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Mapping protein selectivity landscapes using multi-
target selective screening and next-generation
seqguencing of combinatorial libraries
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Characterizing the binding selectivity landscape of interacting proteins is crucial both for
elucidating the underlying mechanisms of their interaction and for developing selective
inhibitors. However, current mapping methods are laborious and cannot provide a sufficiently
comprehensive description of the landscape. Here, we introduce a novel and efficient strategy
for comprehensively mapping the binding landscape of proteins using a combination of
experimental multi-target selective library screening and in silico next-generation sequencing
analysis. We map the binding landscape of a non-selective trypsin inhibitor, the amyloid
protein precursor inhibitor (APPI), to each of the four human serine proteases (kallikrein-6,
mesotrypsin, and anionic and cationic trypsins). We then use this map to dissect and improve
the affinity and selectivity of APPI variants toward each of the four proteases. Our strategy
can be used as a platform for the development of a new generation of target-selective probes
and therapeutic agents based on selective protein-protein interactions.
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defining characteristic of protein-protein interactions
(PPIs) is the binding selectivity landscape of the inter-
acting proteins! =3, which relates the amino acid sequence
to the affinity of a protein toward its target. Comprehensively
mapping this landscape is crucial both for understanding the
mechanisms and evolutionary origins of selective PPIs and for
protein engineering purposes, e.g., for designing selective binders
and/or inhibitors for target proteins*~’. The binding selectivity
landscape of each protein in a certain PPI is characterized by the
interfacial residues of the protein, such that point mutating these
residues can help determine the contribution of each residue to
target selectivity—or in a protein with a broad selectivity spec-
trum to the selectivity of the protein to each of its putative targets
individually. The binding selectivity landscape usually comprises
of four types of key interface residues. Hot-spot residues are a
few® interface residues that are highly relevant for a specific PPI,
i.e., they contribute almost 75% of the total free energy of binding
(AAGying) of the protein to its partner®-!1, Mutating hot-spot
residues therefore decreases the affinity of the protein to a specific
partner—but not necessarily to others. Cold-spot residues!>12-14
are interface residues occupied by suboptimal amino acids, such
that mutating them increases the binding affinity of the protein to
a specific partner. Selectivity-switch residues'>!® are interface
residues in which a point-mutation simultaneously decreases the
affinity of the protein to one partner and increases its affinity to
another. Finally, correlated-selectivity residues!”!3 are interface
residues that work together to increase the selectivity of the
protein to one specific partner. Such residues are especially dif-
ficult to characterize with conventional methods because only a
double mutation (one mutation in each residue) can change the
affinity of the protein to a certain partner.

Methods for mapping protein selectivity landscapes typically
include mutating candidate residues and testing the resulting
changes in affinity®!. Despite considerable advancements in
recent years®20-22, currently available methods still demonstrate
several caveats that hinder our ability to develop, inter alia,
selective inhibitors for clinically important proteins. For instance,
alanine scanning and similar classical approaches?>~2° can test
only a subset of all possible mutants, are time-consuming and
laborious, require protein purification and binding affinity mea-
surements for each mutant, and most importantly, focus chiefly
on hot-spot residues. Modern approaches can overcome some of
these caveats by employing protein library display and sorting
technologies, which rapidly explore all possible (hot- and cold-
spot) mutations and qualitatively map the contribution of each
residue to the affinity of a protein toward its target39-37. However,
as only several hundred clones of the sorted libraries are ulti-
mately sequenced, these methods do not comprehensively char-
acterize the entire library and, to date, they cannot identify
correlated-selectivity residues. A more recent approach employed
next-generation sequencing (NGS) to guide protein and synthetic
small-molecule optimization®738-42, effectively improving the
binding affinity and selectivity, and generating binding epitopes
de novo®7-19:40:41:43.44 However, this and most other currently
available approaches generate high-affinity (but not necessarily
selective) binders, and, in the few studies designed to generate
selective binders”40:41:4344 " the methodology was limited to
improving discrimination between only two target proteins that
have different binding epitopes. Significantly, some broad-
spectrum proteins may have many potential targets with bind-
ing epitopes that have high-sequence homology and structural
similarity.

In the current study, we present a novel, single-step approach
for comprehensively mapping the binding selectivity landscape of
proteins (including hot-spot, cold-spot, selectivity-switch,
and correlated-selectivity residues) using a combination of

experimental multi-target selective library screening and in silico
NGS analysis. To test our approach in a real-life context, we chose
to map the binding selectivity landscape of a broad-spectrum
trypsin inhibitor, namely, the human amyloid protein precursor
inhibitor (APPL; a member of the human Kunitz-domain family
of serine protease inhibitors#°), to each of the four human serine
proteases—Kkallikrein-6 (KLK6), mesotrypsin, anionic trypsin,
and cationic trypsin—all of which share high-sequence homology
and structural similarity. Then, we used this landscape to improve
both the selectivity and affinity of APPI variants to each protease,
which we evaluated through inhibition studies using the purified
proteins.

We recently used a yeast-surface display (YSD) platform—a
powerful directed evolution protein engineering technology>0:46-
20_to generate APPI-3M°!: a triple-mutant APPI (M17G/I18F/
F34V) whose affinity to mesotrypsin, anionic trypsin, and catio-
nic trypsin is comparable [K;=89.8+0.23 pM, 1.47 £0.02 pM,
and 4.96 + 0.25 pM for mesotrypsin, anionic trypsin, and cationic
trypsin, respectively!], whereas its affinity to KLK6 is lower by
three orders of magnitude [K; =1.09 +0.12 nM>1]. These features
render APPI-3M an optimal model scaffold for engineering
binding selectivity; its lack of selectivity toward mesotrypsin,
anionic trypsin, and cationic trypsin is a good starting point for
manipulating its relative selectivity, while its lower selectivity
toward KLK6 makes it a good target for engineering selectivity
switches.

Our study design is demonstrated in Supplementary Figure 1.
We began by generating a yeast-displayed APPI-3M library
including clones with single-residue random mutations in the
binding interface (i.e., in the APPI binding loop) and clones with
multiple-residue random mutations both within and beyond the
binding interface (i.e., in the APPI scaffold and binding loop).
Then, we divided the four proteases into combinatorial pairs (six
combinations) and sorted the YSD APPI-3M library for variants
with differential selectivity toward each protease in each pair. We
then used NGS to sequence these fractions and analyzed them
computationally. Consequently, the sorted APPI-3M mutant
library fractions were rich in affinity- and selectivity-enhancing
mutations; of these, we identified the most highly selective APPI
mutations based on their ability to inhibit—as soluble proteins—
each of the four proteases. To the best of our knowledge, this is
the first report of a platform that can provide such a rich PPI
binding selectivity landscape.

Results

Selecting APPI variants with improved selectivity. We began by
generating a library of APPI-3M clones using both site-directed
random mutagenesis of the APPI-3M binding loop (residues
11-18, except invariant Cys-14) and error-prone PCR amplifi-
cation of the entire coding sequence. This design yielded a ‘naive’
APPI-3M library of 3.5 million variants, each with 0-2 amino
acid mutations. Then, using our YSD system, we expressed each
of these variants on the surface of yeast cells and used
fluorescence-activated cell sorting (FACS) to quantify their
binding to each of the four (soluble) serine proteases (meso-
trypsin, KLK6, anionic trypsin, and cationic trypsin). We intro-
duced the yeast-displayed naive library to pairs of serine
proteases, each labeled with a different fluorescent dye (Alexa
Fluor-650 or Alexa Fluor-488; i.e., a pairwise selective screen,
Fig. 1a), at concentrations optimized for each pair to achieve an
equivalent distribution of staining intensities (Fig. 1b). The library
was sorted to isolate ~1 million variants per sorted fraction
(sorting gate), with increased selectivity toward each of the four
serine protease targets versus its paired protease. Subsequent
FACS analyses showed clear enrichment of the binding
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Fig. 1 Yeast-surface display of APPI-3M. a Schematic drawing of the pairwise selective screen using the YSD system. A naive library of mutated APPI-3M
variants was displayed on the yeast cell surface and presented to pairs of proteases. Each protease in the pair (denoted A or B) was labeled with a different
fluorescent dye—Alexa Fluor-650 or Alexa Fluor-488 (represented by green and blue stars, respectively). b Pairwise selective screen. Flow cytometry
sorting was used to screen the library to isolate APPI-3M variants, with enhanced selectivity toward each of the four serine proteases (Meso: mesotrypsin;
KLK6; Anionic: anionic trypsin; Cationic: cationic trypsin). In each sort, two variant populations were collected inside the black gates, yielding sorted library
populations of protease-selective APPI-3M variants. Green and blue colors represent a high and low cell densities, respectively

population for each individual protease (Supplementary Fig-
ure 2), confirming selectivity improvements of the sorted library
fractions.

Mapping hot and cold spots and selectivity switches. To map
the binding selectivity landscape of APPI-3M to each of the four
serine proteases, we used Illumina Miseq to perform a high-
throughput sequencing of APPI-3M gene fragments from the
sorted and naive libraries. We then used this sequencing data to
identify single and double amino acid substitutions in the APPI-
3M sequence that had modulated its selectivity toward each of the
four serine proteases. In each sorted fraction, the average number
of read pairs per sequenced library was 1 million; of these, 95% of
the sequenced read pairs passed quality filtering and integration
and were thus translated to amino acid sequences and aligned to
the sequence of APPI-3M. Because we were only interested in
amino acid substitutions (and not in insertions or deletions), we
analyzed only sequences of the same length as that of APPI-3M
and determined a threshold value of 100 reads for variants with a
single-amino acid substitution and 10 reads for variants with a
double-amino acid substitution. To correlate between the abun-
dance of a variant and its target selectivity, we determined the
enrichment ratio of each variant, which we defined as the fre-
quency of a certain mutation in the sorted library fraction divided
by the frequency of that mutation in the naive library. Thus, we
assumed that mutations that increase the selectivity of each var-
iant to its putative target (mesotrypsin, KLK6, anionic trypsin, or
cationic trypsin) will be more abundant in the sorted library
fraction than in the naive library (enrichment ratio >1), while
mutations that decrease selectivity will be less abundant in the
sorted library than in the naive library (enrichment ratio <I).
We first characterized the effect of single-amino acid substitu-
tion on target selectivity. To this end, we created a heatmap for
each sorted library fraction (Fig. 2 and Supplementary Figure 3),
using the enrichment ratio as a measure of binding selectivity.
Then, we used this map to identify (i) hot spots, defined as APPI-
3M residues, in which most mutations decreased the binding
selectivity to one target protease versus another, (ii) cold spots, in
which most mutations increased the binding selectivity; and (iii)
selectivity switches, in which a single mutation decreased the

selectivity to one target protease and increased the selectivity
toward another.

Our analysis revealed that residue 15 in APPI-3M is a general
hot spot for binding human serine proteases, as all mutations in
this residue, except a substitution to Lys, decreased its binding
affinity toward all four proteases (Fig. 2 and Supplementary
Figure 3). The analysis also revealed two clear cold spots: most
mutations in residue 13 increased binding selectivity toward
mesotrypsin versus all other proteases (Fig. 2a and Supplemen-
tary Figure 3A, dashed line), while most mutations in residue 17
increased binding selectivity toward KLK6 versus all other
proteases (Fig. 2b and Supplementary Figure 3B, dashed line).
These two selectivity-switch residues (13 and 17) enable a
selectivity shift from three proteases toward a single, different
protease (either mesotrypsin or KLK6). In addition, most
mutations in residue 17 increased the selectivity of APPI-3M
toward anionic trypsin and cationic trypsin as compared with
mesotrypsin (Fig. 2c, d and Supplementary Figure 3C and D,
lower dashed line), while most mutations in residues 11 and 18
increased the selectivity toward anionic trypsin and cationic
trypsin as compared with KLK6 (Fig. 2c, d and Supplementary
Figure 3C and D, upper dashed line). For example, we found that
residues 11 and 17 are selectivity switches for mesotrypsin and
KLKS, respectively (Fig. 2, Supplementary Figure 3 and Table 1),
as mutating the residue in position 11 (originally Thr) from His
to Ile (Fig. 2a, d, white arrows) switched the selectivity from
anionic trypsin to mesotrypsin by a factor of 69x 103 and
mutating the residue in position 17 (originally Gly) from Glu to
Arg (Fig. 2b, ¢, black arrows) switched the selectivity from
cationic trypsin to KLK6 by a factor of 7 x 103,

Mapping correlated-selectivity residues. Next, we turned to
identify the effects of double-amino acid substitutions in APPI-
3M on the selectivity toward each of the four serine proteases.
The first steps in this process (quality filtration and integration,
translation, alignment, and enrichment ratio calculations) were
similar to those described above for single-amino acid analyses.
Most double-mutant APPI-3M variants that increased the selec-
tivity toward one serine protease versus all others increased the
selectivity toward KLK6 [note that the affinity of the parental
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Fig. 2 Single mutation selectivity landscape of APPI-3M. The colors in the heatmaps indicate the enrichment ratio (defined as the frequency of a certain
mutation in the sorted library divided by its frequency in the naive library) and represent the effect of a single-amino acid substitution on APPI-3M
selectivity toward one serine protease (a: mesotrypsin, b: KLK6, ¢: cationic trypsin, and d: anionic trypsin) versus the other three. The different colors of the
heatmaps correspond to the scale shown on the right of each panel and indicate log2 of the enrichment ratio [yellow and red: positive (increased
selectivity); green: negative (decreased selectivity)]. The position of the substituted amino acid is shown on the X axis and the substituting amino acid is

shown on the Y axis. Meso: mesotrypsin; Cationic: cationic trypsin; Anionic:

APPI-3M to KLK6 was two orders of magnitude lower than to
anionic and cationic trypsin and one order of magnitude lower
than to mesotrypsin®!], and these variants had mutations in
residues 11 and 17 (Supplementary Table 1). To elucidate the
effects of correlated residues and of residues 11 and 17 (Fig. 3c),
in particular on the selectivity toward KLK6, we predicted the
total effect of each pair of mutated residues (i.e., the effect of all
mutations in these two residues; see Methods) and illustrated the
results as heatmaps (Fig. 3a and Supplementary Figure 4). Var-
iants in which both residues 11 and 17 were mutated demon-
strated an increased selectivity (enrichment ratio >1) toward
KLK6 versus the three other proteases. Therefore, we generated
additional heatmaps to estimate the effect of specific pair residues
(all pair combinations of residues 11 and 17, Fig. 3b). These
heatmaps (Fig. 3b) revealed that many combinations of double-
amino acid substitutions increased the selectivity toward KLK6

anionic trypsin. See Supplementary Figure 3 for further details

versus the three other proteases, including a combination of
either Val, Ala, Pro, or Ser at residue 11 with either Ala, Arg, or
Ser at residue 17 (enrichment ratio >1). For instance, the com-
bination of Val at residue 11 and Arg at residue 17 increased the
total selectivity of APPI-3M toward KLK6 by a factor of 4 x 10°
(calculated as the multiplication of the three relative selectivities:
~59 x 103-fold versus mesotrypsin, ~364-fold versus cationic
trypsin, and ~170-fold versus anionic trypsin; Supplementary
Table 2). Similarly, the combination of Ser at residue 11 and Arg
at residue 17 increased the total selectivity by a factor of 7 x 107
(~37 x 103-fold versus mesotrypsin, ~24-fold versus cationic
trypsin, and ~85-fold versus anionic trypsin).

Validating the selectivity changes using soluble inhibitors. To
validate the results of the NGS computational analysis, we
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Table 1 Selectivity of APPI-3M variants with mutations at selectivity-switch residues toward human serine proteases

Mutation Target A Target B Enrichment ratio, target A Enrichment ratio, target B Selectivity?
T1H Mesotrypsin Anionic trypsin 0.07 7.39 1

T 591 0.01 69.22 x 103
G17E KLK6 Cationic trypsin 0.12 4.88 1

G17R 12.50 0.08 6.65 x 103

aSelectivity is defined as the fold change in the enrichment ratio for target A, divided by the fold change in the enrichment ratio for target B

generated and purified the soluble forms of APPI-3M variants, in
which the mutation was located at selectivity-switch residues on
the APPI loop (Supplementary Figure 5). These variants included
the mutations T11I (for which the NGS analysis predicted a
selectivity switch from anionic trypsin to mesotrypsin), T11H
(predicted switch from mesotrypsin to anionic trypsin), G17R
(predicted switch from cationic trypsin to KLK6), and G17E
(predicted switch from KLK6 to cationic trypsin) (Table 1). Then,
we evaluated the affinity of these four purified APPI-3M variants
to each serine protease by measuring the degree to which they
inhibit the ability of each protease to hydrolyze its substrate
[benzyloxycarbonyl-Gly-Pro-Arg-p-nitroanilide (Z-GPR-pNA)
for mesotrypsin, anionic trypsin, cationic trypsin, and
BOC-FSR-MSC for KLK6]. We determined the inhibition con-
stant (K;) of each of these interactions by quantifying the slow
tight binding behavior (Supplementary Figure 6). The experi-
mental results indeed correlated well with those of the NGS
analysis (Table 2).

Positions 11 and 17 in the APPI-3M sequence are correlated.
As residues in positions 11 and 17 of the APPI-3M sequence
increased the selectivity of APPI-3M toward KLK6, we elucidated
the interactions between different amino acids at these positions
by generating and purifying representative single- and double-
mutant APPI-3M variants. We chose the KLK6-selective T11V/
G17R and T11S/G17R double-mutant variants (see Fig. 3), and
their corresponding single-mutant selectivity-switch variants
T11V, T11S, and G17R (see Tables 1 and 2). We tested the
affinity of the soluble forms of these five variants to each of the
four serine proteases in a competitive inhibition assay (Table 3)
and, based on the extracted K; values, we determined the selec-
tivity of each variant toward KLK6 and compared it with the
selectivity of the unmodified APPI-3M (Table 4).

The amino acid substitution that most increased the total
selectivity of APPI-3M toward KLK6 was T11V/G17R, followed
by G17R and finally, T11S/G17R. The individual substitutions
T11V and T11S did not improve the selectivity toward KLK®6,
rather they somewhat decreased it (Table 4). These results suggest
that residues 11 and 17 are correlated-selectivity residues, which
act together to increase target selectivity. To further test this
hypothesis, we conducted a double-mutant cycle analysis®2, in
which we used the selectivity values of KLK6 with the two double-
mutant variants and their single variants (T11V/G17R, T11S/
G17R, T11V, T11S, and G17R, Table 4) to calculate the selectivity
strength between two mutated residues (i.e., the coupling energy,
AAG;,; Supplementary Figure 7). Indeed, in both double
mutations, the AAG;,, values were non-zero, indicating that
residues 11 and 17 interact with each other to cooperatively affect
the selectivity toward KLK6.

To gain insight into the structural basis of the observed
selectivity changes, we attempted to crystallize the APPI-3M-
T11V/G17R variant in complex with the increased-selectivity
target KLK6 and the reduced-selectivity target mesotrypsin. We
were able to obtain a high-resolution crystal structure of the
APPI-3M-T11V/G17R variant bound to mesotrypsin (PDB ID:

6GFI; Supplementary Table 3). A structural analysis of this
complex revealed that a deleterious steric interaction between the
APPI Arg-17 mutation and mesotrypsin Arg-193 pushes Arg-193
into a more buried conformation (Supplementary Figure 8), as
previously found in the structures of mesotrypsin bound to wild-
type APPI or BPTI Kunitz-type inhibitors®>>>*. The steric clash
and the restriction of Arg-193 to a single buried conformation
can explain the reduction in affinity toward mesotrypsin, which is
consistent with our prior structure and mutagenesis studies!>>.
The corresponding amino acid that occupies position 193 in
KLK6 is Gly (PDB ID: 4D8N); therefore, the lack of a side chain
in position 193 of KLK6 is probably more energetically favored
(upon binding to APPI-3M-G17R) than that of mesotrypsin Arg-
193 (due to the steric clash and the restriction of Arg-193). Efforts
to crystallize the APPI-3M-T11V/G17R complex with KLK6 were
unsuccessful, and thus the basis for selectivity improvements
toward this alternative target, and for cooperativity between APPI
residues 11 and 17, remain a subject for future investigations.

Selective screens are superior to affinity screens. A significant
advantage of our pairwise selectivity screen approach over the
traditional sequential affinity screen (a commonly used method,
in which the library is sorted against each enzyme separately in a
sequential manner®43) is the ability of our approach to identify,
in a single screening step (rather than two sequential affinity
screen steps), the top ~5% of clones that are more selective
toward one target versus another, even if the absolute affinity of
these clones toward both targets is lower than that of the parent
variant (in the current study, APPI-3M). To demonstrate that the
traditional sequential affinity screens are unable to detect the
clones obtained by our pairwise selectivity screens (namely, those
with improved selectivity and low affinity), we performed two
separate sequential affinity screens, one toward KLK6 and
another toward cationic trypsin (Supplementary Figure 9A, B, D,
E). As expected, both the sequential affinity and the pairwise
selectivity screen approaches were able to identify the G17R
mutation as a KLK6 selectivity-improving mutation (Supple-
mentary Table 4), which is consistent with the 1.7-fold
improvement in the selectivity toward KLK6 versus cationic
trypsin, measured by the enzymatic assay (Supplementary
Table 5). In contrast, we were unable to identify the selective
G17E mutation by using the sequential affinity approach (Sup-
plementary Table 4), although it was clearly identified using the
pairwise selectivity screen between KLK6 and cationic trypsin
(Supplementary Table 4), demonstrating a 3.4-fold improved
selectivity toward cationic trypsin, as measured by the enzymatic
assay (Supplementary Table 5). This discrepancy between the two
approaches stems from the fact that the G17E mutation was not
in the top ~5% binders in the cationic trypsin and KLK6 sorts due
to its weakened affinity toward cationic trypsin and KLK6 relative
to the parental molecule APPI-3M (by ~4-fold and ~10-fold,
respectively, Supplementary Table 5).

Upscaling. Our selective pairwise screening approach can be easily
scaled up for multiple target proteins per screen, such that a library
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Fig. 3 Double mutation selectivity landscape of APPI-3M. Heatmaps demonstrating the effect of double-amino acid mutations in APPI-3M on the
selectivity toward KLK6 versus the three other serine proteases. a The effect of different pairs of mutated residues on selectivity is illustrated by the colors
of the heatmaps (red = increased selectivity, enrichment ratio >1; blue = decreased selectivity, enrichment ratio <1). The contribution of each double
mutation to selectivity was summed and the maps demonstrate the overall effect. The X and Y axes indicate the position of the substituted amino acid
residues. See Supplementary Figure 4 for further details. b The effect of different amino acid mutations at residues 11 and 17 of APPI-3M on its selectivity
toward KLKS6, illustrated by the colors in the heatmaps. The X axis indicates amino acids mutated at residue 17 and the Y axis indicates amino acids
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can be screened against a target of interest (labeled with one type of
fluorophore) versus a mixture of competitors (all labeled with the
same fluorophore, which is different from the one used for the
target of interest). Such an approach is especially useful in the case
where there is a single primary target of interest, since it will be
completed through only a single sort. To demonstrate the feasibility
of such an approach, we performed a competitive sort, in which
KLK6 was the primary target of interest (labeled with Alexa Fluor-
650) and cationic trypsin, anionic trypsin, and mesotrypsin (each

labeled with Alexa Fluor-488) were the competitors (Supplementary
Figure 9C, F), and compared the enrichment values to those of our
pairwise comparisons. The enrichment ratios of the competitive
multi-target screen were highly correlated with those of the pairwise
selective screen; in both setups, the top-rated selectivity-improving
clones were similar (Supplementary Table 6), both for single
mutations (e.g, G17R) and for double mutations (e.g., T11S/G17R
and T11V/G17R). In addition, this analysis revealed a clear selec-
tivity cold spot, in which most mutations in residue 17 increased the

NATURE COMMUNICATIONS | (2018)9:3935| DOI: 10.1038/541467-018-06403-x | www.nature.com/naturecommunications


http://dx.doi.org/10.2210/pdb5C67/pdb
www.nature.com/naturecommunications

ARTICLE

Table 2 Changes in the selectivity of APPI-3M variants with mutations at selectivity-switch residues toward human serine

proteases

Mutation Target A Target B Predicted switch?® K; [pM], target AP K; [pM], target B? Switch ratio®
T1MH Mesotrypsin Anionic trypsin A ->B 302 + 24 4.45+0.23 1.6

T B -—>A 61.2 £ 2,62 1.44+£0.14

K; Fold changed — — — 4.93 3.09 —

G17E KLK6 Cationic trypsin A ->B 464 + 39 858+5.9 5.7

G17R B ->A 774 £ 26 8.12 + 0.08

K; Fold change® — — 59.95 10.57 —

aAs predicted by the NGS analysis
bResults (means * SD) were obtained from three independent experiments
CCalculated as the K; fold change for target A divided by the K; fold change for target B

. ;K foldfortarget A
Switch ratio = ¥ Cistortargers

9K, (TIH)/K; (T111)
eK; (G17E)/K; (G17R)

Table 3 K; constants of human serine proteases inhibited by
various APPI-3M variants
Mutant aK; [pM1

Mesotrypsin Anionic Cationic KLKé

trypsin trypsin

Unmodified 98.0 £1.0 226 +0.08 225+0.6 36210
APPI-3M
TNV/G17R 494 + 28 092 +0.07 237017 164 +£09
TNS/G17R 1060 £ 30 298 £ 019 72505 124 %13
T11S 581 +7 116 £ 0.09 7.63 £ 0.55 1000 + 60
™mv 65.0 £ 1.0 372021 141+x 05 378 £ 9
G17R 676 + 8 358+ 0.16 812+0.08 77426
@Results (means + SD) were obtained from three independent experiments

binding selectivity toward KLK6 versus all other proteases (Sup-
plementary Figure 3E). This finding is consistent with those
obtained using the pairwise screening approach (Supplementary
Figure 3B).

Discussion

We describe a novel strategy for mapping the binding selectivity
landscapes of proteins through a combination of experimental
multi-target selective library screening and in silico next-
generation sequencing analysis. Employing the APPI/serine pro-
tease system as a model PPI, we show that our strategy can be
used to map, in a rapid, single-step, cost-effective process, several
crucial aspects of the selectivity landscape, including hot-spot
residues, selectivity switch residues, and correlated-selectivity
residues. The latter are of special importance, as characterizing
correlated-selectivity mutations and analyzing their effects (both
individually and combined) on target affinity and selectivity is
challenging with currently available approaches?”-°,

Several previous studies have combined selective screening of a
protein library and NGS analyses to map the binding landscape of
various proteins, including influenza inhibitors (HB36.4, HB80.3)7,
the human Yes Associated Protein 65 (hYAP65) WW domain!®,
and an anti-VEGF antibody*’. However, these approaches
employed either libraries of clones with only single mutations or
library screens that were performed against only a single target.
Therefore, in these previous studies, it was difficult to identify
mutations that change target selectivity or that work in concert to
affect target affinity and selectivity in a correlated manner. Thus, a
major advantage of our approach is its ability to identify correlated-
selectivity mutations. For example, we found that the mutations
TI11V and GI17R, when combined, yield a highly potent and

selective inhibitor for KLK6, while combining the mutations T11S
and G17R vyield only a moderately potent and partially selective
inhibitor for KLK6. These findings may suggest that a small and
hydrophobic amino acid (e.g., Val in position 11) exerts a stronger
effect on selectivity towards KLK6 than a small and polar amino
acid (Ser in position 11).

Another advantage of our approach lies in using a pairwise
selectivity screen, rather than the sequential affinity screen that is
commonly used in other approaches?%43, to increase selectivity.
This advantage is especially noticeable for the identification of
clones that are selective but have distinct affinities toward both
targets that are lower than that of the parent variant (in the
current study, APPI-3M), as demonstrate in Supplementary
Table 4. In addition, the pairwise screening approach can be
easily scaled up for multiple target proteins per screen, such that a
library can be screened against a target of interest versus a mix-
ture of competitors. Such an approach is especially useful where
there is a single primary target of interest, since it will be com-
pleted with only one sort, as demonstrate in Supplementary
Table 6.

We chose the serine protease family as an ideal group of targets
to demonstrate our strategy mainly because inhibiting the human
serine proteases is of clinical value: both KLK6 and mesotrypsin
are involved in cancer progression®’~>°, while anionic and
cationic trypsins are involved in the etiology of pancreatitis®%°l,
However, the development of inhibitors capable of discriminating
among trypsin-like proteases has been challenging. We and
others have previously used X-ray crystallography to explore the
structures of these proteases, in some cases identifying the dis-
tinguishing features that suggest the potential for developing
highly selective inhibitors>»%293, For example, several adaptive
mutations have been shown to shape the active site of meso-
trypsin  for  distinct substrate and  inhibitor-binding
selectivity>»63-6> Nevertheless, the development of truly selec-
tive inhibitors has yet to be achieved, and we anticipate that our
novel approach, which is capable of rapidly and efficiently
screening large libraries to comprehensively map selectivity, will
enable the development of selective probes and therapeutic
agents.

APPI has attracted our interest as a scaffold for engineering
selective serine protease inhibitors due to the marked sequence
diversity among Kunitz family members, which possess canonical
binding loops that are highly tolerant to substitution or incor-
poration of additional amino acids®®%’. Because the sequence of
the canonical binding loop and neighboring residues largely
determine the affinity and selectivity of the inhibitor to its
targets®>08, using APPI as a scaffold offers a unique opportunity
to optimize target affinity and selectivity without compromising
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Table 4 The selectivity of APPI-3M variants (normalized to the unmodified APPI-3M) toward KLK6 versus the three other

proteases

Mutant vs. mesotrypsin vs. anionic vs. cationic Calculated KLK6 total Expected KLK6 total
trypsin trypsin selectivity? selectivity?

Unmodified APPI-3M 1 1 1 1 —

T1V/G17R 111.10 8.94 232 230413 242.45

TNS/G17R 31.62 3.87 0.94 115.53 3233

s 214 0.30 0.12 0.08 —

TNV 0.64 1.58 0.60 0.60 —

G17R 32.26 7.42 1.69 404.09 —

Kigy for KLKE

2Calculated selectivity =

Kirnutar arr

bExpected selectivity of double-mutant AB = calculated selectivity of A x calculated selectivity of B

stability. In addition, the affinity of the complexes between APPI
and mesotrypsin, anionic trypsin, and cationic trypsin is similar,
which facilitated the identification of cold spots, whereas the
affinity of the APPI/KLK6 complex is three orders of magnitude
lower than that of the other complexes, thus allowing us to
identify selectivity-switch residues.

As a validation of the utility of our platform, we show that the
results obtained using NGS of the selected APPI clones typically
correlate well with the binding selectivity of the purified protein
variants in solution (as measured by competitive inhibition studies),
but at different scales (Supplementary Table 7). For example, the
selectivity values of 13 combinations of enzyme-inhibitor variants
(out of a total of 15 possible combinations examined), calculated
using NGS, are well-correlated (whether the selectivity was improved
or damaged) with those obtained in the enzymatic assay. Of note, in
all 15 combinations, a clear correlation was found between the
ranking of the selectivity values that were calculated by each method
(ranking is according to the level of selectivity improvement within
each method for each enzyme, with the greatest improvement
ranked as one; see example in bold boxes in Supplementary Table 7).
As shown in Table 1, the NGS analysis predicted a selectivity
increase of ~7 x 103-fold from cationic trypsin to KLK6 for G17R
compared with G17E, and of ~70 x 103-fold from anionic trypsin to
mesotrypsin for T11I compared with T11H; both these findings are
in qualitative agreement with the increase in selectivity determined
from the K; values of the soluble proteins, namely, an increase of
~5.7-fold and ~1.6-fold, respectively (Table 2). However, no corre-
lation was found between the magnitudes of the improvements, i.e.,
the 7 x 103-fold improvement calculated by NGS was calculated as a
~5.7-fold improvement in the enzymatic assay, while the 70 x 103-
fold improvement calculated by NGS was calculated as only a ~1.6-
fold improvement in the enzymatic assay. Therefore, the selectivity
increase values that were calculated by the NGS cannot be directly
compared with those of the competitive inhibition studies; rather,
the values can be compared between experiments using each
method, and not between the two methods. Nevertheless, the results
shown in Tables 1 and 2 confirm that our approach can predict the
positions that can change target selectivity, and that our approach is
sufficiently sensitive to detect small affinity changes, whereas other
currently available approaches can typically identify only greater
changes in the interactions between proteins®.

In further validation of our strategy, we identified most previously
described mutations that affect the binding affinity and selectivity of
APPI to serine proteases, as well as some novel mutations. For
example, we identified residue 15 as a hot spot for all four human
serine proteases, as all amino acid mutations in this residue (except
R15K) reduced the binding affinity of APPI-3M to each of the four
proteases (Fig. 2 and Supplementary Figure 3). Indeed, residue 15
had previously been identified as a hot spot in Kunitz-domain

inhibitors in studies with BPTI’%71, In addition, our data identified,
for the first time, to the best of our knowledge, that residue 13 is a
selectivity cold-spot for mesotrypsin, as most of the mutations in this
residue improved selectivity toward mesotrypsin versus all other
proteases. On the other hand, mutating the residue in position
11 switched the selectivity from anionic trypsin to mesotrypsin.
Therefore, the difference between residues 13 and 11 is that the
former facilitates a selectivity switch from three proteases to a spe-
cific protease, while the latter enables a selectivity switch from one
protease to one other protease.

The use of NGS covered the entire library and provided a
comprehensive map of the binding interface. However, generat-
ing the library by using a combination of site-specific saturation
mutagenesis on the APPI loop, and random mutations also on
other parts of the gene, limited our ability to analyze residues that
are distant from the interaction site. We attribute this limitation
to technical aspects of our library design, as the random muta-
tions generated by using the error-prone PCR were represented to
a lower extent than mutations generated by using site-saturation
libraries. Nevertheless, the residues that we found to improve the
selectivity of APPI toward the four serine proteases can provide
an explanation for the basis for target selectivity of inhibitors
toward serine proteases. These selectivity-improving mutations
can also be beneficial for designing targeted therapeutics for
cancer and other diseases, as they can potentially inhibit the
desired serine protease in a selective manner, so as to minimize
toxic effects. This study also serves as an example for the general
utility of our new platform, as many PPI mediators and disease
targets belong to large families of related proteins, making target
selectivity a highly desirable but challenging goal in drug devel-
opment. Thus, we our approach for simply and efficiently map-
ping PPI selectivity landscapes offers great promise for designing
novel target-selective therapeutics.

Methods

YSD and flow cytometry cell sorting. The yeast-displayed APPI-3M library was
constructed as described in Supplementary Methods. To display the APPI-3M
library on the surface of the yeast, the library was grown in an SDCAA selective
medium (2% dextrose, 0.67% Difco yeast nitrogen base, 0.5% Bacto casamino acids,
0.52% Na,HPO,, and 0.856% NaH,PO,-H,0) and induced for expression with a
galactose medium (as for SDCAA, but with galactose 2%, instead of dextrose)
according to an established protocol’2. Inactive forms of mesotrypsin, anionic
trypsin, and cationic trypsin containing the mutation S195A were used as a pre-
caution against enzymatic cleavage during the experiments°!. The four serine
proteases were labeled with Alexa Fluor dyes (Invitrogen, Carlsbad, CA) and used
to detect binding. For pairwise selectivity screen, ~ 1 x 108 yeast cells were incu-
bated with different Alexa Fluor-labeled serine proteases in a binding buffer (100
mM Tris, pH = 8.0, 1 mM CaCl,, 1% BSA) for 1.5 h at room temperature. Then,
the cells were washed with the binding buffer and sorted for the high-selective
variants by conducting several independent sorts, using FACSAria [the Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the
Negev (BGU), Israel]. The complexes included the following pairs and
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concentrations: mesotrypsin/KLK6 [25 nM/7 nM], mesotrypsin/cationic trypsin
[25 nM/8 nM], mesotrypsin/anionic trypsin [25nM/12.5 nM], anionic trypsin/
KLK6 [250 nM/7 nM], cationic trypsin/KLK6 [100 nM/7 nM], and anionic trypsin/
cationic trypsin [12.5 nM/100 nM]. APPI-3M variants that showed a high binding
affinity (top 5% of the entire population) toward one serine protease in the pair and
a low binding affinity toward the other were selected. Dual-color flow cytometry
(BD Accuri C6, Piscataway, NJ) was used to test the selective binding of each sorted
library to one serine protease in the pair in the presence of the other.

Quality filtration and integration of sequences. Sequencing data from each library
were treated identically and evaluated in triplicates, and Spearman’s rank correlation
coefficient’? was calculated to be above 95%. An average Illumina quality score was
calculated for each read in a given set of paired-end reads, and read pairs in which
either read had an average quality score lower than 20 (i.e., less than 99% accuracy)
were discarded. The remaining read pairs were merged into a single sequence by fast
length adjustment of short reads (FLASH) software’. DNA sequences and their amino
acid translations were aligned to the sequence of APPI-3M; sequences of different
lengths and sequences containing stop codons were discarded.

Computational analysis of high-throughput sequencing results. The analysis
was performed in MATLAB, version R2016a. Variants with one amino acid
mutation and variants with multiple amino acids mutations were analyzed sepa-
rately. First, the number of reads of each variant from each library was counted.
Then, to avoid variants with a low number of reads (which can yield noisy fre-
quencies and enrichment ratios), we determined a threshold value of 100 reads for
variants with a single amino acid mutation and 10 reads for variants with double
amino acids mutations. Variants with read numbers below the threshold in the
naive and sorted library fractions were discarded, and variants with read numbers
below the threshold value received the threshold value if the read number of the
variant in the other library was above the threshold.

Next, the frequency of each remaining variant, v, from each library was

computed as F, = ZR:S:Qs , where Reads, is the number of times that this variant

appeared in the library. Based on its frequency, the enrichment ratio of each variant
from each sorted library was calculated. The enrichment ratio for a given variant, v,

Fysorte . L
was calculated as ER, = F”L‘"‘d, where Fy sorted is the frequency of the variant in the

sorted library and F, ive is the frequency of the same variant in the naive (pre-
sorted) library. Eventually, for single amino acid substitution, heatmaps were
created based on the enrichment ratio’; for double amino acid substitutions, we
summed the enrichment ratios of similar double-mutation variants that have
mutations in the same residues (3_ER,, = ER; +ER, + ... + ERy, where x and
y are the mutated residues and N is the number of substitutions at the x and y
residues). We illustrated these results as heat maps.

Data availability

All relevant data are available from the authors. The coordinates and structure factors for
the complex of APPI-3M-T11V/G17R variant bound to mesotrypsin have been sub-
mitted to the Protein Data Bank (PDB) under the accession code 6GFI. The crystal
structure of APPI-3M is available in the PDB under the accession code 5C67. The crystal
structure of KLK6 is available in the PDB under the accession code 4D8N. The crystal
structure of the mesotrypsin/BPTI complex is available in the PDB under the accession
code 2R9P.
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