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ABSTRACT

Motivation: Identifying altered pathways in an individual is important

for understanding disease mechanisms and for the future application

of custom therapeutic decisions. Existing pathway analysis techniques

are mainly focused on discovering altered pathways between normal

and cancer groups and are not suitable for identifying the pathway

aberrance that may occur in an individual sample. A simple way to

identify individual’s pathway aberrance is to compare normal and

tumor data from the same individual. However, the matched normal

data from the same individual are often unavailable in clinical situation.

Therefore, we suggest a new approach for the personalized identifi-

cation of altered pathways, making special use of accumulated normal

data in cases when a patient’s matched normal data are unavailable.

The philosophy behind our method is to quantify the aberrance of an

individual sample’s pathway by comparing it with accumulated normal

samples. We propose and examine personalized extensions of path-

way statistics, overrepresentation analysis and functional class scor-

ing, to generate individualized pathway aberrance score.

Results: Collected microarray data of normal tissue of lung and colon

mucosa are served as reference to investigate a number of cancer in-

dividuals of lung adenocarcinoma (LUAD) and colon cancer,

respectively. Our method concurrently captures known facts of

cancer survival pathways and identifies the pathway aberrances that

represent cancer differentiation status and survival. It also provides

more improved validation rate of survival-related pathways than when

a single cancer sample is interpreted in the context of cancer-only

cohort. In addition, our method is useful in classifying unknown samples

into cancer or normal groups. Particularly, we identified ‘amino acid

synthesis and interconversion’ pathway is a good indicator of LUAD

(Area Under the Curve (AUC) 0.982 at independent validation). Clinical

importance of the method is providing pathway interpretation of single

cancer, even though its matched normal data are unavailable.

Availability and implementation: The method was implemented

using the R software, available at our Web site: http://bibs.snu.ac.kr/

ipas.

Contact: tspark@stat.snu.ac.kr or namhuh@samsung.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Cancer arises from normal cells and can evolve to become ma-

lignant, metastatic and/or resistant to therapy. The analysis of
altered pathways in an individual cancer patient may help to

understand the disease status and suggest customized anticancer
therapies.

It is straightforward to compare the molecular profile of an

individual’s tumor and normal cells to discover molecular aber-

rances specific to his/her cancer. However, it may not be feasible

in the current clinical practice environment to perform a meta-

static tumor biopsy at the time of treatment resistance in patients

with advanced cancer (Dancey et al., 2012). A case study of

custom-tailored medicine based on an individual’s genome and

transcriptome highlights this limitation (Jones et al., 2010).

A patient’s tumor had metastasized to the lung after surgery at

the primary site. A biopsy from his lung tumor was analyzed by

mutation and transcription profiling; however, the patient’s

normal lung tissue was not biopsied. Because there was no

matched normal tissue, messenger RNA (mRNA) expression in

the patient’s own blood and information collected from various

normal tissues were used to identify differentially expressed genes

(DEGs). The results of pathway analysis based on DEGs, inte-

grated copy number variation and mutation information led the

doctor to change the patient’s drug treatment, and the disease

was stabilized for 3 months.
Although the personalized interpretation of pathways can be

demanding, most current pathway analyses have been developed

to investigate deregulated pathways between two phenotype

groups. Khatri et al. (2012) classified these methods into three

types: overrepresentation analysis (ORA), functional class scor-

ing (FCS) and a pathway topology (PT)-based approach.
ORA approaches typically apply an arbitrary threshold value

(e.g., fold change42 or P50.05) on gene expression to assess

whether the number of genes beyond threshold are significantly

over- or underrepresented in the given pathway. There are two

drawbacks to ORA. First, it uses only the most significant genes

and discards others, thus resulting in information loss for mar-

ginally significant genes (Breitling et al., 2004). Second, it con-

siders only the number of genes and does not consider the

magnitude of expression changes, leading to information loss

regarding the importance of genes (e.g. a gene with a fold

change of 2.01 and a gene with a fold change of 4 are considered

equally). Unlike ORA, FCS methods do not discard genes with

an arbitrary threshold but use all available genes, which is an

improvement over ORA (Tian et al., 2005). PT methods are

essentially based on FCS methods with the addition that they

consider network topology information. They compensate for

the common limitation of ORA and FCS in reporting

false-positive gene sets due to sets of overlapping genes. In our

article, we focus on ORA and FCS methods, extending and

implementing each for personalized pathway analysis.
There are two exceptional studies examining individualized

pathway analysis (Drier et al., 2013; Vaske et al., 2010).*To whom correspondence should be addressed.
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PARADIGM is a tool that infers a pathway status by using
known functional structures. The method models the functional
structure of pathway as a set of interconnected variables, where

the variables are omic objects such as DNA, mRNA and protein,
where the interaction between variables describes the functional
status of a pathway. PARADIGM may perform better with

multiple omics, as it uses known functional relationships between
a gene or inter-gene DNA and protein. Hence, it might not per-
form well with single layer omic data, such as from mRNA

microarrays.
Drier et al. (2013) proposed a personal pathway deregulation

score (PDS), which represents the distance of a single cancer

sample from the median of normal samples on the principal
curve. To calculate PDS, they reduced the dimensions by princi-
pal component analysis and found the best principal curve, using

entire cohort samples containing both normal and/or different
stages of cancers. Drier’s method performs better than
PARADIGM in the mRNA only datasets of brain and colon

cancers. Calculating PDS requires data dependent preprocessing
steps, including selecting the number of principal components to
be used and filtering out noisy gene data to obtain optimized

principal curves. PDS fully uses whole cohort data to interpret an
individual’s pathway, which can be a drawback in that it requires
a number of cohort data to extract principal curve to interpret a

single patient data. It has a limitation to interpret a single sample
such as a patient’s recurrent tumor that is not accompanied with
cohort dataset to extract the principal curve.

Our proposed method is based on the comparison of one
cancer sample with many accumulated normal samples (we use
‘nRef’ to refer to the accumulated normal samples) that is dif-

ferent from the previous studies in following sense. The proposed
method is suitable to adopt single-layer omics data and expend-
able to interpret a patient in the context of many published or

user-defined pathway gene sets. PARADIGM has less freedom
in terms of data and gene sets, as it prefers multi-layered omics
data and requires predefined functional structure among omics

objects. Unlike PDS, which extracts the principal curve from
entire cohort data, our method does not assume an individual
sample belongs to a cohort. We introduce using accumulated

normal tissue data as a reference. This is a simple and biologic-
ally intuitive guideline in such a case to interpret a single sample
that lack cohort data.

Our method provides a series of analysis steps, which consists
of four parts: data processing, gene-level statistics, individualized
pathway aberrance score (iPAS) and a significance test. To dis-

cover the most feasible method for iPAS, we extend existing
pathway analysis techniques, namely, ORA and FCS, to prop-
erly reflect the nature of testing one cancer to many normal

samples.
To demonstrate that iPAS captures biologically and clinically

relevant information in a sensible, valid and useful manner, we

apply it to samples of lung and colon adenocarcinoma. We show
that our representation generates clinically relevant stratifica-
tions and outcome predictors, which would not have been

achieved when the same data are analyzed by the conventional
method that does not use accumulated normal data.
Our empirical study suggests two different strategies, depending

on the biological question that iPAS is focused on. In the case of

cancer diagnosis, a method that uses the inter-gene correlation

structure of the accumulated normal samples performs best.
In the case of cancer prognosis, a simple averaging of all

member genes’ standardized gene expression values performs best.

2 METHODS AND MATERIALS

2.1 Gene expression data

We built nRef by the manual curation of data obtained from NCBI GEO

(Barrett et al., 2012). Microarray data of adjacent normal tissues obtained

from patients undergoing surgery were selected to serve as the nRef. Data

from biopsied samples, primary cultures of normal tissues and post-

mortem donors were not included in the nRef. We collected 120 nRef

for lung, 60 from GSE19804 (Lu et al., 2011), 27 from GSE7670 (Su

et al., 2007) and 33 from GSE10072 (Landi et al., 2008). Samples came

from individuals with variable smoking histories and different ethnic

backgrounds. We collected 101 nRef’ for colon, concentrating on

normal mucosa tissue samples from six datasets available at GEO. To

evaluate the effectiveness of our method in survival analysis, we used

Beer’s data of 442 lung adenocarcinomas (LUADs) (Beer et al., 2002)

to discover survival-related pathways and validated the associations of 61

LUAD samples of GSE8894 (Lee et al., 2008). The pathway based iden-

tification of LUAD were tested on 120 cancers and 120 normal samples

of GSE19804, GSE7670 and GSE10071. Further validation was con-

ducted with 48 cancers and 35 normal samples collected from

GSE19188 (Hou et al., 2010) and GSE31547. For patient stratification

by colon cancer differentiation status, we used 566 microarrays of

GSE39582 (Marisa et al., 2013), which provided in a separate manner,

443 for discovery, 123 for validation. GSE17536 (Smith et al., 2010) was

also used for validation.

2.2 Pathway data

Information from gene sets representing biological pathways were ob-

tained from REACTOME (Croft et al., 2011), which are also provided

in the Molecular Signature Database (Subramanian et al., 2005).

Pathways with small number of genes are more easily understood by

human experts. We decided to filter out pathways of which gene set

size is497. The cutoff covers at least 80% of contents of each public

pathway resources. Of 674 pathways in REACTOME, 583 pathways

(86.7%) remained after filtering by the gene set size.

2.3 Individualized analysis using the nRef

The aim of our approach is to identify altered pathways in an individual

by making use of the nRef. A schematic diagram of our method of

individualized pathway analysis is described in Figure 1, and the follow-

ing sections describe each step.

2.3.1 Data preprocessing and gene-level statistics Expression level

was defined by using the robust multichip average (Irizarry et al., 2003).

For datasets using different microarrays, only those with probes in

common from Affymetrix U133A to Affymetrix U133Plus 2.0 were

used for further analysis. For individual tumor cases, we performed quan-

tile normalization (Bolstad et al., 2003) after combining the single tumor

microarray with all nRef samples. In cases of genes with multiple probes,

gene expression level was summarized by averaging probe-level expres-

sion. Individual tumor sample gene expression was standardized using the

mean and standard deviation of the reference.

2.3.2 Pathway-level statistics and significance test We introduce

five methods as candidates for iPAS. Each method is a modification of

existing pathway analysis techniques, enabling us to test an individual

tumor sample’s pathway aberrance by using the nRef. A summary is

provided in Table 1.
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Average Z Standardizing the gene expression by mean and standard

deviation from datasets is often used in microarray analysis. A vector

Z=(z1, z2, . . . , zn) denotes the expression status of a pathway where

zi symbolizes the standardized expression value of i-th gene, where

the number of genes belonging to the pathway is n. In typical settings,

standardization is performed using the mean and SD of a given dataset,

mostly the cancer-only cohort data, thus y/n indicates how much the

given sample’s overall pathway gene expression deviates from the

center of the cancer samples. We made the simple modification,

Z’=(z1’, z2’, . . . , zn), where zi’ is derived from mean and SD of the

nRef. In this case, y
0
/n gives the samples deviation from the nRef.

We believe this modification is biologically valid because every cancer

starts its malignancy from normal cell. Thus, the clinical characteristics of

a single cancer can be captured by measuring the difference of it against

common characteristic of normal cells, which is represented by the nRef

in our study.

Fisher exact test We generated a 2� 2 contingency table for a given

pathway (S) and DEGs (D) for the test. For individualized interpretation,

we define D by the ranking of z-value, which is standardized gene expres-

sion for the mean and SD of the nRef. For each individual sample, 5%

(highest 2.5% and lowest 2.5%) of the total genes are defined as D. We

applied a two-tailed test to detect alteration of pathways due to enrich-

ment or depletion of differential genes. The result of this statistic can be

interpreted as how many DEGs are enriched in the given pathway, where

the expression difference refers to how much a patient’s gene expression

deviates from the nRef.

Gene set enrichment analysis We adopted the original version of

gene set enrichment analysis (GSEA) proposed by Subramanian et al.

(2005). Typically, inputs for GSEA are generated by testing whole cohort

samples using phenotype label; t-statistic, correlation coefficients and fold

changes are usually used. In the personalized analysis setting, we use the

z-value as an input for the GSEA algorithm, which is standardized gene

expression by mean and SD of the nRef. The GSEA output enrichment

score reflects the degree to which a gene set in the pathway is overrepre-

sented at the extremes (low or high) of the entire ranked list of z-values

from a single patient.

Non-parametric quadratic test Gene expression in a pathway of a

tumor sample is represented by vector Z=(z1, z2, . . . , zn), where zi is

standardized expression level of i-th gene by mean and SD of the nRef,

where n is the number of genes belonged to the pathway. A pathway

characteristic of an individual patient’s pathway can be represented by

the averaged Euclidean distance ðZTZ=nÞ. This gives the distance of a

single patient from the center of the nRef due to the square of standar-

dized expression difference, and thus does not reflect increased or

decreased expression, only the extent of the expression difference.

Fig. 1. Schematic description of individualized pathway analysis using accumulated normal data (nRef). An individual’s tumor data are normalized with

the nRef. Gene expression is standardized by mean and SD of the nRef. The iPAS is calculated from standardized gene expression values in the pathway.

Null distribution calculated from the nRef provides significance

Table 1. Modification of existing pathway analysis methods for iPAS

Method Gene statistics Pathway statistics

Average Z
zi=

gTi �meanðgnRefÞ

stdevðgnRefÞ

Pn
i zi
n

Fisher

zi=
gTi �meanðgnRefÞ

stdevðgnRefÞ XminðjDEGj;nÞ

i=k

�
jDEGj

k

��
N�jDEGj

n�k

�

N

n

� �DEG: top 2.5%,

bottom 2.5%

max Phit � Pmissð Þ

Phit P; ið Þ=
X

gi2P

j�i

jzij
x

NR

GSEA
zi=

gTi �meanðgnRefÞ

stdevðgnRefÞ
Pmiss P; ið Þ=

X

gi=2P

j�i

1

N�NHð Þ

NR=
X

gi2P

jzij
x

Euclidean
zi=

gTi �meanðgnRefÞ

stdevðgnRefÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i zi

2
p

n

Mahalanobis
zi=

gTi �meanðgnRefÞ

stdevðgnRefÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z
0
S�1Z

p

n

Note. Significance can be obtained against the null distribution generated from

normal samples. All the collected normal samples for the nRef are one by one

compared with the nRef to yield statistics of the null distribution. A statistic from

a single cancer case is compared with this null distribution to yield P-value.
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Genes in the pathway are usually functionally correlated; therefore, use of

the correlation structure of the normal samples may increase sensitivity

enough to capture the aberrance of a single cancer case. We also consider

the averaged Mahalanobis ðZTSZ=nÞ distance, which uses the covariance

matrix calculated from the nRef. This value describes the statistical dis-

tance from the center of normal samples taking into account correlation

among normal samples. The covariance matrix S is calculated for each

pathway from the nRef.

3 RESULTS

3.1 Pathway-based identification and validation of cancer

survival

To assess whether our method can sensitively detect pathway

aberrances that are associated with a patient’s clinical outcome,

a known survival pathway that showed strong association with

patient survival from Beer’s data was tested. Bryant et al. (2010)

reported that the ‘cell cycle stimulatory’ pathway of 51 genes is

significantly associated with patient survival (Cox proportional

hazards model, P=0.000113). In that study, pathway gene

expression was represented as an average of z-values, where the

z-value indicates the standardized expression level, by the mean

and SD, of all cancer samples. The high-risk group was defined

as those in which pathway expressions were40, and the pathway

showed poor prognostic outcome. The association was signifi-

cant with or without adjusted clinical covariates, and thus the

pathway alone is a strong indicator of cancer prognosis. This

finding was also validated in the Japanese LUAD cohort

(n=87, survival data are not provided to public) in Bryant’s

study. As studies have shown a clear association between the

cell cycle pathway and cancer, in terms of driving cancer prolif-

eration, we considered this pathway as a pathway that should be

detected. All of the methods proposed as candidates for iPAS

showed significant associations of the ‘cell cycle stimulatory’

pathway from Beer’s data (Table 2). The same pathway analyzed

using GSE8894 (n=61) data yielded significant associations in

all proposed methods with the marginal exception of

Mahalanobis (P=0.0549).

Prognostic gene expression signatures for Stages II and III

colon cancers have been reported in seven papers, yielding 207

genes in total (Bandres et al., 2007; Barrier et al., 2006, 2007;

Eschrich et al., 2005; Kopetz and Abbruzzese, 2009; Lin et al.,

2007; Wang et al., 2004). The genes are enriched in 32

REACTOME pathways (False Discovery Rate (FDR)50.05,

pathway size596). We assumed the 32 pathways were valid as

ground truth to be identified and analyzed in the colon cancer

dataset GSE39585 (Stages II and III were only considered).

Average Z provided best performer (sensitivity=0.88) with 28

pathways deemed as significant. GSEA, Fisher, Euclidean and

Mahalanobis gave the following values, 0.78, 0.66, 0.06 and 0.03,

respectively.
These results satisfied us that our approach captures the fun-

damental knowledge of cancer, thus it is reasonably considered

as iPAS.
To investigate which of the candidates for iPAS most robustly

reflect phenotype association, we evaluated the proposed meth-

ods by determining whether survival-associated pathways are

validated in datasets never used for discovery using LUAD

and colon cancer [LUAD: Beer’s set n=442 for discovery,

GSE8894 (n=61) GSE3141 (n=58) for validation; colon

cancer: GSE39582d (n=443) for discovery, GSE39582v

(n=123) and GSE17536 (n=109) for validation, logrank

P50.05, comparing tumors in the top 50th percentile of aber-

rance scores to those in the bottom 50th percentile]. Validation

rates varied depending on the dataset, and these were possibly

affected by the small sample size compared with that of the

discovery set. In these cases, we were not able to determine a

superior method that outperformed the others. Average Z gave

the highest validation rate in three of four dataset with validation

rates of GSE8894 (43.6%, 92/211), GSE3141 (13.3%, 28/211)

and GSE17536 (10.7%, 24/224). When validation rates from

four datasets are averaged, Average Z gave the highest validation

rate, (21.9%, Fig. 2, blue bars). Pathways validated as signifi-

cantly associated with patient survival for each cancer are listed
Table 2. Survival analysis of ‘cell cycle stimulatory’ pathway reported by

Bryant et al. (2010)

Dataset Pathway

statistics

Coefficient P-value

Beer (N=432), Bryant et al.,

Overall survival

Average Za 0.37 0.00011

Beer (N=442)

Overall survival

Average Zb 0.62 0.00003

Fisher 0.50 0.00068

GSEA 0.65 0.00001

Euclidean 0.65 0.00001

Mahalanobis 0.67 0.00001

GSE8894 (N=61)

Recurrent free survival

Average Zb 0.90 0.01163

Fisher 0.91 0.01076

GSEA 0.78 0.02899

Euclidean 0.87 0.01544

Mahalanobis 0.68 0.05485

aDerived from mean and SD of all cancer samples in the dataset, bDerived by mean

and SD of the nRef.

Fig. 2. Averaged validation rate of discovered survival-related pathway

at four datasets. Proposed approach using nRef (blue) versus conven-

tional approach that standardizes individual sample by mean and SD

of entire cohort dataset (red)
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in the Supplementary Materials (Supplementary Tables S1

and S2).

We also investigated the validation rate of iPAS candidates

under the conditions where the same data are not standardized

by the nRef but instead standardized by the mean and SD of

the cohort dataset, which consists of only cancers (Fig. 2, red

bars). It is noteworthy that use of the nRef increased the valid-

ation rate for every iPAS candidate investigated. This implies

that the strategy of using accumulated normal samples as a

reference is beneficial in terms of pathway-based survival

analysis.

3.2 Identification of clinical importance

Cluster analysis of using Average Z as the iPAS method on

Beer’s data identified 12 pathway clusters (denoted by 1�12

in Fig. 3) and 3 sample clusters (S2�S4; S1 is from the nRef;

Fig. 3). Sample clusters S2 and S4 represent well the differen-

tiation status of LUAD (Fisher exact test, P54.65� 10–15).

Well-differentiated adenocarcinoma resembles the normal glan-

dular structure; therefore, it is a reasonable result that cluster S2

is close to the nRef. The survival outcome of S2 and S4 are

significantly different (P50.0028), and this assures us that un-

biased clustering-based iPAS has enough sensitivity to capture

clinically important associations. This finding is concordant with

prior knowledge that well-differentiated LUAD patients are

likely to have better prognosis (Barletta et al., 2010). Pathway

cluster P9 is distinguished as commonly upregulated in tumor

samples. The pathways are transfer RNA aminoacylation, amino

acid or purine synthesis, DNA elongation and the extension of

telomeres.
Unbiased pathway-based clustering of colon cancer data also

captures clinically important associations by revealing sample

clusters that are survival related (S2 and S3, P=0.0037,

Supplementary Fig. S1). It is important to note that iPAS is

not only sensitive enough to identify clinically meaningful sub-

structure of patients but also reveals common characteristics of a

cancer at the same time. For example, pathways commonly up-

or downregulated in all cancer samples, for example, P9 or P2,

would have not been discovered if the analysis had been per-

formed by a conventional approach that does not make use of

‘nRef’ (Supplementary Fig. S2).

3.3 Pathway-based identification of cancer

Cancer develops unique mechanisms for malignancy. Therefore,

it is reasonable to believe that identifying the unique molecular

aberrances of cancer will aid in cancer diagnosis. Our empirical

study of iPAS-based clustering of LUAD revealed several

pathways commonly up- or downregulated in all of the cancer

samples. Further analysis was performed to determine whether

iPAS could be successfully used in the accurate identification of

cancer. We tested this in a simple unsupervised way by judging

whether an unknown sample is significantly different against the

nRef, as a tumor, if not as normal. We performed a 5-fold cross-

validation one hundred times with the LUAD dataset, which

consisted of 120 cancers and 120 normal samples. Microarray

data from the normal samples was randomly divided into five

groups, and four of the five served as the reference group. The

remaining group was used as the true normal set for the test of

pathway-based identification of cancer. To build true cancer set

for the test, the same number of cancer sample was randomly

picked. We considered 583 pathways in REACTOME, giving

293 500 (583 pathways� 5-fold� 100 repeats) AUCs and accur-

acy values. We averaged AUCs and accuracies from the five

candidate methods for iPAS and used this as a representative

AUC and accuracy of a given pathway.

By ranking the pathways by AUC, top pathways that marked

averagely high performance by all iPAS candidates are listed

(Supplementary Table S3). The ‘amino acid synthesis and in-

terconversion and transamination’ pathway showed the highest

classification performance. Unsurprisingly, this pathway was one

of the commonly upregulated pathways in the analysis of the

Beer’s data (Fig. 3, pathway cluster P9). Among the tested

Fig. 3. Clustered iPAS of LUAD dataset. Pathways (n=583) and samples (n=442) are clustered according to iPAS. Normal samples are clustered at

left (S1). Tumors (S2�S4) deviate from normal in both up- and downregulated directions (darker red and blue, respectively). Sample clusters are well-

representing histopathological differentiation status (S2: for well-differentiated LUAD, P54.65� 10–15) and overall survival
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iPAS candidates for this pathway, Mahalanobis yielded the high-

est AUC (0.980), while Average Z gave 0.936, and Fisher’s exact

test gave the lowest value (0.914). The standardized gene expres-

sion pattern for this pathway differed between tumor and

normal. Many of the genes deviated from mean of the nRef,

by more than two orders of sigma, contributing to its best per-

formance out of all iPAS candidate methods, including ORA

method like Fisher’s exact test (Fig. 4a).

We also analyzed the influence of using the subset of normal

samples as nRef. We compared the pathway-based cancer iden-

tification results using the full set of normal samples (n=120)

against 100 different runs using 75% (n=90), 50% (n=60) of

randomly chosen normal samples. Among the pathways that

marked averagely high performance in the identification of

cancer, the best and the second best pathways are considered,

‘amino acid synthesis and interconversion and transamination’

and ‘unwind of DNA’, respectively. The result shows little loss of

performance, even though only a half of normal samples were

used for the test (Fig. 5a and b).

3.4 Validation of the discovered pathway

The ‘amino acid synthesis and interconversion and transamin-

ation’ pathway consists of 17 genes involved in three major

reactions, as it is described at REACTOME. The pathways are

responsible for (i) synthesis of three amino acids (aspartate,

asparagine, glutamate), (ii) the synthesis of glucose under fasting

conditions by using carbon atoms from these four amino acids

and (iii) conversion of amino acids to their corresponding alpha-

keto acids, coupled to their conversion to glutamate, which is the

first step in the catabolism of most amino acids.
This function makes sense in terms of the ‘glutamine addic-

tion’ of cancer cells. The nutrients glucose and glutamine are

specifically required by cancer cells as metabolites for growth

and for production of adenosine triphosphate (Munoz-Pinedo

et al., 2012). Myc and p53 have been revealed to be associated

with this ‘addiction’ by upregulating glutamine synthesis in

cancer cells. Thus, our finding is in accordance with prior know-

ledge regarding the upregulation of glutamine synthetase.

We further validated our findings with an independent set that

were not used in the discovery set. We collected two more LUAD

gene expression datasets with normal data at GEO (GSE19188,

GSE31547). Aggregated datasets of 48 microarrays from tumor

tissues and 35 microarrays from normal tissues were used for

independent validation. The pathway was also altered in a can-

cer-specific way in a validation set yielding an AUC of 0.982 by

Mahalanobis-based iPAS (Fig. 4b, Validation 1). We also as-

sessed the same validation set in a different manner by using

the nRef from the discovery set. Normal sample microarrays

from the discovery sets (GSE10082, GSE7670, GSE10072)

Fig. 4. (a) Expression pattern of genes in the pathway. Each line represents sample. (gray: normal, red: tumor). Dashed line represents expression value

deviated 1.96� from the mean expression value of normal tissues. (b). Performance of classification of cancer by ‘amino acid synthesis and intercon-

version and transamination’. AUC of 0.980 has marked in discovery set (95% confidence interval provided as error bar), independent validation set

results AUC of 0.982 (Validation 1: normal samples in validation set served as reference) and 0.982 (Validation 2: normal samples in discovery set served

as reference)

Fig. 5. Performance of pathway-based identification of cancer (AUC)

when only a subset of normal samples are served as nRef. (a) ‘amino

acid synthesis and interconversion and transamination’ (b) ‘unwind of

DNA’
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served as the nRef to classify samples in the independent valid-
ation set. The resulting AUC was 0.982 by the Mahalanobis
method (Fig. 4b, Validation 2).

In our experiments using LUAD samples, the Mahalanobis
distance, which used a pre-calculated covariance matrix from
the ‘nRef,’ gave the best performance. The usage of covariance

matrix empowers Mahalanobis to consider a cancer sample as an
outlier, delivering higher accuracy in terms of pathway-based
identification of cancer than other methods. One caution of

using Mahalanobis method is that it requires a large number
of normal samples to guarantee the estimation of covariance
matrix. For a small sample size, a structured covariance matrix

would be desirable to avoid the estimation issue.
The biological role of this identified pathway is to supply nu-

trients and energy to cancer cells. This may be the reason why

this pathway is universally aberrant in all the LUAD samples we
assessed. Our analysis of this pathway in other cancer types
demonstrated less of a role for this pathway, suggesting that it

is more LUAD specific. We believe that the common disruption
of this pathway is a novel discovery, as this pathway, consisting

of 17 genes, has not been reported as an indicator of LUAD in
any of the studies we acquired datasets from (GSE10082,
GSE7670, GSE10072), nor in a literature search with key words.

4 CONCLUSIONS

We have proposed personalized extensions to ORA- and FCS-
based pathway analysis by introducing the concept of comparing
an individual tumor with many normal samples. Exploratory

analyses of our methods with previously published survival path-
way signatures reproduced the correct survival outcomes. We
have also demonstrated that using nRef improves the validation

rate. Unbiased clustering with iPASs revealed sample clustering,
which is indicative of the cancer differentiation status of LUAD
and of different survival outcomes. Clustering also identifies

pathway characteristics from patients displaying common up-
or downregulations and subgroup-specific deregulations.
Pathways that are commonly deregulated across all cancer

patients may be useful in identifying cancer from unknown
samples. We explored the pathway-based identification of
cancer with ‘amino acid synthesis and interconversion and trans-

amination’ pathway, which is commonly upregulated in LUAD
patients. Validation using independent datasets demonstrated

that this pathway is useful in classifying LUAD and normal
lung samples.
Based on our results, we conclude that individualized pathway

scores using nRef can provide a sensitive measure of a patient’s
clinical features and can be useful for identifying cancer.
In our empirical study, Average Z performed best in highlight-

ing pathway aberrance and in further revealing clinical import-
ance. It had the best statistical power when identifying a
previously known survival-related pathway and the best aver-

aged validation rate for LUAD and colon cancer. In the path-
way-based identification of cancer, the Mahalanobis method
performed best.

An important clinical aspect of our methods is that it enables
the interpretation of a cancer case in a single patient, even if
matched normal tissue data from the same individual are

unavailable. Accumulated information of normal tissues from

a data repository will take the place of data unavailable for a
specific individual. As the data repository is growing rapidly, it is

expected that more ‘nRef’ data will be available for many

diseases in the near future. We hope that our proposed approach

can help in the personalized interpretation of tumor data and can

be a useful tool in the upcoming era of data-based personalized

medicine.
Although we have shown our results in microarray platform,

our method is applicable to different RNA expression platforms

including next-generation sequencer. Our method is also sup-

portive of various pathway resources such as KEGG, NCI

cancer pathway and Biocarta provided in the gmt format. The
R code for our methods, along with nRefs of LUAD and colon

cancer used in our study, is available at http://bibs.snu.ac.kr/ipas.
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