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Gynura procumbens (GP) is a perennial herbal medicine and food homologous plant,
which has been reported to have a good hypoglycemic effect. However, its active
components and underlying mechanism of action are not clear. Here, we aimed to
confirm the effects of GP on type 2 diabetes (T2DM) from several different aspects.
We used UPLC/Q-TOF MS to analyze the metabolic patterns, which included blood
samples of clinical subjects and db/db mice to screen for serum metabolic markers and
metabolic pathways. We also used network pharmacology to study GP targets in the
treatment of T2DM. Data from endogenous metabolites in plasma showed that two
common pathways, including glycerol phosphate metabolism and retinol metabolism,
were identified in plasma samples of the groups. Finally, Western blot analysis was used to
verify the expression of proteins in the PI3K/AKT and AGE–RAGE signaling pathways. The
protein expression of AKT, eNOS, iNS, and MAPK was significantly upregulated, and the
expression of caspase-8 and caspase-3 was significantly downregulated. Thus, our
findings indicated that GP could alleviate insulin resistance by regulating biometabolic
markers and key proteins in the PI3K/AKT and AGE–RAGE signaling pathways to
treat T2DM.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with clinical symptoms, such as
chronic hyperglycemia and insulin resistance. Uncontrolled diabetes can lead to long-term health
complications, including blindness, stroke, kidney failure, and heart disease (Veronese et al., 2019).
Referred to the latest data from the International Diabetes Federation, a significant number of
individuals with diabetes aged 20–79 years have reached 425 million worldwide, of which T2DM
accounts for 90–95% (Roden and Shulman, 2019; Zimmet et al., 2014). It has been estimated that by
the year 2045, there will be 629 million diabetic patients. At present, oral hypoglycemic drugs and
insulin injections are the main strategies that are used for the treatment of diabetes. Although
sulfonylureas and biguanides can control the blood glucose level of patients, these drugs have shown
adverse side effects in the clinic and basically have no protective effect on islet B cells (Chen et al.,
2017). Therefore, an increased number of individuals prefer to use natural products to prevent and
treat T2DM (Cortés-Martín et al., 2021).
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GP is a perennial herbal medicine and a food homologous
plant, which is a type of green vegetable. It has previously been
reported that GP has a good hypoglycemic effect, which has
accumulated rich experience in the treatment of T2DM; however,
its active components and underlying mechanism of action are
not clear (Guodong et al., 2013). In the present research, we
hypothesized that GP extracts help improve glucose tolerance and
lower the blood sugar level to a normal level and has minimal side
effects. The effect of GP is better than that of sulfonylureas and
sulfonylureas which are chemical drugs (Tan et al., 2016). The
hypoglycemic mechanism of GP involves repairing injured islet
cells and stimulating the normal secretion of hormones, thereby
inhibiting the level of α-glycosidase, which slows down the
production and absorption of glucose and increases the
synthesis of muscle glycogen in the body (Hassan et al., 2010).
The main hypoglycemic machinery of GP is likely to increase the
ability to scavenge free radicals and inhibit the damage to islet
cells, which restores the secretory function of the islet cells to a
normal level and finally plays a role in lowering blood sugar levels
(Li et al., 2020). However, whether GP has other antidiabetic
mechanisms remains to be further studied.

Metabonomics, a technique for the analysis of metabolites and
pathways in vivo (Cortés-Martín et al., 2021), provides
comprehensive and reliable information for the treatment of
T2DM. In addition, network pharmacology technology, a
virtual computer contract method, has been applied in the
research of active ingredients and potential targets of
traditional Chinese medicine successfully. In this study, we
focused on plasma metabolomics, network pharmacology
technology, and Western blot analysis to evaluate the
antidiabetic effects of GP on mice with T2DM. We aimed to
identify common metabolic pathways in T2DMmice and human
T2DM by Western blot analysis to evaluate the expression of
pivotal proteins that are involved in T2DM. The underlying
pharmacological mechanisms of GP have been revealed and
are beneficial for the clinical application of GP in the
treatment of diabetes.

MATERIALS AND METHODS

Materials
GP was collected from Jing’an County, Jiangxi Province, and
identified as Gynura procumbens (Lour.) Merr whole grass
provided by Professor Guoyue Zhong of the Jiangxi University
of Chinese Medicine was deposited in the Center of National
Medicine Resource, and Voucher specimens (accession number
JX-20170826-A) were deposited in the Center of National
Medicine Resource, Jiangxi University of Chinese Medicine,
Nanchang, China. As a control, 2-chloro-L-phenylalanine was
used, which was purchased from Shanghai McLean Biochemical
Technology Co., Ltd. (Shanghai, China). Acetonitrile and
methanol (HPLC grade) were purchased from Fisher Scientific
(Waltham, MA, United States). Formic acid (analysis grade)
was purchased from China Chemical Reagent Co., Ltd.
Primary antibodies directed against GAPDH (Abcam,
United Kingdom), AKT (Abcam, United Kingdom), eNOS

(Abcam, United Kingdom), iNS (Abcam, United Kingdom),
MAPK (Abcam, United Kingdom), caspase-8 (Abcam,
United Kingdom), and caspase-3 (Abcam, United Kingdom),
and lgG secondary antibody were purchased from Cell Signaling
Technology (Beverly, MA, United States).

Source of Patients With Abnormal Blood
Glucose
The clinical samples of the study came from the Department of
Physical Examination of the affiliated Hospital of Jiangxi
University of Chinese Medicine (Nanchang, China). The
samples were collected from September to the end of
November 2018, and the study followed the guidelines of the
Ethics Committee of the affiliated Hospital of Jiangxi University
of Chinese Medicine (JXFYLL2017103013). All volunteers were
aware of the entire process and details of the experiment and
signed informed consent. In total, 30 control cases and 30 patients
with an abnormal blood glucose level were selected.

Animals
Experimental animals were purchased from Changzhou Cavens
Experimental Animal Co., Ltd. (license No.: SCXK (Su) 2016-
0010) (Changzhou, China). Mice included 30 C57BL/KsJ-db/db
mice aged 6 to 8 weeks weighing between 20 and 22 g (db/dbmice
were derived from autosomal recessive inheritance of an C57BL/
KsJ inbred strain and were used as the T2DM model), and
another 10 were male wild-type mice of the same age. The
certificate number of this batch of animals was No.
201822505. All animals were of specific pathogen-free (SPF)
grade and were kept in the animal room in the SPF
environment of our facility. The animal room was kept on a
schedule with alternating light and dark cycles for 12 h, and all
mice were free to drink and eat. The chow was synergistic
irradiation breeding feed. The constant temperature of the
feeding environment was 25 ± 1°C, the relative humidity was
55–65%, and the indoor air circulation was maintained.

Study Design
A total of 1,750 g of fresh dried GP was weighed, refluxed, and
extracted with 5,000 ml of 70% ethanol for 1.5 h. It was repeat-
operated two times, and extracts were combined, decompressed,
and concentrated to dry. The dried extract was 241.32 g, and the
extraction rate of GP was 16.07%. GP was added to normal saline
before use, and the extract was fully dissolved and suspended by
ultrasound and was configured into a suspension of the required
concentration. After comprehensive investigation of the literature
and previous experiments, the gastric perfusion dose of db/db
diabetic mice was set to 3 g/kg. The positive drug used in this
study was metformin (MET) hydrochloride tablets with a
specification of 0.5 g/tablets. To maintain consistency, MET
tablets were placed into a 50-ml sterilized Eppendorf tube and
normal saline was added and ultrasound treatment was
performed to fully dissolve and configure a required
concentration of MET solution. Based on the clinical dose and
relevant literature reports, a dose of 0.2 g/kg MET was chosen in
this study.
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Dosage Information
After 1 week of adaptive feeding, animals were divided into
four groups with 10 mice in each group randomly. Mice in the
control and model groups received intragastric administration
of normal saline, mice in the MET group received MET
hydrochloride tablets, 0.2 g/kg, and mice in the GP group
received GP extract, 3 g/kg. The volume of administration
was 8 ml/kg.

Sample Preparation
After 5 weeks of administration, mice were fasted of water after
the last administration, orbital blood samples were obtained, and
mice were sacrificed. The blood samples were placed at room
temperature for 2 h and centrifuged in low temperature and
highly speed centrifuge for 15 min (4°C, 4,000 rpm). The
supernatants were transferred to a sterile EP tube and stored
at −80°C for serological testing. Tissue samples were placed on ice,
the abdomen was cut open, and the pancreas was separated
between the duodenum and the spleen, then the tail of the
pancreas near the spleen was quickly removed for subsequent
analysis.

Metabolomics Analysis
Sample Pretreatment
Metabolomics was performed using the plasma of 30 patients in
the clinical diabetes mellitus group and mouse plasma samples
from mice in the control, model, MET, and GP groups. Plasma
supernatants were treated with acetonitrile containing 2-chloro-
L-phenylalanine (10 μg/ml) at a ratio of 5:1 (acetonitrile: plasma
supernatant, V/V, 200 μl). Then the samples were centrifuged
(1,200 g, 15 min) at 4°C, and 10 μl of all the centrifuged
supernatants, which were evenly mixed, served as the quality
control (QC) sample. Last, samples were analyzed by LC-MS
(Wang et al., 2019).

LC-MS Analysis
A UHPLC (ESI) system (Shimadzu, Kyoto, Japan) and an AB
Sciex quadrupole time-of-flight mass spectrometer (TripleTOF®
5600, AB SCIEX, Framingham, MA, United States) were used for
LC-MS analysis. A Waters ACQUITY UHPLC BEH C18 column
(100 mm × 2.1 mm, 1.7 μm, water) was used at a flow rate of
0.3 ml/min, and the injection volume was 3 μl. The mobile phase
consisted of 0.1% formic acid (A) and acetonitrile (B), and the
gradient of the mobile phase B was as follows: 0.01–3 min,
10–20% B; 3–5 min, 20–40% B; 5–7 min, 40–60% B; 7–9 min,
60–80% B; 9–11 min, 80–90% B; 11–15 min, 90–95% B;
15–20 min, 95% B; 20–22 min, 95-5% B; and 22–25 min, 5%
B. TOF-MS and TOF-MS/MS were performed simultaneously.
The range of TOF-MS was from 50 to 1,250. When the collision
reached 40 eV, the eight most intense ions from each TOF-MS
scan were selected for TOF-MS/MS. To ensure data quality,
previously described approaches were adopted (Huang et al.,
2013; Zhang et al., 2018; Favari et al., 2020). Moreover, to
maintain data accuracy and stability, the TOF-MS was
calibrated after every five samples. Simultaneous LC-MS
analysis was performed for QC (n � 6) and plasma samples.
From QC samples, the relative standard deviations (RSDs) of the

retention times and typical peak intensities (including internal
standards) were used for the evaluation of data quality.

Data Analysis
As mentioned before, data were analyzed according to a
previously described method (Theodoridis et al., 2012). First,
Marker View 1.2.1 software was used to convert the raw LC-MS
data into the “M/Z” data file format. Before chemometric
analysis, the date obtained for each sample was normalized by
comparison with the internal standard (2-chloro-
L-phenylalanine). The detection frequencies (DFs) and relative
standard deviations (RSDs) of each group were used for data
screening. These characteristics were statistically analyzed only
when the DFs of either group reached 100% and the RSD was less
than 30%.Missing values were replaced by semi-minimum values
with rich features. To guarantee the reliability of the data quality
and model, we used the principal component analysis (PCA) and
orthogonal projection discriminant analysis (OPLS-DA)
potential energy structure. Transcriptomic and metabolomic
profiling reveals the protective effect of Acanthopanax
senticosus (Chen et al., 2021). To avoid excessive OPLS-DA
model overfitting, we used Simca-P software to the default 200
random seven cross validation and test. Choosing the OPLS-DA
model of VIP scores > 1 and p values < 0.05 features and the
human metabolome database (HMDB), the candidate
metabolites were identified. Relevant metabolic pathways were
established by integrating the small-molecule pathway database
(SMPDB)/Kyoto Encyclopedia of Genes and Genomes (KEGG)
with Metobanalyst 4.0 (Kanehisa et al., 2000; Jewison et al., 2014;
Jasmine and Jianguo, 2018). For reference compounds,
metabolites with a significant effect on metabolic pathways
that cause significant changes in plasma in the clinical diabetic
group and model mice were identified as potential biomarkers
(Bonny et al., 2011). Data were analyzed by Student’s t test. p <
0.05 was considered statistically significant.

Network Pharmacology Research
All the bioactive GP compounds were collected from the
Traditional Chinese Medicine Systems Pharmacology Database
and Analysis Platform (TCMSP, https://tcmspw.com/tcmsp.
php), (Ru et al., 2014), Integrative Pharmacology–based
Research Platform of Traditional Chinese Medicine (TCMIP,
http://www.tcmip.cn/TCMIP/index.php/Home/Index/index.
htm) (HY et al., 2019), DrugBank (https://go.drugbank.com/)
(Wishart et al., 2017), and SwissTargetPrediction (http://www.
swisstargetprediction.ch/). The components selected met the
following criteria: oral bioavailability (OB) ≥3 0%, drug-
likeness (DL) ≥ 0.18, or drug-likeness weight (TCMIP) ≥ 0.40
so as to identify as many fully active compounds as possible.
Components were used to construct a “compound–compound
target network” of GP through Cytoscape 3.7.2 (Shannon et al.,
2003). The terms “type II diabetes mellitus” and “T2DM” were
used as the keywords to retrieve disease-related genes from the
Online Mendelian Inheritance in the Man® (OMIM) database
(OMIM; https://omim.org/), GeneCards database (http://www.
genecards.org) (Stelzer et al., 2016), Therapeutic Target Database
(TTD, http://db.idrblab.net/ttd/) (Wang et al., 2020), and the
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Encyclopedia of Traditional Chinese Medicine (ETCM, http://
www.tcmip.cn/ETCM/index.php/Home/Index/index.html) (Xu
et al., 2019).

Venn analysis was performed through an online Web site
(Bioinformatics, http://bioinformatics.psb.ugent.be/webtools/
Venn/) (Kanehisa et al., 2004) to overlap GP-related targets
and selected targets of GP to further clarify the potential
mechanism of GP in T2DM treatment. Based on the
intersecting network, the plug-in “CytoHubba” (http://apps.
cytoscape.org/apps/cytohubba) (Tang et al., 2015) was used to
calculate the topological properties of nodes in the network, and
hub genes of GP were screened out in the treatment of T2DM.
Subsequently, hub genes were used for functional and pathway
enrichment analyses by means of the Database for A Gene
Annotation & Analysis Resource (Metascape, metascape.org/
gp/index.html). The compound-pathway-gene network was
built by connecting the candidate compounds, the signaling
pathways involved, and candidate targets.

Western Blot Analyses
Pancreatic tissue was lysed with PMSF buffer (Soiarbio, Beijing,
China) by means of an ultrasonic lysing instrument (30% w, 10 s,
5 s, six times; Lichen, Beijing, China). Lysates were denatured by
heating for 10 min at 100 °C and loaded onto 12.5% SDS-
polyacrylamide gels. Electrophoresis was performed at a
constant voltage (80 V) for 90 min. Then proteins were
transferred to polyvinylidene fluoride (PVDF) membranes
(Millipore, Schwalbach, Germany). Membranes were blocked
and probed with primary antibodies directed against iNS,
AKT, eNOS, caspase-3, caspase-8, and MAPK in 1:1,000,
followed by incubation with secondary horseradish peroxidase
(HPR)–conjugated antibodies (1:2,000). Finally, membranes were
incubated with an ECL kit for visualization (Yeason, Shanghai,

China). The density of each band was quantified using Image Lab
software (Qian et al., 2020).

RESULTS

Metabolic Responses of Mice to GP
Treatment
In positive and negative ion modes, the peak intensity and
retention time of typical ion peaks of QC samples are highly
overlapping (Figure 1). The data quality met the requirements for
statistical analysis, and the reproducibility of the methods was
confirmed (Theodoridis et al., 2012).

PCA is an unsupervised method to observe metabolic
differences among groups. The key metabolites of different
regulations were identified by PCA analysis of LC-MS data of
plasma samples. The PCA score map (Figures 1-A1 and B1) of
clinical plasma samples in positive and negative ion modes was
divided into two groups to show that there was a significant
difference between the control group and the diabetic group. In
the negative and positive ionmodes of mouse plasma samples, the
PCA score map (Figures 1-C1 and D1) showed that the control
group and the model group were obviously divided into two
groups, which proved that there was a significant difference
between the two groups. In addition, the GP treatment group
fell between the normal group and the model group, which
indicated that considering the overlap between groups. To
identify different metabolites in each group and maximize the
separation between groups, the supervised pattern recognition
method OPLS-DA was applied. OPLS-DA analysis in positive
and negative ion modes (Figures 1-A2 and B2) showed that the
two groups of clinical plasma samples were separated from each
other and that each group could be well gathered together; OPLS-

FIGURE 1 | PCA and OPLS-DA and permutation score plots (A1–A3): clinical plasma sample of the control and model group, ESI+; (B1–B3): clinical sample of
model and control, ESI; (C1–C3): plasma samples in mice of the control, model, and GP groups, ESI+; (D1–D3): plasma samples in mice of the control, model, and GP
groups, ESI−.
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DA analysis in negative ion and positive ionmodes (Figures 1-C2
and D2) showed that the three groups were separated from each
other and that each group could be well gathered together.

In ESI+ and ESI− modes and the signal responses of plasma
metabolites were combined to explain their distribution. The
results between every two modes indicated that there was a
significant separation in the metabolites. There was no
overfitting and there was good clustering in the samples of
each group in both the PCA plots and OPLS-DA plots. R2Y
and Q2Y were used to evaluate the quality of OPLS-DA. In this
research, the R2Y and Q2Y values were 0.713 and 0.946 in
positive ESI mode (Figure 1-A3) of clinical plasma samples
and 0.778 and 0.405 in negative ESI mode (Figure 1-B3) of
clinical plasma samples. In mouse plasma samples, the R2Y and
Q2Y were 0.988 and 0.713 in positive ESI mode (Figure 1-C3)
and 0.828 and 0.811 in negative ESI mode (Figure 1-D3). Thus,
these results suggested that the quality of the OPLS-DA model
had a high reliability.

Identification of Potential Biomarkers
In the OPLS-DA model, a VIP score > 1 and p values < 0.05 were
selected, obtained the precursor ions and MS/MS, fragments
using UPLC-QTOF-MS/MS with a high resolution, then using
the online database HMDB matched with information of
metabolites. Qualified metabolites with an error between
extracted quality value and experimental quality value of less
than 10 ppm were identified as candidate biomarkers. Finally, 67
metabolites from clinical plasma samples (Supplementary Table
S1) and 50 metabolites from db/db mouse plasma samples
(Supplementary Table S2) were identified as candidate biomarkers.

Metabolic Pathway Enrichment Analysis
Through the enrichment of 67 and 50 metabolites in the two
categories (Figure 2), a metabolism pathway with a high score
was constructed. In clinical samples, the major metabolism
pathways included in these metabolites were concluded,

namely, phenylalanine metabolism, glycine, serine, and
threonine metabolism, retinol metabolism, synthesis and
degradation of ketone bodies, beta-alanine metabolism,
aminoacyl-tRNA biosynthesis, tyrosine metabolism, and pyruvate
metabolism. In db/db mouse samples, the major metabolism
pathways included in these metabolites were concluded, namely
glycine, serine, and threonine metabolism, retinol metabolism,
pyrimidine metabolism, arginine, and proline metabolism,
tryptophan metabolism, glutathione metabolism, glycosyl
phosphatidyl inositol (GPI)-anchor biosynthesis, and sphingolipid
metabolism. The results indicated that T2DM was most affected by
the metabolic pathways glycerol phosphate metabolism and retinol
metabolism. Thus, GPmay be effective in the treatment of T2DMby
affecting these two metabolic pathways.

Network Pharmacology of GP in T2DM
Identification of Potential Targets
The STITCH, TCMSP, SwissTargetPrediction database, and
DrugBank were applied to screen out 25 types of bioactive
compounds (Supplementary Table S3) and 450 targets
corresponding to the bioactive compounds of GP. The
obtained bioactive compounds and targets were used for
constructing a compound–compound target network
(Figure 3), which consisted of 476 targets (25 bioactive
compounds and 471 predicted targets) and 1,149 interaction
edges. Among these compounds, quercetin (degree 213),
luteolin (degree 125), kaempferol (degree 125), and hyperoside
(degree 73) had the largest number of potential targets.
Furthermore, GeneCards, TTD, ETCM, and OMIM databases
were used to screen out 1,265 targets associated with T2DM (Zhu
and Hou, 2020).

Protein–Protein Interaction Network for GP in the
Treatment of T2DM and Hub Genes Analysis
Using a Venn diagram, 106 overlapped targets were screened out
as the candidate targets of GP and T2DM (Figure 4A). The

FIGURE 2 | Overview of metabolic pathway analysis (A, clinical sample): 1) phenylalanine metabolism, 2) glycine, serine, and threonine metabolism, 3) retinol
metabolism, 4) synthesis and degradation of ketone bodies, 5) beta-alanine metabolism, 6) aminoacyl-tRNA biosynthesis, 7) tyrosine metabolism, and 8) pyruvate
metabolism; (B, plasma samples in mice): 1) glycine, serine, and threonine metabolism, 2) retinol metabolism, 3) pyrimidine metabolism, 4) arginine and proline
metabolism, 5) tryptophan metabolism, 6) glutathione metabolism, 7) glycosyl phosphatidyl inositol (GPI)–anchor biosynthesis, and 8) sphingolipid metabolism.
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obtained targets were introduced into the STRING online
database (protein–protein interaction (PPI) combined score >
0.7) to construct the PPI network presented in Figure 4B,
consisting of 106 nodes and 1,796 interaction edges. Through
BisoGenet and CytoHubba analysis, based on the degree
centrality (DC), betweenness centrality (BC), closeness
centrality (CC), network centrality (NC), local average

connectivity (LAC), and screening of other indicators, a total
of 98 “hub” nodes were identified. A schematic diagram of the
screening strategy is shown in Figure 4C. To study the possible
underlying mechanism of GP in the treatment of T2DM, ClueGO
was used to analyze the abovementioned 98 hub nodes. The
results showed regulation of cell cycle G2/M phase transition,
regulation of mRNA processing, negative regulation of mRNA

FIGURE 3 | Compound–compound target network (blue nodes: predicted targets, red nodes: compound of Gynura procumbens, and purple nodes: drug of
Gynura procumbens (GP)).

FIGURE 4 |Hub genes ofGynura procumbens (GP) and type II diabetes mellitus (T2DM). (A) Venn diagram and candidate targets ofGynura procumbens (GP) and
type II diabetes mellitus (T2DM), (B) arget filtering strategy diagram of hub nodes (degree centrality (DC), betweenness centrality (BC), closeness centrality (CC), network
centrality (NC), local average connectivity (LAC)), (C) protein–protein interaction (PPI) network, and (D) Network of the top six hub genes.
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metabolic process, and predicted targets (Supplementary Figure
S1). Based on the PPI network and hub ClueGO analysis, six hub
targets were screened out: insulin (iNS), AKT serine/threonine
kinase 1 (AKT1), mitogen-activated protein kinase 1 (MAPK1),
nitric oxide synthase (NOS), endothelial (eNOS), caspase-3
(CASP3), and caspase-8 (CASP8) (Figure 4D; Supplementary
Table S4).

Revealing Compound-Pathway-Gene Network and
Analyses
According to Figures 5A,B, GO and KEGG enrichment analyses
of targets of the PPI network were performed using
bioinformatics, and a compound-pathway-gene network was
constructed (Figure 5C) to identify the potential pathway of
T2DM that different GP compounds act upon. The network
predicted that quercetin, luteolin, kaempferol, and phaseoloidin
might be potential ingredients in GP and that PTGS2, AKT,
MAPK1, TNF, INSR, IL6, MAPK8, PRKCB, NOS3, iNS, PIK3CG,
BCL2, VEGFA, EGFR, CCND1, CASP3, and FOS might be
potential targets of T2DM. The core targets were enriched in
the regulation of mRNA processing, RNA polymerase, spindle
assembly, hematopoietic stem cell differentiation, etc. The
possible biological mechanisms involve the AGE–RAGE
signaling pathway in diabetic complications, fluid shear stress,
atherosclerosis, the MAPK signaling pathway, the PI3K–AKT

signaling pathway, and HIF-1 signaling pathway; however,
in vitro and in vivo studies are needed to verify these results.

Regulation of PI3K/AKT and AGE–RAGE Signaling in
vivo
To assess the underlying mechanism of GP in T2DM, PI3K/AKT
and AGE–RAGE signaling pathways were investigated. The
PI3K/AKT signaling pathway plays a crucial role in the
regulation of glucose metabolism (Wu et al., 2021). During
insulin resistance, to ensure that the blood sugar level stays
within the normal level, islet B cells in pancreatic islets will
secrete more insulin to make up for the lack of the
hypoglycemic ability of unit insulin so as to ensure a normal
blood sugar level. With the passage of time, the function of
B cells is impaired and the compensatory ability of insulin
secretion decreases, thereby resulting in impaired glucose
tolerance and even T2DM. Hyperinsulinemia is one of the
main features of metabolic syndrome, which is closely related
to various complications of T2DM. In this study (Figure 6),
AKT, iNS, eNOS, and MAPK were downregulated in the
model group compared with the control group and
significantly upregulated in the GP and MET groups
compared with the model group. These results were in line
with the data presented in previous reports (Alghanem et al.,
2021; Cheng et al., 2021).

FIGURE 5 |Main pathways of GP for T2DM. (A) GO enrichment analysis of targets of GP (Gynura procumbens) decoction, (B) Analysis of KEGG enrichment in 20
pathways as targets of GP (Gynura procumbens) decoction, and (C) component-pathway-gene network of GP for T2DM.
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As reported, the AGE–RAGE signaling pathway is closely
associated with T2DM and inflammation (Syed et al., 2020). In
previous studies (Pan et al., 2015), it have been outlined that
AGEs could lead to insulin resistance in adipocytes through
impede insulin-mediated glucose transport and uptake (Walke
et al., 2021a). These results showed that glycated insulin plays a
part in insulin resistance by inflammatory pathways and
impairing insulin signaling through the AGE–RAGE signaling
pathway (Walke et al., 2021b). In this study, MAPK and eNOS
were upregulated, while caspase-3 and caspase-8 were
downregulated in the GP and MET groups compared with the
model group. These results were consistent with the data
presented in previous reports (Steven et al., 2017). Taken
together, these results revealed that GP relies on PI3K/AKT
and AGE–RAGE signaling to treat T2DM.

DISCUSSION

To our knowledge, this is the first study using network
pharmacology technology and applying pathway enrichment
approaches to dissect the molecular mechanisms of GP on
T2DM from a network modulation point of view (Xue et al.,
2013). The results suggested that the mechanisms of GP-treating
T2DM might be related to the regulation of several metabolic-
and disease-related signaling pathways. Based on these results, we
concluded that the results of plasma metabonomics are likely to
correspond with the network pharmacology technology results.

Moreover, based on the characteristics of multi-components
and multi-targets of traditional Chinese medicine, in this study,
using metabolomics technology, to enable high-throughput
detection of metabolites and analysis of large datasets to
identify, in thousands of metabolites, the phenotypic
contribution is the greatest (Feng et al., 2019). The data
showed that the common metabolic pathways of the clinical
serum samples and the mouse plasma samples were glycine,

serine, and threonine and retinol metabolisms. These results
were consistent with classical metabolic pathways of T2DM
reported to date (López-Hernández et al., 2019; Olsen and
Blomhoff, 2020). It has been reported that through increasing
lipid synthesis, oxidation, and sugar transport through insulin
and the affinity for insulin receptors, polyunsaturated
phospholipids could be associated with insulin resistance. On
the other hand, serum retinol binding protein 4 (RBP4) must be
combined with retinol to secrete effectively from hepatocytes, and
retinol deficiency reduces serum levels of RBP4. The decrease in
RBP4 secretion represents the decline in pancreatic function and
aggravates insulin resistance (Chang et al., 2015). To sum up, the
two metabolic pathways are all through reducing insulin
resistance, protecting islet B cells, and inhibiting inflammation
to treat T2DM. Based on these results, we concluded that the
results of plasma metabonomics corresponded with the network
pharmacology technology results. Therefore, we selected core
targets (AKT, iNS, eNOS, MAPK, caspase-8, and caspase-3) in
the PI3K/AKT and AGE–RAGE signaling pathways to verify the
expression by Western blot analysis.

Metabonomics analysis of mouse plasma after GP administration
showed that GP had a significant callback effect on 37 metabolic
components, of which the callback effect on nine biomarkers was
obviously downregulated (6,7-dihydro-12-epi-LTB4, C (16:1(9Z)/
20:5(5Z,8Z,11Z,14Z,17Z)), L-methyl acetoacetate, 9-HETE, 12-
KETE, 4′-O-methylkanzonol W, glycylglycylglycine, LysoPE (20:
5(5Z,8Z,11Z,14Z,17Z)/0:0), and PE (18:0/20:5(5Z,8Z,11Z,14Z,17Z)),
which was very close to that of the normal control group
(Figure 7). After further analysis of the callback metabolites, it
was found that both the glycerol phosphatemetabolism and retinol
metabolism were most likely to be involved in the metabolism of
glycerol phosphate and retinol. Metabonomics analysis of the two
groups of plasma samples showed that the common metabolic
pathways were glycerol phosphate metabolism and retinol
metabolism (Xiaoming and Chunrong, 2017). Through studying
targeted serum liposomes, it was found that several factors involved

FIGURE 6 | Effect of GP on protein expression in pancreatic tissue (iNS; caspase-3;MAPK; caspase-8; Akt; and eNOS) (control; model; MET; andGP). Data are expressed
as the mean ± SD. “#” represents control group vs. model group (#p < 0.05, ##p < 0.01); “*” represents GP group, MET group vs. the model group (*p < 0.05, **p < 0.01).
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in glycerol phosphate metabolism were associated with a
variety of cardiovascular disease risk factors. PC16; 0/2:0 and
visceral fat negatively correlated with visceral fat, blood pressure,
and fasting triacylglycerol, while PC14; 1/0:0 positively correlated
with visceral fat, fasting insulin, and triglyceride. When
investigating the serum metabolism group, several biomarkers
involved in glycerol phosphate metabolism were found, and GP
regulated the pathway by reducing the amount of the biomarkers in
mouse serum so as to improve the disease and reduce the blood
sugar level. In addition to the above metabolic pathways, some
disease-related signaling pathways, glycosyl phosphatidyl inositol
(GPI)–anchor biosynthesis, pyrimidine metabolism, arginine and
proline metabolism, and regulation of tryptophan channels by
inflammatorymediators were found to be regulated byGP extracts.
For other metabolic pathways related to T2DM found in this study,
we planned to study further in the future.

Traditional herbal medicine has many components and can
act on many targets. Because of the complexity of herbs, it is one-
sided to use only one method to determine the active substance
and potential mechanism of action. Therefore, it is necessary to
develop a comprehensive strategy to help people deeply
understand the overall and collaborative nature of herbal
medicine. In order to reveal the antidiabetic effect, potential
mechanism, and active components of GP, we combined
plasma metabolomics, network analysis, and Western blot
analysis successfully. The obtained results suggested that GP
has significant antidiabetic effects. The potential targets and

active components concluded, providing indispensable
information for the quality control and drug development of
GP. In addition, the network pharmacology technology
concluded that quercetin and luteolin are potential active
substances in GP for the treatment of T2DM, which provides
a basis for novel drugs to treat T2DM. Our findings provide a
novel methodological reference to reveal the active ingredients
and regulatory mechanisms of herbal medicines.

CONCLUSION

GP has great potential for treating T2DM by inhibiting insulin
resistance, promoting insulin production, protecting islet B cells,
and improving inflammation. In addition, the metabolic disorder
caused by diabetes can be partially reversed by GP treatment.
Integration pathway analysis revealed two metabolic pathways
(glycerol phosphate metabolism and retinol metabolism) and
disease-related protein signaling pathways (PI3K/AKT and
AGE–RAGE) were significantly associated with the antidiabetic
effects of GP. In addition, selecting MET as the positive control
drug, Western blot analysis results indicated that the protein
expression of AKT, eNOS, iNS, and MAPK was activated and
significantly upregulated, while caspase-8 and caspase-3 were
significantly downregulated in the GP and MET groups
compared with the model group. Our findings indicated that GP,
by regulating glycerol phosphatemetabolism and retinolmetabolism

FIGURE 7 | Relative levels of the selected 37 metabolites in the plasma of mice from the control, model, and GP groups. Data are expressed as the mean ± SD. “#”
represents control group vs. model group (#p < 0.05, ##p < 0.01); “*” represents GP group vs. the model group (*p < 0.05, **p < 0.01).
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to reduce insulin resistance, protected islet B cells and inhibited
inflammation to treat T2DM. In conclusion, our findings provide a
theoretical basis for further development and application of GP.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The studies involving humanparticipantswere reviewed and approved
by the Ethics Committee of the affiliated Hospital of Jiangxi University
of traditional Chinese Medicine (JXFYLL2017103013). The patients/
participants provided their written informed consent to participate
in this study. The animal study was reviewed and approved by the
Ethics Committee of the affiliated Hospital of Jiangxi University of
traditional Chinese Medicine (JXFYLL2017103013). Written
informed consent was obtained from the owners for the
participation of their animals in this study.

AUTHOR CONTRIBUTIONS

WG: conception and design of study, acquisition and analysis of
data, and writing—original draft preparation. HO: analysis and
interpretation of data. ML: analysis and interpretation of data.

JW: analysis and interpretation of data. XH: analysis and
interpretation of data. SY: Analysis and interpretation of data.
MH: supervision and approval of the version of the manuscript to
be published. YF: supervision and approval of the version of the
manuscript to be published.

FUNDING

This study was supported by National Key R&D Program
“Research on Modernization of Traditional Chinese Medicine”
(2017YFC1702905), National Key R&D Program of China
(2019YFC1712302), Jiangxi Science and Technology
Innovation Platform Project (20194AFD45001), Special
Projects of Local Science and Technology Development guided
by the Central Government (20192ZDD02002), Science and
Technology Plan Project of Jiangxi Province Health
Committee (20203765), and Jiangxi Province Department of
Education Project(GJJ201222). Jiangxi University of Chinese
Medicine 1050 youth talent project, “Double Hundred Plan”
for high-level Scientific and Technological Innovation Talents
in Nanchang (China).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2021.674379/
full#supplementary-material

REFERENCES

Alghanem, A. F., Abello, J., Maurer, J. M., Kumar, A., Ta, C. M., Gunasekar, S. K.,
et al. (2021). The SWELL1-LRRC8 Complex Regulates Endothelial AKT-
eNOS Signaling and Vascular Function. ELife 10, e61313. doi:10.7554/eLife.
61313

Bonny, S., Paquin, L., Carrié, D., Boustie, J. L., and Tomasi, S. (2011). Ionic Liquids
Based Microwave-Assisted Extraction of Lichen Compounds with Quantitative
Spectrophotodensitometry Analysis. Anal. Chim. Acta 707 (1-2), 69–75. doi:10.
1016/j.aca.2011.09.009

Chang, X., Yan, H., Bian, H., Xia, M., Zhang, L., Gao, J., et al. (2015). Serum Retinol
Binding Protein 4 Is Associated with Visceral Fat in Human with Nonalcoholic
Fatty Liver Disease without Known Diabetes: a Cross-Sectional Study. Lipids
Health Dis. 14, 28. doi:10.1186/s12944-015-0033-2

Chen, C., Huang, Q., Li, C., and Fu, X. (2017). Hypoglycemic Effects of a Fructus
Mori Polysaccharide In Vitro and In Vivo. Food Funct. 8 (7), 2523–2535. doi:10.
1039/c7fo00417f

Chen, R.-H., Du, W.-D., Wang, Q., Li, Z.-F., Wang, D.-X., Yang, S.-L., et al. (2021).
Effects of Acanthopanax Senticosus (Rupr. & Maxim.) Harms on Cerebral
Ischemia-Reperfusion Injury Revealed by Metabolomics and Transcriptomics.
J. ethnopharmacology 264, 113212. doi:10.1016/j.jep.2020.113212

Cheng, H.-C., Chang, T.-K., Su, W.-C., Tsai, H.-L., and Wang, J.-Y. (2021).
Narrative Review of the Influence of Diabetes Mellitus and Hyperglycemia
on Colorectal Cancer Risk and Oncological Outcomes. Translational Oncol. 14
(7), 101089. doi:10.1016/j.tranon.2021.101089

Cortés-Martín, A., Iglesias-Aguirre, C., Meoro, A., Selma, M., and Espín, J. (2021).
Pharmacological Therapy Determines the Gut Microbiota Modulation by a
Pomegranate Extract Nutraceutical in Metabolic Syndrome: A Randomized
Clinical Trial. Mol. Nutr. Food Res., e2001048. doi:10.1002/mnfr.202001048

Favari, C., Righetti, L., Tassotti, M., Gethings, L. A., Martini, D., Rosi, A., et al.
(2020). Metabolomic Changes after Coffee Consumption: New Paths on the
Block, Mol. Nutr. Food Res., 65, e2000875. doi:10.1002/mnfr.202000875

Feng, R., Sun, G., Zhang, Y., and Sun, Q., Ju, L., et al. (2019). Short-term High-Fat
Diet Exacerbates Insulin Resistance and Glycolipid Metabolism Disorders in
Young Obese Men with Hyperlipemia by Metabolomics Analysis Using
UPLCQ-TOF MS. J. Diabetes 11, 148–160. doi:10.1111/1753-0407.1282

Guodong, Z., Shusheng, Z., Qingfeng, Z., and Dongming, L. (2013). Effects of
Gynura Procumbens on the Blood Glucose and Lipid of Mice. Mod. Food Sci.
Tech. 29 (12), 2800–2804. doi:10.13982/j.mfst.1673-9078.2013.12.044

Hassan, Z., Yam, M. F., Ahmad, M., and Yusof, A. P. M. (2010). Antidiabetic
Properties and Mechanism of Action of Gynura Procumbens Water Extract in
Streptozotocin-Induced Diabetic Rats. Molecules 15 (12), 9008–9023. doi:10.
3390/molecules15129008

Huang, S.-M., Xu, F., Lam, S. H., Gong, Z., and Ong, C. N. (2013). Metabolomics of
Developing Zebrafish Embryos Using Gas Chromatography- and Liquid
Chromatography-Mass Spectrometry. Mol. Biosyst. 9 (6), 1372–1380. doi:10.
1039/c3mb25450j

Hy, X., Yq, Z., Zm, L., T, C., Cy, L., Sh, T., et al. (2019). ETCM: an Encyclopaedia of
Traditional Chinese Medicine. Nucleic Acids Res. 47 (D1), D976–D982. doi:10.
1093/nar/gky987

Jasmine, C., and Jianguo, X. (2018). MetaboAnalystR: an R Package for Flexible and
Reproducible Analysis of Metabolomics Data. Bioinformatics 24, 24. doi:10.
1093/bioinformatics/bty528

Jewison, T., Su, Y., Disfany, F. M., Liang, Y., Knox, C., Maciejewski, A., et al. (2014).
SMPDB 2.0: Big Improvements to the Small Molecule Pathway Database. Nucl.
Acids Res. 42 (D1), D478–D484. doi:10.1093/nar/gkt1067

Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A., and S, S. K. (2000). KEGG:
Kyoto Encyclopedia of Genes and Genomes. Nuclc Acids Res. 28 (1), 27–30.
doi:10.1093/nar/28.1.27

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 67437910

Guo et al. GP treating on T2DM

https://www.frontiersin.org/articles/10.3389/fphar.2021.674379/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2021.674379/full#supplementary-material
https://doi.org/10.7554/eLife.61313
https://doi.org/10.7554/eLife.61313
https://doi.org/10.1016/j.aca.2011.09.009
https://doi.org/10.1016/j.aca.2011.09.009
https://doi.org/10.1186/s12944-015-0033-2
https://doi.org/10.1039/c7fo00417f
https://doi.org/10.1039/c7fo00417f
https://doi.org/10.1016/j.jep.2020.113212
https://doi.org/10.1016/j.tranon.2021.101089
https://doi.org/10.1002/mnfr.202001048
https://doi.org/10.1002/mnfr.202000875
https://doi.org/10.1111/1753-0407.1282
https://doi.org/10.13982/j.mfst.1673-9078.2013.12.044
https://doi.org/10.3390/molecules15129008
https://doi.org/10.3390/molecules15129008
https://doi.org/10.1039/c3mb25450j
https://doi.org/10.1039/c3mb25450j
https://doi.org/10.1093/nar/gky987
https://doi.org/10.1093/nar/gky987
https://doi.org/10.1093/bioinformatics/bty528
https://doi.org/10.1093/bioinformatics/bty528
https://doi.org/10.1093/nar/gkt1067
https://doi.org/10.1093/nar/28.1.27
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The
KEGG Resource for Deciphering the Genome. Nucleic Acids Res. 32,
277D–280D. doi:10.1093/nar/gkh063

Li, Q., Zhao, C., Zhang, Y., Du, H., Xu, T., Xu, X., et al. (2020). 1H NMR-Based
Metabolomics Coupled with Molecular Docking Reveal the Anti-diabetic
Effects and Potential Active Components of Berberis Vernae on Type 2
Diabetic Rats. Front. Pharmacol. 11, 932. doi:10.3389/fphar.2020.00932

López-Hernández, Y., Lara-Ramírez, E. E., Salgado-Bustamante, M., López, J. A.,
Oropeza-Valdez, J. J., Jaime-Sánchez, E., et al. (2019). Glycerophospholipid
Metabolism Alterations in Patients with Type 2 Diabetes Mellitus and
Tuberculosis Comorbidity. Arch. Med. Res. 50 (2), 71–78. doi:10.1016/j.
arcmed.2019.05.006

Olsen, T., and Blomhoff, R. (2020). Retinol, Retinoic Acid, and Retinol-Binding
Protein 4 Are Differentially Associated with Cardiovascular Disease, Type 2
Diabetes, and Obesity: An Overview of Human Studies. Adv. Nutr. (Bethesda,
Md 11 (3), 644–666. doi:10.1093/advances/nmz131

Pan, Y., Qiao, Q., Pan, L., Zhou, D., Hu, C., Gu, H., et al. (2015). Losartan Reduces
Insulin Resistance by Inhibiting Oxidative Stress and Enhancing Insulin
Signaling Transduction. Exp. Clin. Endocrinol. Diabetes 123 (3), 170–177.
doi:10.1055/s-0034-1395658

Qian, K., Tan, T., Ouyang, H., Yang, S.-L., Zhu, W.-F., Liu, R.-H., et al. (2020).
Structural Characterization of a Homopolysaccharide with Hypoglycemic
Activity from the Roots of Pueraria Lobata. Food Funct. 11 (8), 7104–7114.
doi:10.1039/d0fo01234c

Roden, M., and Shulman, G. I. (2019). The Integrative Biology of T2DM. Nature
576 (7785), 51–60. doi:10.1089/omi.2015.0168

Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014). TCMSP: a Database
of Systems Pharmacology for Drug Discovery from Herbal Medicines.
J. Cheminform 6 (1), 13. doi:10.1186/1758-2946-6-13

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al.
(2003). Cytoscape: A Software Environment for Integrated Models of
Biomolecular Interaction Networks. Genome Res. 13 (11), 2498–2504.
doi:10.1101/gr.1239303

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., et al.
(2016). The GeneCards Suite: From Gene Data Mining to Disease Genome
Sequence Analyses. Curr. Protoc. Bioinformatics 54, 1–30. doi:10.1002/cpbi.5

Steven, S., Oelze, M., Hanf, A., Kröller-Schön, S., Kashani, F., Roohani, S., et al. (2017).
The SGLT2 Inhibitor Empagliflozin Improves the Primary Diabetic Complications
in ZDF Rats. Redox Biol. 13, 370–385. doi:10.1016/j.redox.2017.06.009

Syed, A. A., Reza, M. I., Shafiq, M., Kumariya, S., Singh, P., Husain, A., et al. (2020).
Naringin Ameliorates Type 2 Diabetes Mellitus-Induced Steatohepatitis by
Inhibiting RAGE/NF-κB Mediated Mitochondrial Apoptosis. Life Sci. 257,
118118. doi:10.1016/j.lfs.2020.118118

Tan, H.-L., Chan, K.-G., Pusparajah, P., Lee, L.-H., and Goh, B.-H. (2016). Gynura
Procumbens: An Overview of the Biological Activities. Front. Pharmacol. 7, 52.
doi:10.3389/fphar.2016.00052

Tang, Y., Li, M., Wang, J., Pan, Y., and Wu, F.-X. (2015). CytoNCA: A Cytoscape
Plugin for Centrality Analysis and Evaluation of Protein Interaction Networks.
Biosystems 127, 67–72. doi:10.1016/j.biosystems.2014.11.005

Theodoridis, G. A., Gika, H. G., Want, E. J., and Wilson, I. D. (2012). Liquid
Chromatography-Mass Spectrometry Based Global Metabolite Profiling: A
Review. Anal. Chim. Acta 711, 7–16. doi:10.1016/j.aca.2011.09.042

Veronese, N., Cooper, C., Reginster, J.-Y., Hochberg, M., Branco, J., Bruyère, O.,
et al. (2019). Type 2 Diabetes Mellitus and Osteoarthritis. Semin. Arthritis
Rheum. 49 (1), 9–19. doi:10.1016/j.semarthrit.2019.01.005

Walke, P. B., Bansode, S. B., More, N. P., Chaurasiya, A. H., Joshi, R. S., and
Kulkarni, M. J. (2021a). Molecular Investigation of Glycated Insulin-Induced
Insulin Resistance via Insulin Signaling and AGE-RAGE axis. Biochim.
Biophys. Acta (Bba) - Mol. Basis Dis. 1867 (2), 166029. doi:10.1016/j.
bbadis.2020.166029

Walke, P. B., Bansode, S. B., More, N. P., Chaurasiya, A. H., Joshi, R. S., and
Kulkarni, M. J. (2021b). Molecular Investigation of Glycated Insulin-Induced
Insulin Resistance via Insulin Signaling and AGE-RAGE axis. Biochim. Biophys.
Acta (Bba) - Mol. Basis Dis. 1867 (2), 166029. doi:10.1016/j.bbadis.2020.166029

Wang, D., Wang, Q., Chen, R., Yang, S., Li, Z., and Feng, Y. (2019). Exploring the
Effects of Gastrodia Elata Blume on the Treatment of Cerebral Ischemia-
Reperfusion Injury Using UPLC-Q/TOF-MS-based Plasma Metabolomics.
Food Funct. 10 (11), 7204–7215. doi:10.1039/c9fo01729a

Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., et al. (2020). Therapeutic
Target Database 2020: Enriched Resource for Facilitating Research and Early
Development of Targeted Therapeutics. Nucleic Acids Res. 48 (D1),
D1031–D1041. doi:10.1093/nar/gkz981

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., and Wilson, M. (2017).
DrugBank 5.0: AMajor Update to the DrugBank Database for 2018.Nuclc Acids
Res. 46, D1074–D1082. Database. doi:10.1093/nar/gkx1037

Wu, F., Shao, Q., Xia, Q., Hu, M., Zhao, Y., Wang, D., et al. (2021). A
Bioinformatics and Transcriptomics Based Investigation Reveals an
Inhibitory Role of Huanglian-Renshen-Decoction on Hepatic Glucose
Production of T2DM Mice via PI3K/Akt/FoxO1 Signaling Pathway.
Phytomedicine 83, 153487. doi:10.1016/j.phymed.2021.153487

Xiaoming, H., and Chunrong, Z. (2017). Review on the Research Progress of
Retinol Binding Protein. J. Clin. rational Drug use. 10 (2), 176–177. doi:10.
15887/J.cnkT.B-1389/r.2017.02125

Xu, H.-Y., Zhang, Y.-Q., Liu, Z.-M., Chen, T., Lv, C.-Y., Tang, S.-H., et al. (2019).
ETCM: an Encyclopaedia of Traditional Chinese Medicine. Nucleic Acids Res.
47 (D1), D976–D982. doi:10.1093/nar/gky987

Xue, R., Fang, Z., Zhang,M., Yi, Z., Wen, C., and Shi, T. (2013). TCMID: Traditional
Chinese Medicine Integrative Database for Herb Molecular Mechanism
Analysis. Nucleic Acids Res. 41, D1089–D1095. doi:10.1093/nar/gks1100

Zhang, A., Sun, H., and Wang, X. (2018). Mass Spectrometry-Driven Drug
Discovery for Development of Herbal Medicine. Mass. Spec. Rev. 37 (3),
307–320. doi:10.1002/mas.21529

Zhu, N., and Hou, J. (2020). Exploring the Mechanism of Action Xianlingubao
Prescription in the Treatment of Osteoporosis by Network Pharmacology.
Comput. Biol. Chem. 85, 107240. doi:10.1016/j.compbiolchem.2020.107240

Zimmet, P. Z., Magliano, D. J., and Herman, W. H. (2014). Diabetes: a 21st century
Chanllenge. The Lancet Diabetes & Endocriinology 2 (1), 56–64. doi:10.1136/
bmjopen-2019-029280

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Guo, Ouyang, Liu, Wu, He, Yang, He and Feng. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 67437911

Guo et al. GP treating on T2DM

https://doi.org/10.1093/nar/gkh063
https://doi.org/10.3389/fphar.2020.00932
https://doi.org/10.1016/j.arcmed.2019.05.006
https://doi.org/10.1016/j.arcmed.2019.05.006
https://doi.org/10.1093/advances/nmz131
https://doi.org/10.1055/s-0034-1395658
https://doi.org/10.1039/d0fo01234c
https://doi.org/10.1089/omi.2015.0168
https://doi.org/10.1186/1758-2946-6-13
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1002/cpbi.5
https://doi.org/10.1016/j.redox.2017.06.009
https://doi.org/10.1016/j.lfs.2020.118118
https://doi.org/10.3389/fphar.2016.00052
https://doi.org/10.1016/j.biosystems.2014.11.005
https://doi.org/10.1016/j.aca.2011.09.042
https://doi.org/10.1016/j.semarthrit.2019.01.005
https://doi.org/10.1016/j.bbadis.2020.166029
https://doi.org/10.1016/j.bbadis.2020.166029
https://doi.org/10.1016/j.bbadis.2020.166029
https://doi.org/10.1039/c9fo01729a
https://doi.org/10.1093/nar/gkz981
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1016/j.phymed.2021.153487
https://doi.org/10.15887/J.cnkT.B-1389/r.2017.02125
https://doi.org/10.15887/J.cnkT.B-1389/r.2017.02125
https://doi.org/10.1093/nar/gky987
https://doi.org/10.1093/nar/gks1100
https://doi.org/10.1002/mas.21529
https://doi.org/10.1016/j.compbiolchem.2020.107240
https://doi.org/10.1136/bmjopen-2019-029280
https://doi.org/10.1136/bmjopen-2019-029280
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Based on Plasma Metabonomics and Network Pharmacology Exploring the Therapeutic Mechanism of Gynura procumbens on Type 2 Di ...
	Introduction
	Materials and Methods
	Materials
	Source of Patients With Abnormal Blood Glucose
	Animals
	Study Design
	Dosage Information
	Sample Preparation
	Metabolomics Analysis
	Sample Pretreatment
	LC-MS Analysis
	Data Analysis

	Network Pharmacology Research
	Western Blot Analyses

	Results
	Metabolic Responses of Mice to GP Treatment
	Identification of Potential Biomarkers
	Metabolic Pathway Enrichment Analysis
	Network Pharmacology of GP in T2DM
	Identification of Potential Targets
	Protein–Protein Interaction Network for GP in the Treatment of T2DM and Hub Genes Analysis
	Revealing Compound-Pathway-Gene Network and Analyses
	Regulation of PI3K/AKT and AGE–RAGE Signaling in vivo


	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


