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Abstract: Kullback–Leibler divergence (KLD) is a type of extended mutual entropy, which is used as
a measure of information gain when transferring from a prior distribution to a posterior distribution.
In this study, KLD is applied to the thermodynamic analysis of cell signal transduction cascade and
serves an alternative to mutual entropy. When KLD is minimized, the divergence is given by the
ratio of the prior selection probability of the signaling molecule to the posterior selection probability.
Moreover, the information gain during the entire channel is shown to be adequately described
by average KLD production rate. Thus, this approach provides a framework for the quantitative
analysis of signal transduction. Moreover, the proposed approach can identify an effective cascade
for a signaling network.

Keywords: average entropy production rate; fluctuation theorem; signal transduction

1. Introduction

Kullback–Leibler divergence (KLD) is a type of generalized entropy or information quantity.
It was introduced by Solomon Kullback and Richard A. Leibler, who discussed information source
coding theory for information transmission efficiency [1]. At present, KLD finds diverse applications,
including the imaging analytical field [2,3], hydrodynamics [4], clinical laboratory tests including
electrocardiogram [5,6], network analysis [7,8] for biological applications [9], cellular biology [10],
evaluating the bioequivalence of formulations of a drug [11], and experimental design for clinical
study [12]. In this study, KLD is applied to analyze the cell information transmission, signal
transduction, mediated by the cellular biochemical reaction. In particular, the proposed approach
using Bayesian statistics [13,14], which is based on KLD, is expected to provide a novel theoretical
framework [7].

Previous studies have discussed cell signal transduction through pathways from a viewpoint
of similarity in the thermodynamic process that produces entropy [15]. Luo et al. [16] analyzed the
heat production during carbohydrate metabolism and estimated the relationship between energy
consumption and biological information from a biological metabolism perspective. Moreover, several
research studies have applied variable concepts of entropy. In biologic genome informatics, a type
of expanded Shannon entropy, such as the local Shannon-Jayne entropy, is utilized for analyzing the
correlation between a set of gene expressions [17–22]. Teschendorff et al. [20] introduced a stochastic
matrix, whose components are the normalized probabilities of the gene expressions in individual
samples; the signal entropy rate was obtained using the matrix. In the network, the maximum entropy
rate is determined by the adjacency matrix of the network [20]. For a multi-cell system, the network
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approach is useful for understanding biological signal transduction behaviors [23–25]. Recently, single
cell entropy was introduced as the analytical basis of the variable phenotypic or genotypic state of
a single cell, which is based on the assembly framework of statistical physics [26]. In another study,
using a non-Markovian approach, the mutual entropy between the stimulus and the response in
a biological system was considered in a sensory system, wherein the past trajectories are utilized to
add useful information to the present state. In a simulation conducted by Becker et al., E. coli was used
to reliably predict the concentration changes of environmental chemokines for chemotaxis [27].

Previously, the authors reported analyses of biological signal transduction based on information
thermodynamics. In these studies, a theoretical framework was developed on Shannon entropy.
However, the objective of the present study is to evaluate signal transduction efficiency of KLD in
individual steps on the actual biochemical reaction kinetics [28,29]. KLD is introduced for analysis of
signal transduction in reference to fluctuation theorem (FT) [30–33].

Signal Cascade Model

The signal events can be modeled as a cascade of modification and/or demodification cycle
reactions of proteins in a cell that are named signaling molecules. Equation (1) presents a signal
cascade model [34,35]. Here, suffixes m and j represent the number of cascades and the step number,
respectively. In this model, the signaling molecule at step 1 of cascade m, denoted by Xm1, induces
the modification of the Xm2 into Xm2* by binding the signal mediated molecule A such as adenosine
triphosphate (ATP). Subsequently, Xm2 activates Xm3 in the same manner. In this way, the signaling
molecule at the (j − 1)-th step of cascade m, denoted as Xmj−1, induces the modification of Xmj into
Xmj*. As the opposite orientation of signal, demodification of Xmj* into Xmj occurs, at the −(j − 1)-th
step of cascade m, and the pre-stimulation steady state is subsequently recovered [34]:

Xm1 + Xm2 + A↔ Xm1 + Xm2
∗ : 1st&− 1st step

Xmj−1
∗ + Xmj + A↔ Xmj−1

∗ + Xmj∗ : j− 1th &− (j− 1)th step

Xm,n−1
∗ + Xmn + A↔ Xm,n−1

∗ + Xmn
∗ : n− 1th &− (n− 1)th step

(1)

In the above model, the subscript m represents the total number of the cascade.
We introduce a priori (prior) selection probability of signaling molecule for the analysis. Here, qmj,

which represents the selection probability of inactive Xmj used in the j-th step in cascade m (forward
direction), takes the form of the j-th molecule. On the other hand, qmj*, which represents the selection
probability of active Xmj*, is used in the −j-th step for cascade m (backward direction), as follows:

qmj = X0
mj/Xm

qmj
∗ = X0

mj
∗/Xm

(2)

where,
n

∑
j=1

(
qmj + qmj

∗) = 1 (3)

Here, Xm indicates the total concentration of signaling molecules in cascade m:

Xm =
n

∑
j=1

(
X0

mj + X0
mj
∗
)

(4)
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and the total concentration of active and inactive signaling molecules is given by:

n

∑
j=1

X0
mj = Xm (5)

and
n

∑
j=1

X0
mj
∗ = Xm

∗ (6)

The total duration of cascade m, τm
0, which indicates the sum of forward and backward cascades

comprising a set of signaling molecules, is determined by:

τ0
m =

n

∑
j=1

(
X0

mτ0
mj − X0

m
∗τ0
−mj

)
(7)

In Equations (2), (5), (6) and (7), the total duration was determined using the probabilities qmj
and qmj*:

τ0
m = Xm

n

∑
j=1

(
qmjτ

0
mj − qmj

∗τ0
−mj

)
(8)

The suffix 0 represents the prior state. Here, the duration, as forward τmj
0 and backward τ−mj

0,
are defined as shown in Figure 1. The Positive and negative values are assigned to τmj

0 and τ−mj
0

corresponding to the direction of the step in the m cascade [34,35]. In the above equations, τmj
0

represents the duration corresponding to positive code length in which the active molecule Xmj*
increases in concentration. On the other hand, τ−mj

0 represents the duration corresponding to negative
code length in which the active molecule Xmj* decreases in concentration. In this manner, the duration
of individual step j-th can be represented as τmj

0 − τ−mj
0.
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Figure 1. A common time course of the j-th step for both prior and posterior cascades, indicating 
concentration Xmj*. The suffix 0 is omitted. The vertical axis denotes the concentration of signaling 
active molecule. τmj and τ−mj represent the duration of the j-th step and the reverse −j-th step, 
respectively. The horizontal line Xmj* = Xmj*st denotes the concentration of Xmj* at the steady state [35]. 
The “//” symbol on the horizontal axis indicates −τ−mj or |τ−mj| >> τmj.  

2. Results 

2.1. A Prior Probability Distribution of Signaling Molecules 

Here, the author hypothesizes that the selection of signaling molecules is equal a priori. In our 
previous studies [34,35], Shannon’s entropy Hm for m-th cascade was demonstrated. Using 
Equations (3), (5) and (6), entropy Hm0 at a priori (prior) state can be represented as: 
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Figure 1. A common time course of the j-th step for both prior and posterior cascades, indicating
concentration Xmj*. The suffix 0 is omitted. The vertical axis denotes the concentration of signaling
active molecule. τmj and τ−mj represent the duration of the j-th step and the reverse −j-th step,
respectively. The horizontal line Xmj* = Xmj*st denotes the concentration of Xmj* at the steady state [35].
The “//” symbol on the horizontal axis indicates −τ−mj or |τ−mj| >> τmj.
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2. Results

2.1. A Prior Probability Distribution of Signaling Molecules

Here, the author hypothesizes that the selection of signaling molecules is equal a priori.
In our previous studies [34,35], Shannon’s entropy Hm for m-th cascade was demonstrated. Using
Equations (3), (5) and (6), entropy Hm

0 at a priori (prior) state can be represented as:

H0
m = −Xm

(
n

∑
j=1

qmj log qmj+
n

∑
j=1

qmj
∗ log qmj

∗
)

(9)

To maximize Hm
0, using non-determined parameters αm

0, and βm
0, in reference to the constraints

established by Equations (3) and (8), let us introduce a function G.

G(qm1, qm2, · · · qmn; qm1
∗, qm2

∗, · · · qmn
∗; Xm)

= H0
m − α0

m
n
∑

j=1

(
qmj + qmj

∗) − β0
mτ0

m

= H0
m − α0

m
n
∑

j=1

(
qmj + qmj

∗) − β0
mXm

n
∑

j=1
(qmjτ

0
mj − qmj

∗τ0
−mj)

(10)

Then, we have
∂G

∂qmj
= −Xm

(
log qmj − β0

mτ0
mj

)
− α0

m − Xm (11)

∂G
∂qmj

∗ = −Xm

(
log qmj + β0

mτ0
−mj

)
− α0

m − Xm (12)

∂G
∂Xm

= −
(

n

∑
j=1

qmj log qmj + qmj
∗ log qmj

∗
)
− β0

m

n

∑
j=1

(
qmjτ

0
mj − qmj

∗τ0
−mj

)
(13)

To maximize G, the right sides of Equations (11)–(13) are equated to zero.

− log qmj = β0
mτ0

mj (τ0
mj > 0) (14)

− log qmj
∗ = −β0

mτ0
−mj (τ

0
−mj < 0) (15)

As indicated above, Equations (14) and (15) imply an important result; the coefficient βm
0 is

independent of the step number j. Therefore, Equations (14) and (15) will be utilized as a prior
probability distribution later. Therefore, from Equations (9), (14) and (15) the author has:

H0
m = Xmβ0

mτ0
m (16)

2.2. Average Entropy Production Rate in a Signal Cascade

Next, the kinetics were investigated using qm (j|j − 1), which is the transitional probability of the
j-th given (j − 1)-th step, and vm (j|j − 1), which is the transitional rate of the j-th step in a forward
signaling direction. Given j-th step, qm (j − 1|j) is the transitional probability of the (j − 1)-th step
given step j-th step. Similarly, given j-th step, vm (j − 1|j) is the transitional rate of the (j − 1)-th step in
a backward signaling direction in a given cascade. The cell system remains at detailed balance around
the steady state, the homeostasis, as follows:

qm(j|j− 1 )v0
m( j|j− 1) = qm(j− 1|j )v0

m( j− 1|j) (17)
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Therefore, the author has:

log
qm( j− 1|j)
qm( j|j− 1)

= log
v0

m( j|j− 1)
v0

m( j− 1|j)
(18)

Using kinetic coefficients for (j − 1)-th step and the reverse −(j − 1)-th step, km,j−1 and km,−(j−1)
in (1), the right side of (18) is given

log
qm( j− 1|j)
qm( j|j− 1)

= log
v0

m( j|j− 1)
v0

m( j− 1|j)
= log

km,j−1X0 ∗
m,j−1X0

mj A

km,−(j−1)X0 ∗
m,j−1X0

mj
∗ = log

km,j−1X0
mj A

km,−(j−1)X0
mj
∗ (19)

When the change of Xm,j−1* is negligible during signal transduction, relative to the fluctuation of
Xmj*, we have:

log
qm( j− 1|j)
qm( j|j− 1)

= log
km,j−1qmj A

km,−(j−1)qmj
∗ (20)

In above, we used Equation (2). Dividing the both sides of above by τmj − τ−mj and taking the
limit, the variables qmj and qmj* remain in the right side:

lim
τ0

mj−τ0
−mj→∞

1
τ0

mj−τ0
−mj

log qm(j−1|j )
qm(j|j−1 )

= lim
τ0

mj−τ0
−mj→∞

1
τ0

mj−τ0
−mj

log
qmj
qmj
∗

(21)

Using Equations (14) and (15), the author has:

lim
τ0

mj−τ0
−mj→∞

1
τ0

mj − τ0
−mj

log
qm( j− 1|j)
qm( j|j− 1)

= −β0
m

(
τ0

mj + τ0
−mj

τ0
mj − τ0

−mj

)
∼ −β0

m (22)

lim
|−τ0

mj+τ0
−mj |−>∞

1
τ0

mj − τ0
−mj

log
qm( j|j− 1)
qm( j− 1|j) = β0

m

 τ0
mj + τ0

−mj∣∣∣−τ0
mj + τ0

−mj

∣∣∣
 ∼ β0

m (23)

In above Equations (22) and (23), |τ−mj
0| is sufficiently longer than τmj

0, according to
experimental studies (Figure 1) [36–46]. Here, using an arbitrary time parameter t, the average entropy
production rate (AEPR), 〈ζmi〉 and 〈ζ−mi〉 are defined during signal transduction for τmj

0 − τ−mj
0 and

|τ−mj
0 − τmj

0|. respectively for m cascade and reverse cascade −m.

〈
ζmj
〉
,

1
τ0

mj − τ0
−mj

∫ τ0
mj−τ0

−mj

0
ζmj
(
tmj
)
dtmj (24)

〈
ζ−mj

〉
,

1∣∣∣τ0
mj − τ0

−mj

∣∣∣
∫ |τ0

mj−τ0
−mj |

0
ζ−mj

(
t−mj

)
dt−mj (25)

The fluctuation theorem (FT) states that the right sides of Equations (22)–(25) are equal to AEPR

lim
τ0

mj−τ0
−mj→∞

1
τ0

mj − τ0
−mj

log
qm( j|j− 1)
qm( j− 1|j) =

〈
ζmj
〉

(26)

lim
|−τ0

mj+τ0
−mj |−>∞

1∣∣τmj − τ−mj
∣∣ log

qm( j− 1|j)
qm( j|j− 1)

=
〈
ζ−mj

〉
(27)

and
β0

m = −
〈
ζmj
〉
=
〈
ζ−mj

〉
(28)
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Here, βm
0 has the dimension of entropy production rate and AEPRs are independent of the step

number. Subsequently, AEPRs are redefined using Equations (14), as follows:

−
〈
ζ−mj

〉
, 〈ζm〉 = −

log qmj

τ0
mj

(29)

Notably, Equations (14), (15) and (28) indicate that AEPR is consistent during signal cascade. Here,
the channel capacity is given by AEPR.

− log qmj = 〈ζm〉τ0
mj (30)

log qmj
∗ = 〈ζm〉τ0

−mj (31)

In previous our studies, a simple formulation was proposed between selection probability qmj
and duration τmj, using an arbitrary parameter, ζ, which was independent of step numbers [34,35].

2.3. Multinomial Distribution with Population Distribution

KLD was used as a measure of information gain when obtaining a posteriori (posterior) distribution
from the prior distribution in Equations (30) and (31) to a posterior distribution. Let probability qmj be
the prior distribution. Therefore, the uncertainty reduces:

Uncertainty = − log pmj −
(
− log qmj

)
(32)

We define information Dm, as the KLD of signal events in cascade m,

Dm(pm‖qm) = −Xm

n

∑
j=1

(
pmj log

pmj

qmj
+ pmj

∗ log
pmj
∗

qmj
∗

)
(33)

The above equation represents KLD, which indicates the average value of the information
obtained from data I with respect to pmj and pmj*. Consequently, KLD is known as information
gain. The maximum likelihood estimation is thought to be an estimation method that empirically
minimizes KLD.

Posterior probabilities are defined:

n

∑
j=1

[
pmj + pmj

∗] = 1 (34)

and
pmj = Xmj/Xm

pmj
∗ = Xmj

∗/Xm
(35)

In addition,

τm = Xm

n

∑
j=1

(
qmjτmj − qmj

∗τ−mj
)

(36)

Therefore, when considering the signal transduction occurs under a certain given condition,
the probability is transformed from qmj* into pmj* with minimum KLD under the given condition.
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To minimize Dm (pmj||qmj) using non-determined parameters αm, and βm in reference to the
constraints established by Equations (34) and (36), a function L was introduced to apply Lagrange’s
method to undetermined multipliers.

L(pm1, pm2, · · · pmn; pm1
∗, pm2

∗, · · · pmn
∗; Xm)

= Dm(pm‖qm)− αm
n
∑

j=1

(
pmj + pmj

∗)− βmτm
(37)

Here, the differences between αm and αm
0 and βm

0 and βm are indicative of the
signaling. Subsequently,

∂L
∂pmj

= −Xm

(
log

pmj

qmj
+ βmτmj

)
− αm − Xm (38)

∂L
∂pmj

∗ = −Xm

(
log

pmj
∗

qmj
∗ − βmτ−mj

)
− αm − Xm (39)

∂L
∂Xm

= −
(

n

∑
j=1

pmj log
pmj

qmj
+

n

∑
j=1

pmj
∗ log

pmj
∗

qmj
∗

)
− βm

(
n

∑
j=1

τmj pmj −
n

∑
j=1

τ−mj pmj
∗
)

(40)

For the minimization of L, the right hand sides of Equations (38)–(40) are equated to zero,
as follows:

− log
qmj

pmj
= βmτmj (τmj > 0) (41)

− log
qmj
∗

pmj
∗ = −βmτ−mj(τ−mj < 0) (42)

Therefore, from (41) and (42), the author has

− log pmj = βmτmj + β0
mτmj (43)

− log pmj
∗ = −βmτ−mj − β0

mτ−mj (44)

αm = −Xm (45)

Accordingly, from Equations (7), (43) and (44), KLD is given by:

Dm(pm‖qm) = −Xm
n
∑

j=1

(
pmj log

pmj
qmj

+ pmj
∗ log

pmj
∗

qmj
∗

)
= Xmβm

n
∑

j=1

(
pmjτmj − pmj

∗τ−mj
)

= βmτm

(46)

And the author has:

βm =
Dm(pm‖qm)

τm
= δm(pm‖qm) (47)

Accordingly, βm is equal to the average KLD production rate, δ(pm‖qm), during the signal
transduction and is consistent during the entire signal cascade. Therefore,

− log
pmj

qmj
=

Dm(pm‖qm)

τm
τmj(τmj > 0) (48)

− log
pmj
∗

qmj
∗ = −Dm(pm‖qm)

τm
τ−mj(τ−mj < 0) (49)
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The author defined pm(j|j − 1), which is the transitional probability of the j-th given (j − 1)-th
step, and vm(j|j − 1), which is the transitional rate of the j-th step in a forward signaling direction.
In addition, given j-th step, pm(j − 1|j) is the transitional probability of the (j − 1)-th step given step
j-th step. Similarly, given the j-th step, vm(j − 1|j) is the transitional rate of the (j − 1)-th step in
a backward signaling direction in a given cascade.

pm(j|j− 1 )vm( j|j− 1) = pm(j− 1|j )vm( j− 1|j) (50)

Likewise from (18)–(20), dividing the both sides of above by τmj − τ−mj and taking the limit,
we have:

lim
τmj− τ−mj→∞

1
τmj−τ−mj

log pm(j−1|j )
pm(j|j−1 )

= lim
τmj− τ−mj→∞

1
τmj−τ−mj

log
pmj
pmj
∗

(51)

Further, Equations (47), (50) and (51) give

lim
τmj−τ−mj→∞

1
τmj−τ−mj

log pm(j−1|j )/qm(j−1|j )
pm(j|j−1 )/qm(j|j−1 )

= lim
τmj−τ−mj→∞

1
τmj−τ−mj

pmj
pmj
∗

qmj
qmj
∗

∼ δm(pm‖qm)

(52)

In above, the author used τmj << τ−mj (Figure 1). Above Equation corresponds to the extended
FT considering KLD, and the extended channel capacity can be defined as:

Cm = lim
τ→∞

KDm(pm‖qm)

τm
= lim

τ→∞
Kδm(pm‖qm) (53)

Here, K is an arbitrary constant. If entropy unit is used, K = kB, Boltzmann’s constant. On the
other hand, in information science, K is equivalent to log2e.

3. Conclusions

Recently, theoretical analysis of the transduction capacity of biochemical signaling networks has
greatly developed [47]. In this study, KLD, the average KLD production rate, and channel capacity
based on the average KLD production rate were shown to be critical quantities that can be attributed to
the entire signal transduction step. This KLD is a tool to estimate entropy production from stationary
trajectories [48].

In this work, the author deduced simple but important relational formulae, (47)–(53). For a prior
distribution probability qmj, the author derived Equations (14) and (15) in association with FT and
source-coding theory [28]. This method was introduced in our previous study of Tsallis entropy [29].
The theoretical framework in the current study is shown in Figure 2.

Entropy 2018, 20, x  8 of 11 

lim
mj mj

1
mj mj

log
pm j 1 j 
pm j j 1 

 lim
mj mj

1
mj mj

log
pmj

pmj *

 (51) 

Further, Equations (47), (50) and (51) give 

lim
mjmj

1
mj mj

log
pm j 1 j  / qm j 1 j 
pm j j 1  / qm j j 1 

 

 lim
mjmj

1
mj mj

pmj

pmj *
qmj

qmj *

~m pm qm   

 
(52) 

In above, the author used τmj << τ−mj (Figure 1). Above Equation corresponds to the extended FT 
considering KLD, and the extended channel capacity can be defined as: 

  
Cm  lim



KDm pm qm 
m

 = lim


K m pm qm   (53) 

Here, K is an arbitrary constant. If entropy unit is used, K = kB, Boltzmann’s constant. On the 
other hand, in information science, K is equivalent to log2e. 

3. Conclusions 

Recently, theoretical analysis of the transduction capacity of biochemical signaling networks 
has greatly developed [47]. In this study, KLD, the average KLD production rate, and channel 
capacity based on the average KLD production rate were shown to be critical quantities that can be 
attributed to the entire signal transduction step. This KLD is a tool to estimate entropy production 
from stationary trajectories [48].  

In this work, the author deduced simple but important relational formulae, (47)–(53). For a prior 
distribution probability qmj, the author derived Equations (14) and (15) in association with FT and 
source-coding theory [28]. This method was introduced in our previous study of Tsallis entropy [29]. 
The theoretical framework in the current study is shown in Figure 2. 

 
Figure 2. Theoretical framework of the current study. 

In this study, uniform distribution was not applied as a prior distribution qmj before stimulus. 
As reported previously in References [34,35], the selection probability of signal molecules, qmj, can be 
described by simple formulae given by Equations (14) and (15), which illustrate the simple 
relationship between the logarithm of the probability and time elapsed between tentative 

Pre-stimulus; qmj 

Post-stimulus; pmj 

log qmj= βm
0 τmj

0 

log pmj= βm
0 τmj

0 + βm τmj 

Dm( pmj||qmj ) 

Fluctuation theorem 

τmj
0  <<τ-mj

0  

Fluctuation theorem 
τmj

 << τ-mj 

Figure 2. Theoretical framework of the current study.



Entropy 2018, 20, 438 9 of 11

In this study, uniform distribution was not applied as a prior distribution qmj before stimulus.
As reported previously in [34,35], the selection probability of signal molecules, qmj, can be described
by simple formulae given by Equations (14) and (15), which illustrate the simple relationship between
the logarithm of the probability and time elapsed between tentative modification and demodification.
Subsequent to the stimulus, the selection probability of the signal molecules are transformed into
a posterior distribution probability pmj. It is likely that the formulation of signal transformation using
KLD is more intuitive and easier to understand than using mutual entropy.

The Mitogen-activated Protein Kinase (MAPK) pathway is a multistep signal conversion step,
in which the process of modification and demodification in the entire cascade can be understood as
a repeated cycle reaction. It has been experimentally demonstrated that the demodification process
is significantly longer than the modification process, as shown in τmj << τ−mj (Figure 1), with the
former requiring a few hours for completion, while the latter achieves completion in a few minutes.
This asymmetry in the time course kinetics points to an important result pertaining the conservation
of AEPR and average KLD production rate with reference to FT. In addition, it should be noted that
in Equation (53), the channel capacity of the entire signal cascade is represented by KLD. Moreover,
the author introduced average KLD production rate in Equation (47), and the production rate was
found to be consistent during the whole cascade, which is an expanded form of AEPR conservation
during the whole cascade, as reported previously by the author [35].

In the experimental studies [36–46], the ratio of modified active type of signaling molecules was
determined by the immunoblot intensity or other corresponding data. Thus, it is possible to compute,
in principle, the channel capacity of the entire signal cascade. This can be attributed to the fact that
in most cases, extracellular substances, such as ligands, simultaneously promote the activation of
multiple cascades. Therefore, the selection of specific ligands for the given cascade is essential and
enables the measurement of the rigorous activity of the cascade. In future, such recombinant protein
ligand will be required to quantify the signal cascade accurately.

Thus, KLD and average KLD production rate may be regarded as a critical attribution of cell
signal cascade. The thermodynamic approach in this manuscript can provide a theoretical framework
for the quantitative analysis of signal transduction.
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