antagonist with predominant actions on P2X receptors)
decreased respiratory frequency, whereas suramin (P2 non-
selective antagonist) did not change any of the investigated
respiratory variables (Biancardi et al., 2014), when injected into
the LC.

Microinjections of ATP and the P2X receptor agonist α,β-
meATP into brainstem respiratory nuclei, such as the nucleus
tractus solitarius (NTS) and RVLM, also cause changes in respi-
ratory amplitude and frequency (Thomas et al., 2001; Antunes
et al., 2005). Several studies have shown that hypercapnia triggers
ATP release in the RVLM (for review see Gourine et al., 2005). The
injection of P2X receptor antagonists in this region reduces the
ventilatory response to hypercapnia, indicating that ATP, acting
on P2X receptors, plays a critical role in the chemoreception to
CO2/pH (Thomas and Spyer, 2000; Gourine et al., 2005).
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Biancardi et al. (2008) also observed that the ablation of about
80% of LC noradrenergic neurons was associated with a large
decrease (64%) in the ventilatory response to increased CO2.
More recently, we observed that microinjections of α,β-meATP
into the LC promoted a greater increase in ventilation during
the hypercapnic challenge (7% CO2), compared with the con-
trols (Biancardi et al., 2014). This was blocked by pretreatment
with PPADS, indicating that α,β-meATP is acting on P2X recep-
tors to evoke that effect. Thus, LC purinergic signaling appears to
play a role in the CO2 drive to breathe, specifically through the
activation of P2 receptors, accelerating the ventilatory response to
hypercapnia. This observation was probably due to P2X activa-
tion of noradrenergic neurons, triggering further NA and ATP
release which in turn activate rhythm-generating circuits and
medullary respiratory neurons in one or more of the following
brainstem nuclei: RTN, RVLM, prepositus hypoglossi nucleus, and
NTS (Aston-Jones et al., 1986, 1991b; Astier et al., 1990; Pieribone
and Aston-Jones, 1991; Vulchanova et al., 1997; Llewellyn-Smith
and Burnstock, 1998; Kanjhan et al., 1999; Thomas and Spyer,
2000; Yao et al., 2000; Gourine et al., 2003; Lorier et al., 2007, 2008;
Huxtable et al., 2009).

Unexpectedly, suramin induced an increase in ventilation
during CO2 exposure. However, this effect occurred 20 min
after the microinjections, while the effect of the P2X ago-
nist appeared only 2 min after microinjections. These obser-
vations suggest that suramin may be acting on presynap-
tic P2Y receptors, which, due to location and metabotropic
mechanism of activation, may introduce a delay in the
response. Given that these receptors are G-protein coupled
(Abbracchio and Burnstock, 1994), the latency to induce neuro-
transmitter release is prolonged.

Yao and Lawrence (2005) suggested that ATP modulates the
cardiovascular system via activation of P2X receptors in the LC
of anesthetized rats. Moreover, they hypothesize that purinergic
and noradrenergic systems are tonically active within the LC and
interact functionally. They also demonstrated that microinjections
of a P2X receptor agonist into the LC induced hypotension and
bradycardia in anesthetized animals. Conversely, microinjections
of P2 receptor antagonists induced hypertension and tachycardia.
In another study, Biancardi et al. (2014) evaluated the role of ATP
in the modulation of cardiovascular responses to CO2 exposure.
They observed that both PPADS and suramin induced an increase

FIGURE 3 | Schematic drawing depicting possible mechanisms of

purinergic signaling in the locus coeruleus (LC). ATP induces
depolarization of noradrenergic neurons through P2X and P2Y
postsynaptic receptors (Harms et al., 1992; Shen and North, 1993), NE
and ATP release through P2X presynaptic receptors (Boehm, 1999) and
inhibition of NE and ATP release through P2Y presynaptic receptors (von
Kügelgen et al., 1994, 1995; Poelchen et al., 2001). α,β-meATP agonism of
P2X presynaptic receptors may promote NE and ATP release, whereas
agonism of P2X postsynaptic receptors may activate noradrenergic
neurons to further increase NE and ATP release (red arrow, Nieber et al.,

1997). PPADS blocks mainly P2X receptors, which reduces NE and ATP
release at LC terminals (green arrow). Suramin blocks P2X and P2Y
receptors. The postsynaptic receptors reduce neurotransmitter release
(blue down arrow). The presynaptic P2Y receptor subtype increases NE
and ATP release, thereby further activating noradrenergic neurons and
causing additional NE and ATP release (blue up arrow). PCO2 increase in
the cerebrospinal fluid activates LC noradrenergic neurons (yellow arrow;
Biancardi et al., 2008) and astrocytes (yellow arrow; Alvarez-Maubecin
et al., 2000; Spyer et al., 2004) which, in turn, release ATP. With
permission from Wiley Online Library (Biancardi et al., 2014).
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in mean arterial pressure (MAP) under hypercapnic conditions,
although α,β-MeATP did not change cardiovascular parameters
in unanesthetized animals. This increase in MAP may be due to
a blockade of P2X and P2Y postsynaptic receptors, which may
attenuate depolarization of LC noradrenergic neurons, thereby
reducing NA release. A decrease in NA, in turn, decreases RVLM
inhibition and promotes pressor response.

Figure 3 depicts proposed LC purinergic neuromodulation
mechanisms based on Biancardi et al. (2014) and evidence from
Williams et al. (1985), Aghajanian and Wang (1986), Harms
et al. (1992), Shen and North (1993), von Kügelgen et al. (1994),
von Kügelgen et al. (1995), Nieber et al. (1997), Boehm (1999),
Alvarez-Maubecin et al. (2000), Poelchen et al. (2001), Spyer et al.
(2004), and Biancardi et al. (2008).

Until recently, there were no studies available in the litera-
ture regarding ATP-mediated respiration mechanisms in the LC.
However, a recent study from our group (Biancardi et al., 2014)
introduced the idea of the participation of purinergic signaling
in the LC in the modulation of respiration. Further investigation
is needed, nevertheless, to address how hypercapnic challenges
modulate purinergic signaling within the LC. An increase in arte-
rial blood PCO2 triggers immediate ATP release from ventral
chemosensory site(s) on the surface of the medulla, and glial cells
appear to be the likely source of this ATP release in response to
such stimuli (Gourine et al., 2005). The striking abundance of
astrocytes in the LC (Alvarez-Maubecin et al., 2000) supports the
idea that these cells may play a distinctive role in that nucleus.
Based on the reviewed literature, we believe that the field would
benefit greatly from further investigation of the possibility that
hypercapnic exposure induces ATP release from LC astrocytes,
which contribute to modulation of respiratory activity.

CONCLUSION
We have reviewed evidence that LC neurons exert an impor-
tant role in hypercapnic ventilatory response, and this response
is chemically modulated by 5-HT, glutamate, ATP and electri-
cally controlled by GAP junctions. As it is well known, LC is an
important pontine group that has access to respiration-related
cell groups in the caudal brainstem, and also modulates the sleep
wake–cycle and many other homeostatic function. Therefore, this
nucleus can be considered a gateway to adjust respiration to
sleep–wake events. In addition, LC has been linked to patholog-
ical conditions such as Rett syndrome, where individuals present
decreased CO2 chemosensitivity. This CNS dysfunction is char-
acterized by the loss of function mutations in the X-linked gene
encoding in Methyl-CpG-binding protein-2 (MeCP2; Amir et al.,
1999). MeCP2 knockout mice presents morphological (decreased
soma size), electrical (reduced membrane conductance and strong
afterhyperpolarization amplitude), and neurochemical (reduced
TH content) alterations of LC neurons (Taneja et al., 2009). How-
ever, the neurobiological mechanisms underlying such breathing
disorders presented by people with Rett syndrome are still unclear.
According to Taneja et al. (2009), LC is a critical site at which loss of
MeCP2 results in CNS dysfunction and restoration of normal LC
function may attenuate the symptoms of this syndrome. There-
fore, a better comprehension of LC and its modulators in breathing
control is needed to clarify this issue.
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