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WASH and Tsg101/ALIX-dependent diversion of
stress-internalized EGFR from the canonical
endocytic pathway
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Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-

endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP

kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by

ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from

the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane

recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies

(MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR

co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL,

following early endosomal sorting by the actin polymerization-promoting WASH complex.

Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism

involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal

vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated

activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and

intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis

and might contribute to chemoresistance.
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T
he epidermal growth factor receptor (EGFR) is an
archetypal receptor tyrosine kinase (TK) typically activated
by ligand binding to its extracellular domain. In the

canonical pathway, EGFR phosphorylates downstream targets
following activation, initiating signalling cascades that drive
various cellular responses, including cell proliferation and
inhibition of apoptosis1. EGFR is subsequently internalized, and
its endocytic trafficking is a major regulatory mechanism for
receptor activity, as ligand-induced EGFR lysosomal degradation
leads to signal termination2. However, the established view that
EGFR trafficking functions only for signal termination has been
challenged in a number of reports demonstrating that EGFR can
continue to signal along the endocytic pathway3.

In cancer, EGFR signalling is often deregulated, contributing to
tumorigenesis, therapy resistance and poor patient survival4.
Despite the demonstrated benefits of EGFR-targeting agents,
patient responses remain inconsistent and clinical trials in
combination with chemotherapy have been disappointing5.
Although exposure to chemotherapy and other stresses has
been shown to elicit ligand-independent EGFR internalization6,7,
the nature of the endocytic compartment(s) through which stress-
internalized EGFR traffics, the molecular mechanisms underlying
this trafficking and their effects on downstream signalling remain
unknown8. Here we analyse the post-endocytic fate of the EGFR
following exposure to ultraviolet light C (UVC) and the
chemotherapeutic drug, cisplatin, and show that EGFR
undergoes p38-dependent accumulation in a subpopulation of
perinuclear multivesicular bodies (MVBs) that are distinct from
those that traffic ligand-stimulated EGFR to the lysosome but
contain exogenously expressed markers of melanosome
biogenesis. Segregation of stress-induced and ligand-stimulated
EGFR into different populations of MVBs depends on the WASP
and Scar homologue (WASH) complex that regulates actin
dynamics. Unlike ligand-stimulated EGFR, which is activated on
the plasma membrane, internalization of stress-induced EGFR is
a requirement for its activation. Intracellular retention of stress-
induced EGFR in MVBs is independent of EGFR ubiquitination
but depends on the endosomal sorting complex required for
transport (ESCRT) machinery and ALG-2-interacting Protein X
(ALIX) and is required for stress-induced EGFR signalling and
protection from apoptosis.

Results
Roles of p38 in stress-induced EGFR perinuclear accumulation.
Immunofluorescence staining of HeLa cells showed that both UVC
and cisplatin elicit a striking perinuclear accumulation of inter-
nalized EGFR (Fig. 1a and Supplementary Fig. 1a), but western
blotting cell lysates showed that, unlike EGF stimulation, they do
not induce detectable EGFR degradation (Supplementary Fig. 1b).
Quantitative analysis of EGFR surface downregulation showed that
the perinuclear intracellular pool of EGFR is maintained for 42 h
and accounts for B50% of total EGFR (Fig. 1a). In keeping with
previous studies, UVC-elicited p38 activity was required to pro-
mote initial EGFR internalization (Supplementary Fig. 1c). Inter-
estingly, p38 inhibition after UVC-induced perinuclear EGFR
accumulation resulted in redistribution of perinuclear EGFR to the
plasma membrane (Fig. 1b), revealing a novel role for p38 in EGFR
retention in the perinuclear compartment distinct from its role in
EGFR internalization. This is in marked contrast to the p38-
independent post-endocytic fate of ligand-stimulated EGFR, which
was degraded. Treatment with the clathrin inhibitor PITSTOPII
blocked UVC-induced EGFR internalization but when PITSTOPII
was added after UVC-induced EGFR perinuclear accumulation to
prevent re-internalization of any recycled receptor, the EGFR was
retained intracellularly (Fig. 1c). This indicates that UVC-exposed
EGFR does not undergo continuous internalization and recycling.

However, if p38 is inhibited after UVC-induced EGFR perinuclear
accumulation, EGFR recycles to the plasma membrane in a manner
that siRNA-mediated depletion shows is dependent on Rab11
(Fig. 1d). In contrast, endocytosis of Transferrin Receptor (TfR) did
not require p38 activity, and TfR recycling was unaffected by UVC
exposure, indicating EGFR-specific p38-dependent internalization
and retention (Supplementary Fig. 1c,d).

Segregation of stress-exposed EGFR in an MVB subpopulation.
UVC-exposed EGFR localized initially to EEA1-positive early
endosomes, as previously reported6,9, but this localization was
progressively lost as the receptor accumulated perinuclearly with
negligible co-localization with the lysosomal marker Lamp1
(Supplementary Fig. 2a). The striking perinuclear distribution of
UVC/cisplatin-stimulated EGFR, together with the availability of
this receptor pool for recycling upon p38 inhibition, suggested that
EGFR might be sequestered in recycling endosomes. However,
stress-activated EGFR showed very limited co-staining with
Rab11, although it passed through Rab11-positive recycling
endosomes when recycling was induced by p38 inhibition
(Supplementary Fig. 2b). To our surprise, high-resolution cryo-
immuno electron microscopy (EM) localization of EGFR 1 h post
UVC stress revealed that EGFR specifically accumulated in MVBs
morphologically indistinguishable from those that traffic ligand-
stimulated EGFR (Fig. 1e and Supplementary Fig. 1e). Sequential
stimulation first with UVC (which leaves B50% EGFR on the cell
surface) and then with fluorescent EGF revealed the presence of
separate populations of EGFR-containing MVBs in the same cell
(Fig. 1f). Similarly, incubating with anti-EGFR gold to track all
populations of EGFR and subsequently stimulating first with UVC
and then with EGF conjugated to horseradish peroxidase (HRP),
allowed the identification of two populations of EGFR-positive
MVBs, either containing or not containing EGF (Supplementary
Fig. 1f). The remarkable separation of ligand- and stress-
stimulated EGFR in distinct endosomal subpopulations was
particularly clear in cells with enlarged endosomes following
expression of constitutively active Rab5-Q79L (ref. 10); Fig. 1g).

We have previously shown that ligand-stimulated EGFR is
trafficked in a subset of MVBs11, but the composition and
function of non-EGFR-containing MVBs remain poorly
characterized. In this respect, melanosomes are lysosome-related
organelles generated from a subset of MVBs diverted from the
canonical degradative pathway in pigmented cells12. Within those
MVBs, premelanosome protein (PMEL) undergoes proteolytic
processing to generate fibrils (fibrillar PMEL) upon which melanin
is deposited13,14, whereas unprocessed non-fibrillar PMEL and
cleaved C-terminal PMEL fragments containing its trans-
membrane domain traffic along the degradative pathway15. We
recently showed that the pre-melanosomal G-protein–coupled
receptor OA1, when exogenously expressed in HeLa cells, localizes
to a subset of MVBs distinct from those carrying ligand-stimulated
EGFR16. We now find, by immunofluorescence of HeLa cells
transfected with markers of melanosome biogenesis, increased co-
localization of EGFR with OA1 and fibrillar PMEL in UVC-
exposed, compared with EGF-treated, HeLa cells (Fig. 2a). In
contrast, unprocessed non-fibrillar PMEL showed increased co-
localization with EGF-bound compared with UVC-exposed
EGFR. Parallel cryo-immunoEM showed segregation of stress-
exposed EGFR within MVBs containing OA1 and fibrillar PMEL,
whereas EGF-bound EGFR segregated within MVBs containing
non-fbrillar PMEL and C-terminal PMEL fragments (Fig. 2b and
Supplementary Fig. 3a).

Role of WASH in segregation of stress-exposed EGFR.
The finding that OA1 and fibrillar PMEL co-segregate with
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Figure 1 | Dual role of p38 in ligand-independent stress-triggered EGFR trafficking in HeLa cells. (a) EGFR immunolocalization in untreated versus

UVC-exposed cells 1 h post UVC exposure (left), and quantification of surface downregulation in cells exposed to UVC or treated with EGF for the indicated

times (right). Arrows indicate perinuclear accumulation of EGFR (green) after UVC exposure. Data are mean±s.e.m. of three independent experiments.

(b) Untreated or UVC-exposed HeLa cells were fixed after 1 h, or further incubated with the p38 inhibitor SB202190 (SB) for 1 h (left). Untreated or

EGF-treated cells were fixed after 30 min, or further incubated with SB for 1 h in the continuous presence of EGF (right). p38 inhibition causes EGFR (green)

redistribution to the plasma membrane following UVC, but not EGF exposure. (c) Pre-treatment for 30 min with PITSTOPII prevents UVC-induced EGFR

(green) internalization (left) but PITSTOPII addition 1 h after UVC-induced EGFR internalization does not affect perinuclear EGFR accumulation or the

recycling induced by simultaneous p38 inhibition (right). (d) Cells transfected with control or Rab11 siRNA were immunoblotted after 72 h for Rab11 and

tubulin to assess knockdown efficiency (top). Rab11 knockdown did not prevent UVC-induced EGFR (green) internalization but prevented EGFR recycling

after subsequent SB treatment (bottom). (e) Cells transfected with EGFR-GFP were fixed 1 h after UVC exposure and ultrathin cryosections were immuno-

labelled for EGFR with 8 nm gold. EGFR-GFP (arrows) is on the limiting membrane and ILVs of MVBs. (f) Immunofluorescence analysis of UVC and EGF

sequentially exposed HeLa cells (see Methods for experimental details). Red arrows show endosomes containing EGFR (green) and EGF (red). White

arrows show EGFRþ ve, EGF-ve endosomes, indicating a separate subset of MVBs containing stress-internalized but not EGF-bound EGFR. Scale bar, 5 mm.

(g) Cells transfected with constitutively active Rab5-Q79L-DsRed were exposed to UVC and incubated for 1 h before treatment with EGF-AlexaFluor 647

(red) for 3 h. Red and white arrows show EGFRþ ve/EGFþ ve and EGFRþ ve/EGF-ve endosomes, respectively. Scale bars, 10mm for confocal and 100 nm

for EM, unless otherwise indicated; 4,6-diamidino-2-phenylindole (DAPI)-stained nuclei, blue.
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stress-stimulated EGFR provides a means of monitoring the
diversion of stress- and ligand-stimulated EGFR from
early endosomes. Branched early endosomal actin networks

resulting from Arp2/3 activation by the endosomal actin poly-
merization-promoting complex, WASH17, have recently
been found to play a vital role in sorting of specific endosomal
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Figure 2 | Co-segregation of stress-internalized EGFR with markers of pre-melanosomal MVBs. (a) HeLa cells were transfected with OA1-myc or PMEL,

and either treated with EGF for 30 min or exposed to UVC and incubated for 1 h. Cells were co-stained with EGFR and either myc (left), fibrillar PMEL

(middle) or non-fibrillar PMEL (right). Quantification of co-localization between EGFR (green) and expressed marker (red) for the different conditions is

shown below each set of images. Data are mean±s.e.m. of three independent experiments, *Po0.05 and ***Po0.001 (Student’s t-test). (b) HeLa cells

were treated as above in the presence of 10 nm anti-EGFR-gold (arrows) before preparation for cryo-immunoEM. Ultrathin cryosections were labelled for

myc (left), fibrillar PMEL (middle) or non-fibrillar PMEL (right) with 15 nm-gold (arrowheads). Depicted are typical examples of OA1 and fibrillar PMELþve

MVBs containing stress-internalized but not EGF-stimulated EGFR, and non-fibrillar PMEL containing EGF-stimulated but not stress-internalized EGFR.

Quantification of the percentage of EGFRþ ve MVBs containing each of the different markers following EGF versus UVC exposure is shown below each

set of images. Data are mean±s.e.m. of Z10 cells, **Po0.01 (Student’s t-test). Scale bars, 10mm for confocal and 100 nm for EM images; 4,6-diamidino-

2-phenylindole (DAPI)-stained nuclei, blue.
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cargoes to different destinations18, such as retromer-mediated
endosome-to-Golgi retrieval19 and plasma membrane recycling20.
The WASH complex has also been shown to associate with
BLOC-1 (biogenesis of lysosomal organelles complex-1), required
for selective cargo exit from early endosomes to melanosomes21,
suggesting that WASH-mediated actin polymerization may
function in melanosome biogenesis22. We found that WASH is
required for segregation of stress-internalized EGFR away from
EGF-bound EGFR by comparing mouse embryonic fibroblasts
(MEFs) derived from control flox/flox and Cre-mediated
conditional WASH knockout (WASHOUT) embryos23. In
flox/flox MEFs treated first with UVC and then fluorescent
EGF, there are two populations (EGF positive and EGF negative)
of EGFR present (Fig. 3a). However, in WASHOUT MEFs, EGFR
and EGF signals are totally merged in the same endosomal
compartments. Furthermore, although in flox/flox MEFs (like in
HeLa cells) UVC-exposed EGFR shows greater co-localization
with OA1 and fibrillar PMEL than EGF-bound EGFR, in
WASHOUT MEFs UVC-exposed and EGF-bound EGFR
co-stain equally well with these markers (Fig. 3b, quantified in
Fig. 3c). Similarly, in flox/flox MEFs, EGF-bound EGFR shows
greater co-localization with non-fibrillar PMEL than UVC-
exposed receptor, but this difference is lost in WASHOUT
MEFs. The requirement for the WASH complex in segregation of
stress-internalized EGFR along with pre-melanosomal factors
away from ligand-stimulated EGFR contrasts with the
unimpaired lysosomal degradation of EGF-bound EGFR and
plasma membrane recycling of TfR in WASH knockouts23.

Role of ESCRTs/ALIX in MVB retention of stress-exposed EGFR.
Following WASH-dependent segregation, stress-stimulated EGFR
accumulates in MVBs that do not fuse with lysosomes. To deter-
mine whether the failure to fuse with lysosomes was due to stress-
induced lysosomal damage, EGFR degradation was measured in
cells stimulated first with UVC and then with EGF. UVC-exposed
cells clearly retained the capacity for degradation of EGFR
(Supplementary Fig. 3b). Furthermore, UVC-exposed cells showed
only a minor increase in lysosomal pH, as demonstrated by only
marginal reductions in neutral red and lysotracker accumulation
(Supplementary Fig. 3c). Taken together, these results indicate that if
there is significant lysosomal damage following UVC exposure, this
is rapidly recovered and cannot explain the accumulation of EGF in
perinuclear MVBs for Z4 h (Supplementary Fig. 3d).

The best characterized MVB sorting machinery is the ESCRT
complex system24, which recognizes ubiquitinated cargoes such as
ligand-stimulated EGFR and sorts them onto intraluminal vesicles
(ILVs) of MVBs that subsequently fuse with lysosomes for
degradation. We found that, in contrast to EGF stimulation,
UVC or cisplatin exposure did not trigger EGFR ubiquitination
(Fig. 4a). Ultraviolet exposure may downregulate the cellular ubi-
quitination machinery25, but EGF-dependent EGFR ubiquitination
was still present, although slightly reduced, in UVC-pre-treated
cells, showing that the ubiquitination capacity was only marginally
abridged (Fig. 4b). Consistent with the absence of a role for
ubiquitination in stress-induced EGFR trafficking, ubiquitination-
deficient mutant EGFR-15KR26 accumulated on both MVB-
limiting membranes and ILVs following UVC exposure (Fig. 4c),
and recycled to the plasma membrane following p38 inhibition
(Fig. 4d), just as control EGFR-wt, when expressed in porcine
aortic endothelial (PAE) cells. Moreover, EGFR-15KR co-
segregated with transfected OA1 following both EGF and UVC
exposure, whereas, as reported above in HeLa and flox/flox MEFs,
EGFR-wt only co-localized with OA1 following UVC exposure
(Fig. 4e), suggesting receptor ubiquitination as critical for its
retention on the degradative pathway.

PMEL, which co-segregates with stress-activated EGFR,
also undergoes ubiquitin-independent sorting onto ILVs, but
independently of ESCRTs and requiring the tetraspanin CD63
(ref. 15). However, surprisingly, and despite lack of EGFR
ubiquitination, knockdown of the ESCRT-0 component, Hrs, or
the ESCRT-I component Tsg101 (ref. 24) resulted in inhibition of
ILV formation and a reduced density of UVC-exposed EGFR on
MVBs, where it predominantly localized to the limiting
membranes (Fig. 4f, quantified in Supplementary Fig. 4a and
validated with alternative siRNA sequences in Supplementary
Fig. 4b). Presumably, for stress-internalized EGFR, the ESCRT-0
complex enables membrane recruitment of ESCRT-I rather than
ubiquitinated cargo recognition24. Recent reports have shown
that binding to any ESCRT can mediate ubiquitin-independent
cargo sorting27, and the existence of a ESCRT-dependent,
ubiquitin-independent pathway of ILV cargo sorting that
depends on the ESCRT adaptor ALIX28,29. However, no role
for ALIX has been demonstrated in sorting of EGF-stimulated
EGFR onto ILVs or its targeting to lysosomes for degradation30.
ALIX is recruited to MVBs by binding to the rare lipid lyso-
bisphosphatidic acid (LBPA)30, which we previously showed to be
absent from EGF-stimulated EGFR-containing MVBs11, but
present in MVBs containing OA1 (ref. 16). Here we found
extensive co-localization of stress-internalized, but not EGF-
stimulated EGFR with LBPA in serum-starved cells (Fig. 5a).
Consistently, ALIX knockdown in UVC-exposed cells resulted in
a similar phenotype to that of Hrs and Tsg101 knockdown, in
that UVC-exposed EGFR localized predominantly to the limiting
membrane of MVBs containing fewer ILVs and reduced overall
EGFR density (Fig 5b,c, quantified in Supplementary Fig. 4a and
validated with an alternative siRNA sequence in Supplementary
Fig. 4c). In contrast, ALIX depletion had no clear effect on MVBs
containing EGF-stimulated EGFR. This is the first demonstration
that ALIX is required for sorting of stress-internalized EGFR onto
ILVs, but, in agreement with previous studies, ALIX is
dispensable for sorting of ubiquitinated EGF-bound EGFR onto
ILVs30.

The perinuclear accumulation of stress-internalized EGFR was
remarkably stable and detected Z4 h post UVC exposure
(Supplementary Fig. 3d); however, ALIX or Tsg101 knockdown
inhibited accumulation of UVC-stimulated EGFR in the peri-
nuclear compartment (Fig. 5d). This was due to increased EGFR
recycling because blockade of clathrin-dependent endocytosis
after UVC-induced EGFR internalization (with PITSTOPII)
caused the intracellular EGFR pool to return to the plasma
membrane in ALIX- and/or Tsg101-depleted, but not control
cells. Double Tsg101/ALIX knockdown resulted in accumulation
of abnormally large endosomes with stress-internalized EGFR
along their limiting membrane (Fig. 5d), suggesting cooperation
between these two factors in stress-internalized EGFR sorting to
ILVs. Thus, the intracellular sequestration of stress-internalized
EGFR relies on the ESCRT/ALIX-dependent sorting of EGFR
onto ILVs of perinuclear MVBs.

Role of stress-induced EGFR traffic in regulating signalling.
What is the functional consequence of the p38-, ESCRT- and
ALIX-dependent sequestration of stress-exposed EGFR in this
perinuclear subpopulation of MVBs? A previous study has sug-
gested little EGFR activation and increased susceptibility to
apoptosis following stress-induced EGFR internalization6,
whereas others have reported opposing results31. We found that
stress-induced EGFR internalization, which correlated with p38-
specific EGFR-T669 phosphorylation previously shown to be a
requisite for internalization31, triggered gradual EGFR TK
activation, as shown by EGFR-Y1068 phosphorylation (Fig. 6a).
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EGFR TK activity was not required for its internalization, as cells
pre-treated with the EGFR inhibitor gefitinib, which prevented
UVC-induced EGFR-Y1068 phosphorylation (Supplementary

Fig. 5a), still displayed receptor internalization following UVC,
but not EGF, exposure (Supplementary Fig. 5b, quantified in
Supplementary Fig. 5c). The gradual activation of stress-induced
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Figure 3 | Sorting of EGF-bound and stress-internalized EGFR onto separate MVB subsets is WASH dependent. (a) Control flox/flox and WASH knock-

out (WASHOUT) MEFs transfected with human EGFR were exposed to UVC and incubated for 1 h to allow stress-induced EGFR internalization in the

presence of anti-EGFR 108 antibody. Cells were washed, incubated with EGF-AlexaFluor 488 for 30 min (red), and processed for immunofluorescence with

an AlexaFluor 555 secondary antibody to label EGFR (green). Both EGFþ ve and EGF-ve EGFR-containing endosomes are present in control flox/flox, but

these are largely merged in WASHOUT MEFs. (b) Control flox/flox and WASHOUT MEFs were co-transfected with human EGFR and OA1-myc or PMEL,

and either treated with EGF for 30 min or exposed to UVC and incubated for 1 h. Cells were co-stained for EGFR (green) and the following markers (in red):

myc (top panels), fibrillar PMEL (central panels) or non-fibrillar PMEL (bottom panels). (c) Quantification of co-localization between EGFR and expressed

markers for the different conditions. Data are mean±s.e.m. of three independent experiments, ***Po0.001 (Student’s t-test). Scale bars, 10mm;

4,6-diamidino-2-phenylindole (DAPI)-stained nuclei, blue.
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EGFR contrasted with the rapid, strong EGFR TK activity
triggered by EGF binding, a situation that accounts for the
above-mentioned difference in ubiquitination, known to require a
threshold of receptor tyrosine phosphorylation32. Anisomycin-
induced p38 activation was sufficient to trigger EGFR
internalization and TK activity (Supplementary Fig. 5d).
Conversely, p38 inhibition abrogated UVC-induced EGFR TK

activity (Fig. 6b). To directly test the role of EGFR internalization
in its activation after stress exposure, endocytosis was inhibited by
dynamin inhibition (Fig. 6c and Supplementary Fig. 5f) or AP2a
RNA interference (RNAi; Fig. 6d), as AP2a has previously been
shown33, and confirmed in the present study (Supplementary
Fig. 5g), to be required for UVC/cisplatin-dependent EGFR
internalization. Both treatments abolished stress-induced EGFR
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activation. Conversely, dynamin inhibition did not affect
EGF-stimulated EGFR activity or ERK1/2 phosphorylation,
whereas the latter was abolished by dynasore in UVC-exposed
cells (Fig. 6c). The specificity for EGFR internalization versus
other endocytosed cargoes was confirmed in PAE cells expressing
EGFR-wt versus EGFR-DAP2, an EGFR mutant for AP2
binding34 that failed to undergo UVC-induced internalization
(Supplementary Fig. 5h). We detected increased EGFR activity in
EGFR-wt but not -DAP2 cells upon UVC exposure, whereas EGF
triggered similar EGFR activation in EGFR-DAP2 and -wt cells
(Fig. 6e). Thus, we show for the first time that although
EGF induces EGFR TK activation on the plasma membrane1,
stress-induced EGFR TK activation/signalling require its
internalization.

In parallel with the dual role of p38 in stress-induced EGFR
trafficking, p38 activity, present for Z4 h following UVC
exposure (Supplementary Fig. 5e), was required not only for
EGFR activation linked to its internalization, but also for the
maintenance of receptor activity post-internalization. Inhibiting
p38 activity after UVC-induced EGFR activation and internaliza-
tion caused EGFR-Y1068 phosphorylation to be lost (Fig. 6f).
Continued EGFR activation does not appear to require direct
p38-phosphorylation of EGFR at T669, as this was gradually lost
following EGFR internalization (Fig. 6a). Loss of EGFR-Y1068
phosphorylation by p38 inhibition post-EGFR internalization was
not rescued by inhibition of plasma membrane recycling with
Rab11 RNAi, indicating that EGFR accumulation in recycling
endosomes (Fig. 1d) is not sufficient to maintain EGFR TK
activity (Fig. 6f). Conversely, specific retention of stress-
internalized EGFR in MVBs is required to enable EGFR
signalling, as knockdown of ALIX, which results in increased
levels of EGFR plasma membrane recycling (Fig. 5d), causes loss
of ERK1/2 phosphorylation, and a reduction in EGFR-Y1068
phosphorylation (Fig. 6g). The residual EGFR-Y1068 phosphor-
ylation detected after ALIX knockdown is presumably due to
EGFR being subjected to continuous p38-driven cycles of
re-internalization and re-phosphorylation, but prolonged reten-
tion in MVBs is required to enable effective downstream
signalling.

Although some stress-internalized EGFR is sequestered from
the cytosol on ILVs of MVBs, it retains the capacity for Rab11-
dependent recycling following p38 inhibition, indicating that
mechanisms of back-fusion of EGFR-containing ILVs with MVB-
limiting membranes are likely to be in place to allow for
downstream signalling from the receptor.

Role of stress-induced EGFR traffic in regulating apoptosis. To
determine whether internalization- and intracellular sequestra-
tion-dependent signalling from the EGFR modulates cell

survival following stress exposure, the effects of manipulating
stress-induced EGFR trafficking on entry into apoptosis were
assessed by TdT-mediated dUTP nick end labelling (TUNEL)
assay. Inhibition of EGFR internalization by AP2a knockdown
increased apoptotic cell numbers following UVC or cisplatin
treatment (Fig. 6h and Supplementary Fig. 5i). The specificity of
this effect on EGFR and no other clathrin-dependent cargo
was established by measuring the apoptotic response to UVC in
EGFR-wt versus �DAP2 PAE cells (Fig. 6h). Although
EGFR endocytosis delayed UVC-induced apoptosis, long-term
survival remained poor (9.06±0.01% surviving 24 h after
UVC, assessed by MTT assay). Retention of stress-internalized
EGFR within MVBs was also required to delay the onset of
stress-induced apoptosis, as shown by increased apoptosis of
UVC-treated cells following ALIX knockdown (Fig. 6i). Overall,
these results indicate that stress-induced EGFR trafficking and
retention into a subset of non-degradative MVBs allows for a
fraction of receptors to become activated and signal, resulting in
delayed onset of stress-induced apoptosis. Furthermore, MVBs
containing stress-induced EGFR might act as a reservoir pool for
intact receptor, protecting it from degradation and potentially
modulating subsequent signalling upon ligand exposure.

Discussion
This study has led to the elucidation of a novel mechanism of
stress-induced EGFR activation linked to its intracellular
sequestration in a specific subset of non-degradative MVBs (see
Fig. 7 for a schematic diagram). P38- and AP2-dependent EGFR
internalization is followed by WASH-dependent segregation into
a subset of MVBs that are distinct from those harbouring ligand-
stimulated EGFR, but related to those that mature into
melanosomes in pigmented cells. Although multiple populations
of MVBs and ILVs have previously been identified, the
mechanisms that regulate sorting between MVBs and their cargo
with different destinations remain obscure. This study suggests
that WASH-dependent regulation of actin dynamics may play an
important role in this sorting.

The subset of MVBs that harbour stress-exposed EGFR has a
number of novel features. In contrast to ligand-stimulated EGFR,
sorting of EGFR onto the ILVs of these MVBs is independent of
ubiquitination, but depends on the ESCRT machinery and ALIX.
These ILVs must have the capacity to back-fuse with the MVB-
limiting membrane, as they can return to the cell surface upon
p38 inhibition. Although back-fusion of ILVs has previously been
described35, this is the first demonstration that EGFR-containing
ILVs can back-fuse. Moreover, although signalling from
internalized EGFR has previously been demonstrated, this is the
first example to our knowledge where internalization of EGFR
and its retention in MVBs is required for the activation

Figure 4 | Ubiquitin-independent, ESCRT-dependent sorting of stress-internalized EGFR onto ILVs of MVBs. (a) Immunoprecipitation (IP) of EGFR from

HeLa cell lysates and immunoblotting for ubiquitin and EGFR showed robust EGFR ubiquitination after EGF stimulation but not after exposure to UVC or

cisplatin. (b) Treatment of HeLa cells with EGF 1 h post-UVC exposure induced strong EGFR ubiquitination, measured as in a, that was reduced compared

with EGF alone, most likely because only 50% of EGFR was available for EGF stimulation after UVC exposure. (c) Stable PAE cell sublines expressing EGFR-

wt or a ubiquitination-defective EGFR (EGFR-15KR) were exposed to UVC and incubated for 1 h with anti-EGFR-gold. Cells were fixed and processed for EM.

Representative images of ultrathin sections with gold in ILVs (black arrows) and on the limiting membrane of MVBs (white arrows) from both sublines are

shown. (d) Immunofluorescence shows perinuclear EGFR (green) accumulation 1 h after UVC exposure followed by recycling to the plasma membrane on

subsequent p38 inhibition in both PAE EGFR-wt and -15KR cells, consistent with no role for ubiquitination in stress-induced EGFR traffic. (e) PAE EGFR-wt

and -15KR cells were transfected with OA1-myc and either treated with EGF for 30 min or exposed to UVC and incubated for 1 h. Ubiquitination-deficient

EGFR-15KR (green) showed increased co-staining with OA1-myc (red) following EGF stimulation compared with EGFR-wt, to a similar level to that shown

by UVC-internalized EGFR (-wt or -15KR). Data are mean±s.e.m. of three independent experiments, ***Po0.001 (Student’s t-test). (f) Lysates from HeLa

cells transfected with Hrs or Tsg101 siRNA were immunoblotted after 72 h for Hrs, Tsg101 and tubulin to assess knockdown efficiency (left). RNAi-treated

cells were exposed to UVC, incubated for 1 h with anti-EGFR-gold (arrows) and processed for EM. Ultrathin sections (right) show enlarged MVBs

containing reduced numbers of EGFR-positive ILVs in Hrs and Tsg101 siRNA-treated compared with control RNAi cells. Scale bars, 10mm for confocal and

100 nm for EM images; 4,6-diamidino-2-phenylindole (DAPI)-stained nuclei, blue.
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and maintenance of activity of the receptor. The intracellular
location of the EGFR potentially regulates the availability of
EGFR-interacting partners, such as tyrosine phosphatases or the
TK Src, known to phosphorylate EGFR increasing its TK
activity36. ALIX, which sorts EGFR onto ILVs, is also required

to maintain EGFR signalling. This at first appears paradoxical
because sorting onto ILVs sequesters the catalytic domain of the
EGFR from the cytoplasm, and so would be expected to attenuate
signalling. However, the demonstration that back-fusion can
occur in these MVBs suggests a dynamic cycling between the
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Figure 5 | ALIX is required for sorting into ILVs and retention in MVBs of stress-internalized, but not EGF-bound EGFR. (a, left) Co-staining of EGFR

(green) with LBPA (red) showed little co-localization in serum-starved HeLa cells treated with EGF for 30 min, but considerable overlap in cells 1 h after

UVC exposure. Note that, in serum-free conditions, LBPA does not accumulate in lysosomes, facilitating the detection of MVB-specific labelling. (a, right)

Quantification of co-localization of EGFR with LBPA in EGF-treated versus UVC-exposed serum-starved HeLa cells. Data are mean±s.e.m., ***Po0.001

(Student’s t-test). (b) Lysates from HeLa cells transfected with control or ALIX siRNA were immunoblotted after 72 h for ALIX and Rab11 (as a loading

control) to assess knockdown efficiency. (c) ALIX siRNA-treated cells were stimulated with EGF for 30 min, or exposed to UVC and incubated for 1 h, in the

presence of anti-EGFR-gold, before EM processing. Ultrathin sections show gold (arrows) on ILVs of densely packed MVBs after EGF stimulation, but mainly

on the limiting membrane of enlarged MVBs containing few ILVs in UVC-exposed cells. (d) Control, Tsg101, ALIX or Tgs101þALIX siRNA-treated HeLa

cells were exposed to UVC, incubated for 1 h and fixed, or further treated with PITSTOPII for 1 h. Immunostaining for EGFR (green) shows that depletion of

Tsg101 or ALIX inhibits perinuclear EGFR accumulation, whereas EGFR redistributes to the plasma membrane upon PITSTOPII treatment, indicating that

Tsg101 and ALIX are required for intracellular retention of EGFR. EGFR is found in very large vacuoles in double Tsg101þALIX knocked-down cells

after UVC exposure, before redistribution to the plasma membrane upon PITSTOPII treatment. Scale bars, 10mm for confocal and 100 nm for EM pictures;

4,6-diamidino-2-phenylindole (DAPI)-stained nuclei, blue.
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limiting membrane and ILVs that together maintain the MVB
location while also allowing signalling. This possibility is
especially appealing given the localization of stress-internalized
EGFR to LBPA-containing MVBs, and the previous demon-
stration of a role for LBPA and ALIX in back-fusion of ILVs
within MVBs30. Elucidation of the role of ESCRTs/ALIX and
p38 in combination in regulating the dynamic behaviour of the
stress-exposed EGFR at the level of the MVB is a priority for
future studies.

Although we primarily used UVC exposure to map EGFR
trafficking and signalling, key experiments indicated that exposure

to the chemotherapeutic drug cisplatin elicited similar EGFR
trafficking and signalling. This has important implications for
cancer therapy, as it could explain how chemotherapeutic
agents such as cisplatin affect EGFR signalling, contributing to
chemotherapy resistance and making tumours refractory to
antibody therapies targeting the extracellular domain of EGFR.
Further understanding of the molecular regulation of
stress-internalized EGFR sorting and its influence on receptor TK
activation and downstream signalling will be critical for interpret-
ing its manipulation to increase cancer cell susceptibility to
chemotherapy.
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Figure 7 | A working model for stress- versus EGF-induced EGFR trafficking. EGF stimulation triggers plasma membrane receptor activation and

ubiquitination before internalization, whereas stress exposure induces p38-dependent EGFR-T669 phosphorylation and internalization into CCPs via

interaction with AP2. EGF-bound and stress-internalized EGFR are then sorted from early endosomes onto separate MVB subsets, with stress-internalized

EGFR undergoing WASH-dependent co-segregation with pre-melanosomal markers OA1 and fibrillar PMEL, whereas EGF-bound EGFR is retained in

degradative MVBs by ubiquitin/ESCRT-dependent sorting onto ILVs and transported to lysosomes for degradation. Stress-exposed EGFR becomes

activated post-internalization, and is largely retained in non-degradative MVBs from where it signals by the continued action of p38 in a mechanism that

involves ALIX- and ESCRT-dependent receptor sorting onto ILVs, and may include cycles of internalization and back-fusion of ILVs with MVB-limiting

membranes.

Figure 6 | EGFR internalization and intracellular retention in a specific subset of MVBs is required for EGFR TK activation and delays onset of stress-

induced apoptosis. (a) Immunoblotting HeLa lysates showed transient, strong EGFR-T669 phosphorylation and gradually increased EGFR-Y1068

phosphorylation after UVC exposure, compared with weak T669 and rapid, strong Y1068 signal after EGF stimulation. (b) Immunoblotting HeLa lysates

pre-incubated for 30 min with SB, exposed to UVC and incubated in the continuous presence of SB, showed that EGFR-Y1068 phosphorylation requires p38

activity. (c) Immunoblotting HeLa lysates showed that 30 min pre-incubation with dynasore prevented EGFR-Y1068 and ERK1/2 phosphorylation induced

1 h post UVC exposure, but not that induced by 30 min exposure to EGF. (d) Immunoblotting HeLa lysates showed that AP2a siRNA treatment inhibited

EGFR-Y1068 phosphorylation up to 1 h post UVC exposure. (e, top) Immunoblotting PAE lysates showed that EGF-stimulated Y1068-phosphorylation is

similar in PAE EGFR-DAP2 and -wt cells. However, although EGFR-wt showed increased Y1068-phosphorylation 15 min post UVC exposure, �DAP2

did not. Note that exposure time for p-EGFR Y1068 in EGF-stimulated samples has been reduced to avoid film saturation. (e, bottom) Quantification of

EGFR-Y1068 phosphorylation from above. Data were normalized to control (untreated) EGFR-wt and are mean±s.e.m. of three independent experiments,

*Po0.05 (Student’s t-test). (f) Immunoblotting HeLa lysates showed that 30 min SB treatment after UVC-induced EGFR internalization reduced

EGFR-Y1068 phosphorylation that was not rescued by Rab11 siRNA treatment. (g) Immunoblotting HeLa lysates showed that ALIX siRNA treatment

reduced EGFR-Y1068 phosphorylation and prevented ERK1/2 phosphorylation 1 h post UVC exposure. (h, left) AP2a RNAi results in increased percentage

of TUNEL-positive HeLa cells 2 h post UVC exposure compared with control RNAi. (h, right) PAE EGFR-DAP2 showed increased TUNEL-positive cells 8 h

post UVC exposure compared with EGFR-wt cells. Data are mean±s.e.m. of three independent experiments, *Po0.05 (Student’s t-test). (i) ALIX RNAi

causes a similar increase compared with control RNAi to that caused by AP2a RNAi in the percentage of TUNEL-positive HeLa cells 2 h post UVC exposure.

Data are mean±s.e.m. of three independent experiments, *Po0.05 (Student’s t-test).
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Methods
Cell culture and transfection. HeLa cells and MEFs (flox/flox and WASHOUT23)
were cultured in DMEMþGlutaMAX (Life Technologies) containing 10%
fetal calf serum. PAE cells stably expressing EGFR-wt, Y974RAL and LL1010/1011

�DAP2 (ref. 34), or -15KR26 were cultured in Hams F-12 (Lonza) with 10% fetal
calf serum. In all experiments, cells were serum-starved overnight (o/n) at 37 �C
before exposure to 100 J m� 2 UVC with a CL-1000 Ultraviolet Crosslinker (UVP)
or treatment with the indicated drugs in serum-free culture medium.

Transient cDNA transfections were performed with Lipofectamine 2000 reagent
(Life Technologies) following the manufacturer’s guidelines, for 48 h. Human wt
EGFR and EGFR-GFP37, Rab5-Q79L-DsRed10, OA1-myc16 and PMEL38

expression vectors have all been described previously.
Transfection with siRNA (purchased from Dharmacon) was performed with

Lipofectamine RNAiMAX (Life Technologies), for 72 h. Target sequences for
AP2a33, Hrs and Tsg101 (ref. 39) have been described previously. Rab11 and ALIX
target sequences were the ON-TARGETplus SMART pool (Dharmacon), and
as described previously for ALIX RNAi_2 (ref. 40). Control siRNA was the
AllStars-negative control (Qiagen).

See Supplementary Table 1 for details of siRNA sources and sequences.

Reagents and antibodies. Reagents were used at the following concentrations:
EGF (100 ng ml� 1), SB202190 (10 mM), dynasore (80 mM), bafilomycin (200 nM)
and anisomycin (100 mM) were from Sigma-Aldrich; cisplatin (200 mM) was from
Mayne Pharma; PITSTOPII (20 mM) was from Abcam; gefitinib (Iressa/ZD1839,
10mM) was from Astra Zeneca; EGF-AlexaFluor 488 and 647 (200 ng ml� 1),
Transferrin-AlexaFluor 555 (25mg ml� 1) and LysoTracker Red were from Life
Technologies; EGF-horseradish peroxidase (EGF-HRP) (100 ng ml� 1) was made
from biotinylated EGF and streptavidin-HRP (from Life Technologies).

Antibodies for western blotting used were as follows: anti-phospho-EGFR-
Y1068, anti-phospho-EGFR-T669, anti-phospho-p38 and anti-phospho-ERK1/2
from Cell Signaling; sheep anti-EGFR from Fitzgerald; anti-AP2a (a gift from M.S.
Robinson laboratory); anti-Rab11 from Life Technologies; anti-Hrs from Enzo
Lifesciences; anti-Tsg101 from GeneTex; anti-ubiquitin from Santa Cruz; anti-g-
tubulin (a gift from K. Matter lab) and anti-ALIX from Covalab.

Antibodies for immunofluorescence and cryo-immunoEM used were as follows:
anti-EGFR antibody against the extracellular domain of the receptor isolated from
the mouse 108 hybridoma (American Type Culture Collection); anti-Lamp1
(Abcam); anti-EEA1 (Santa Cruz); anti-Rab11 (Life Technologies); anti-LBPA
(a gift from J. Gruenberg lab); rabbit anti-EGFR (Cell Signaling); anti-myc
(Millipore); anti-PMEL fibrillar (HMB45 from Dako); anti-PMEL non-fibrillar
(7E3 from Abcam); anti-PMEL Ct (aPEP13h, a gift from M.S. Marks lab);
anti-GFP (Life Technologies) and sheep anti-EGFR (Fitzgerald).

See Supplementary Table 2 for details of antibody dilutions and catalogue
numbers.

Electron microscopy and cryo-immunoelectron microscopy. Colloidal gold sols
(British Biocell International) were coupled to anti-EGFR 108 antibody by
incubation with antibody at pH 9.3, followed by secondary stabilization with 1%
BSA as described41. Antibody-gold conjugate was diluted in serum-free media
containing 0.2% BSA and incubated with living cells. Conventional EM was
performed as previously described42. Briefly, cells were cultured on Thermanox
coverslips (Agar Scientific), fixed, processed, treated with tannic acid and mounted
on Epon stubs. Epon was polymerized overnight at 60 �C, and the coverslips
removed by heating. 70-nm sections were cut en face and stained with lead citrate
before examination. 3,30-Diaminobenzidine (DAB) reaction to reveal EGF-HRP
was performed as in ref. 43 by incubation of cells in Tris-buffered saline containing
300–750 mg ml� 1 DAB and 0.02% H2O2 for 30 min at 4 �C in the dark.

Cells were prepared for cryo-immunoEM by fixing with 4%
paraformaldehydeþ 0.1% glutaraldehyde in 0.1 M phosphate buffer at pH 7.4 and
pelleting in 12% gelatin. Subsequently, after infusion with 2.3 M sucrose, 80 nm
sections were cut at � 120 �C and collected in 2.3 M sucrose/2% methylcellulose
(1:1 ratio). Sections were immuno-labelled as in ref. 41 by incubating with primary
antibody and gold-tagged donkey anti-goat (Aurion) or gold-tagged protein A
(UMC Utrecht).

Samples were viewed on a JEOL 1010 TEM, and images were acquired in a
Gatan OriusSC100B charge-coupled device camera, and gold particles quantified in
at least five cells per experiment using ImageJ.

Immunofluorescence. Cells were fixed with 4% paraformaldehyde in PBS for
20 min, permeabilized in 0.5% Triton X-100 for 10 min and blocked with 5% BSA
for 1 h. After labelling with primary antibodies o/n at 4 �C, cells were washed in
PBS and incubated with Alexa Fluor-conjugated secondary antibodies for 45 min at
room temperature. All antibody incubations were in 1% BSA in PBS.

For UVCþ EGF sequential endocytosis experiments, HeLa cells were UVC-
exposed and incubated for 1 h in the presence of excess anti-EGFR 108 antibody,
followed by stimulation with EGF-AlexaFluor 488 for 30 min (or with EGF-
AlexaFluor 647 for 3 h in Rab5-Q79L-DsRed-transfected cells), fixed and processed
for immunofluorescence with AlexaFluor 555 secondary antibody to label EGFR.
Note that 108 antibody labels all receptors present at the plasma membrane and

does not significantly dissociate from EGFR following initial binding so that both
non-EGF- and EGF-bound EGFR will be positive for 108.

Coverslips were mounted in Prolong Gold antifade reagent with 4,6-diamidino-
2-phenylindole (Life Technologies) and images were acquired with a Leica DM-
IRE2 microscope and TCS SP2 AOBS confocal system with a 63� /1.4 numerical
aperture oil-immersion objective (Leica). Quantification of co-localization was
performed by measurement of Mander’s coefficient in at least 20 cells per
experiment using ImageJ.

Immunoprecipitation and western blotting. EGFR was immunoprecipitated with
108 EGFR antibody bound to protein G Sepharose Fast Flow beads (Sigma).
Immunoprecipitates were extensively washed and analysed by western blotting.

For western blotting, cells were lysed in lysis buffer [20 mM Tris, 150 mM
NaCl, 1 mM EDTA, 1% NP40 (or Triton-X100), pH 7.4 plus protease inhibitor
cocktail (Calbiochem set I) and phosphatase inhibitor cocktail (Calbiochem set II)];
lysates were fractioned by SDS–PAGE on 10% gels under reducing conditions
and immunoblotted onto nitrocellulose membranes. Bands were detected by
using enhanced chemiluminescence (Pierce) and exposed films developed on a
SRX-101A Film Processor (Konica).

See Supplementary Figure 6 for uncropped scans of blots.

Surface downregulation assay. Approximately 65,000 cells were seeded in six
replicates per condition in a 48-well plate. Cells were serum starved o/n and
following the appropriate treatment, fixed in 4% paraformaldehyde in PBS for
20 min. Half of the wells were permeabilized in 0.1% Triton X-100 for 8 min to
quantify total EGFR level while the other half were left untreated to quantify
surface level of EGFR. Cells were processed for in-cell western with 108 anti-EGFR
antibody followed by IRDye 800CW donkey anti-mouse IgG secondary antibody
(LI-COR) and DRAQ5 (to quantify cell number). Images were taken at 700 and
800 nm with a LI-COR Odyssey Infrared Imaging System and processed in ImageJ.
Integrated density for the same area was quantified for each well and normalized by
cell number.

Neutral red assay. Approximately 20,000 cells were seeded in replicates of eight
for each condition in a 96-well plate. Cells were serum-starved o/n and, following
the appropriate treatment, incubated in 0.005% neutral red solution (Sigma) for
2.5 h to allow for crystal formation. The reaction was stopped in 50% ethanolþ 1%
glacial acetic acid solution to dissolve the crystals. The content of each well was re-
suspended, briefly spun and placed in a new 96-well plate. The absorbance at
550 nm was measured using a plate reader.

TUNEL assay. Cells were fixed, permeabilized in 0.1% Triton X-100 for 5 min and
processed using the In Situ Cell Death Detection Kit, TMR red (Roche) following
the manufacturer’s instructions. Five to ten images were taken in random areas and
a minimum of 200 cells were counted in two replicates per experiment.

MTT assay. Approximately 65,000 cells were seeded in replicates of eight for
each condition in a 48-well plate. Cells were serum-starved o/n and, following
the appropriate treatment, incubated in DMEMþ 0.5 mg ml� 1 MTT reagent
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Sigma) for 3 h to
allow for crystal formation. Medium was removed and cells were incubated for
10 min in dimethylsulphoxide to dissolve the crystals, and absorbance at 570 nm
was measured using a plate reader.
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