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ABSTRACT: One of the main challenges in cancer management relates to the
discovery of reliable biomarkers, which could guide decision-making and predict
treatment outcome. In particular, the rise and democratization of high-throughput
molecular profiling technologies bolstered the discovery of “biomarker signatures”
that could maximize the prediction performance. Such an approach was largely
employed from diverse OMICs data (i.e., genomics, transcriptomics, proteomics,
metabolomics) but not from epitranscriptomics, which encompasses more than 100
biochemical modifications driving the post-transcriptional fate of RNA: stability,
splicing, storage, and translation. We and others have studied chemical marks in
isolation and associated them with cancer evolution, adaptation, as well as the
response to conventional therapy. In this study, we have designed a unique pipeline
combining multiplex analysis of the epitranscriptomic landscape by high-perform-
ance liquid chromatography coupled to tandem mass spectrometry with statistical
multivariate analysis and machine learning approaches in order to identify biomarker
signatures that could guide precision medicine and improve disease diagnosis. We applied this approach to analyze a cohort of adult
diffuse glioma patients and demonstrate the existence of an “epitranscriptomics-based signature” that permits glioma grades to be
discriminated and predicted with unmet accuracy. This study demonstrates that epitranscriptomics (co)evolves along cancer
progression and opens new prospects in the field of omics molecular profiling and personalized medicine.

A significant fraction of cancer-related deaths could be
prevented by improving biomarker-based early detection

of cancer and molecular stratification. A biomarker is an
objectively measured substance, structure, or process that
serves as an indicator of normal or pathological state. As such,
it can be exploited for patient management in various clinical
settings such as disease risk estimation, cancer screening, and
malignancy detection. A wide variety of biomarkers have been
employed so far, including proteins, DNA, RNA, microRNA,
antibodies, peptides, and metabolites.1−4 They can either be
measured from biological fluids (e.g., blood, urine) or directly
from a tumor biopsy. Taken individually, current cancer
biomarkers lack robustness and their variability weakens their
predictive power. To address this challenge, recent advances in
omics approaches combined with the emergence of machine
learning applications5 have spurred the identification of
biomarker signatures, i.e., a set of biomarkers that maximize
the prediction performance.6 Discovery of novel accurate
molecular tumor signature, related to known cellular pathways,
opens the possibility of identifying drug-resistance pathways as
well as new potential targets. Furthermore, the use of more
than one biomarker may strengthen diagnosis accuracy and
facilitate patient stratification. Recently, chemical modifications

of RNA (a.k.a. epitranscriptomics) emerged as a novel layer of
gene expression regulation in healthy tissues (e.g., brain), as
well as in several pathologies such as neurodegenerative
diseases7 and cancer.8,9 In particular, we and others associated
several chemical marks with cancer evolution, adaptation, as
well as the response to conventional therapy.8,10,11 Building on
these observations, we reasoned that several epitranscriptomics
marks may vary along cancer progression and even play a role
in this process. Epitranscriptomics may represent a novel
source for biomarkers. Some studies correlate the level of a
given nucleoside with disease onset or progression (reviewed
in ref 9). Nevertheless, analysis of multiple epitranscriptomics
marks has never been employed for diagnosis purpose.

In this study, we established an experimental procedure for
mass spectrometry analysis of RNA extracted from patient
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biopsies. Resulting raw data was processed by the means of a
bioinformatics pipeline dedicated to multivariate analysis of
RNA marks. We applied this setting for analyzing a previously
established cohort of adult diffuse glioma patients.12,13 Glioma
is the most common malignant tumor of the central nervous
system, characterized by a significant variability in age of onset,
histological and biological characteristics, and prognosis. It can
be classified histologically according to the phenotype of
tumoral cells: oligodendrogliomas and astrocytomas showing
morphology reminiscent of oligodendrocyte and astrocyte
lineage cells, respectively.14 The latter two can be further
ranked based on the consensus World Health Organization
(WHO) classification, which assigns a degree of malignancy,
graded from II to IV. Tumor grading, which describes the level
of differentiation and/or how “normal” the cells look under a
microscope, is the simplest way to determine the potential
severity of the disease. Yet, diagnoses based upon biopsy have
limitations for tumor grading and diagnosis of glioma. Most
particularly, grades II and III cannot be easily distinguished
since intratumor heterogeneity of the tumor grade is not
uncommon in patients treated with extensive surgical
resection.15,16 Grade II designates a low grade, while grade-
III represents a transition toward glioblastoma multiform
(GBM), the most aggressive state. Despite a growing interest
in the field,17−19 not much is known about RNA marks
dynamic throughout glioma progression.

Our study establishes the proof of concept that RNA marks
evolve alongside grading tumor progression. Using machine
learning, we demonstrate the existence of an “epitranscrip-
tomics-based signature” that permits to discriminate glioma
grades with remarkable ease. Finally, we show that a machine
learning procedure on epitranscriptomic profiles can also
predict glioma grading with unmet accuracy.

■ EXPERIMENTAL SECTION
Patients and Tumor Samples. A total of 58 tumors were

surgically resected from adult patients diagnosed with diffuse
glioma. None of the patients received any kind of chemical or
radiation therapy before surgery. All samples were used in
accordance with French bioethics laws regarding patient
information and consent. At the time of resection, for each
tumor, an aliquot was immediately frozen and stored at −80
°C, and the remaining tissue was fixed in 4% formalin as well as
embedded in paraffin, and 3 μm sections were cut and stained
with hematoxylin and eosin. The histopathological type of the
tumor was determined, according to the revised World Health
Organization classification.20 Tumors consisted of grade-II (n
= 20), grade-III gliomas (n = 20), and grade-IV glioblastomas
(n = 18). Control samples (n = 19) originated from
nononcological brain surgeries (epilepsy, benign lesion, etc.).

A specific consent for the study and validated by the
CCPPRB has been signed by the patient or attested to in
writing if the volunteer was unable to sign (e.g., hemiplegic
subjects), by a third party independent of the investigator and
the sponsor (validated in the study protocol). The information
leaflet given to the persons as well as the consent form were
also submitted to the opinion of the CCPPRB, authorizing the
use of the samples and data in the study. This was a Biomedical
Study: This biomedical research was conducted in accordance
with the Declaration of Helsinki, the French Law n° 94-653 of
July 29, 1994 relating to the respect of the human body (article
16-10 of the Civil Code), the Law n° 94-654 of July 29, 1994
relating to the donation and use of elements and products of

the human body, to medical assistance in procreation and
prenatal diagnosis (articles L1131-1 and L1245-2 of the Public
Health Code), and the Law n°88-1138 of December 20, 1988
modified (Huriet-Serusclat Law, articles L1121 to L1126 of the
Public Health Code). It was defined as research without direct
individual benefit. For all samples, two senior pathologists
(V.R. and F.B.V.) performed a double pathological review
independently. Total RNA was extracted from tumor speci-
mens by using the acid-phenol guanidium method. The quality
of the RNA samples was determined by electrophoresis
through agarose gels and ethidium bromide staining, and the
18S and 28S RNA bands were visualized under UV light.

A list of samples is available in “Supporting Information 1:
Cohort description”.
Sample Preparation. RNA Digestion. A 100 ng sample of

total RNA was diluted in a total volume of 20 μL of Milli-Q
water. A 3 μL aliquot of acetic-acid-acidified 0.1 M ammonium
acetate, pH 5.3, and 1U of Nuclease P1 (Sigma, N8630) were
added. Incubation at 42 °C for 2 h was performed. Then, 3 μL
of 1 M ammonium acetate and 1U of alkaline phosphatase
(Sigma, P4252) were added. The mixture was incubated at 37
°C for 2 h. Next, the nucleoside solution was diluted (28 μL
sample + 60 μL solvent A) and was filtrated with 0.22 μm
filters (Millex-GV, Millipore, SLGVR04NL). A 5 μL aliquot of
each sample was injected, and all samples were analyzed in
duplicate by LC-MS/MS.

LC-MS/MS. A mass spectrometer was calibrated to identify
and quantitate accurately 25 modified nucleosides and 4
unmodified nucleosides (A, U, G, C) (Table S2.2). The
nucleosides were separated by Nexera LC-40 systems
(Shimadzu) using a Synergi Fusion-RP C18 column (4 μm
particle size, 250 × 2 mm, 80 Å) (Phenomenex, 00G-4424-
B0). The mobile phase consisted of 5 mM ammonium acetate
adjusted to pH 5.3 with glacial acetic acid (solvent A) and pure
acetonitrile (solvent B). The 30 min elution gradient started
with 100% phase A followed by a linear gradient to 8% solvent
B at 13 min. Solvent B was increased further to 40% over 10
min. After 2 min, solvent B was decreased back to 0% at 25.5
min. Initial conditions were regenerated by rinsing with 100%
solvent A for an additional 4.5 min. The flow rate was 0.4 mL/
min, and the column temperature was 35 °C. The detection
was performed by a Shimadzu TripleQuad 8060 in positive ion
mode. MS was operated in dynamic MRM mode with a
retention time window of 3 min and a maximum cycle time set
at 258 ms. The peak areas were determined using Skyline 4.1
software.

A thorough description of LC-MS/MS calibration is
available in “Supporting Information 2: LC-MS/MS calibra-
tion”.
Data Analysis. Preprocessing and Normalization. Each

sample was measured thrice; we obtained thus three technical
replicates: for each nucleoside, we checked that the
corresponding retention times were homogeneous (less than
6% divergence), and if not, the measures were discarded (both
mcm5U and hm5C were discarded). Then, we computed the
average quantity for each nucleoside and transposed the table
to get all nucleoside measures on one line for each biological
sample. Since these quantities are relative and not absolute
numbers of nucleosides, we normalized them. Because the
quantity of an unmodified nucleoside also varies, this
normalization was not ideal. We reasoned that the sum of
the quantities of A, C, G, and U may be less variable than the
individual quantities. We propose a new normalization (from
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now on denoted by SUM): to divide the quantity of any
nucleoside by the above-mentioned sum.
Exploratory Data Analysis and Machine Learning. The

table of MS data was merged with that containing the grade
information and healthy status (in one column of the
dataframe). First, we computed the pairwise Pearson
correlations between nucleoside quantitites using the corr
function of the Pandas library35 and plotted the heatmap using
the Seaborn library.36 Second, we explored the variability of
any chosen nucleoside quantity with the cancer grade (which
takes four possible values: Normal, II, III, IV) using boxplots
(from Seaborn library). Third, we performed principal
component analysis (PCA) on the vector of nucleoside
quantities relative to those four classes defined by the cancer
grades and the healthy status. We used the Seaborn and
Matplotlib37 libraries for all visualizations; the PCA analysis
and other machine learning were programmed in Python using
the Scikit-Learn library.38

The same dataframe was used for predicting the grades or
healthy status with a support vector machine (SVM) equipped
with a linear kernel and default parameters that were trained
for multiclass predictions. In the evaluation procedure, the
samples of data set were randomly splitted into the training set
(75%) and the test set (25%).

Each step of data analysis is described in detail in
“Supporting Information 3: Data processing”.

■ RESULTS
Experimental Pipeline Description. In order to

investigate whether the RNA modification pattern may evolve
throughout glioma evolution, we employed RNA samples
extracted from a previously established and characterized
cohort including 58 samples from tumor biopsies (grade-II,
-III, -IV gliomas) as well as 19 control samples (C) (n = 77
samples total, Sup. Table 1). We designed an experimental
pipeline dedicated to feed a bioinformatics process with both
experimental and clinical data (Figure 1A).

First, RNA samples (100 ng) are hydrolyzed using a
stepwise enzymatic treatment. Second, the obtained mixture of
nucleosides is analyzed using high-performance liquid
chromatography coupled to tandem mass spectrometry (LC-
MS/MS) (Figure 1 and Table S2.2). Third, a dedicated
bioinformatics process takes over the raw mass spectrometry
data (Figure 1B). This process is then divided into three
blocks: (1) preprocessing and normalization; (2) joint analysis

of LC-MS/MS data with cancer grade variable; (3) machine-
learning-based analysis of epitranscriptomic profiles. Note-
worthily, this process can be adapted to any type of clinical
variable. In our case, we aim at distinguishing the cancer
grades, in particular II and III.15,16

Epitranscriptome Modification Levels Vary with
Cancer Grade. Establishing the epitranscriptome profile of
cancer samples by LC-MS/MS is a novel approach to identify
modified and unmodified nucleosides whose levels are altered
following disease onset and progression. First, we investigate
whether the variations of nucleoside quantities carry
information about the cancer/healthy status and about the
cancer grades. We observed the distribution of nucleoside
quantities from samples belonging to either “control” tissues,
to grade-II, to grade-III, or to grade-IV samples separately and
in this order (i.e., Control < II < III < IV) (Figure 2B).

It appears that variations of quantities according to grades
are similar between subsets of nucleosides: in one subset, the
quantities augment from control toward grade-IV, in another
subset, the quantities diminish from control toward grade-IV,
and in a last subset, the quantities remain stable. This enables
us to group nucleosides exhibiting similar variations relative to
grade, in three groups (Figure 2B). Overall, this clearly
suggests that variations of some individual nucleosides are an
informative signal regarding the distinction of glioma grades.

Several pairs or groups of nucleosides exhibit highly
correlated or anticorrelated measures, suggesting a lot of
redundancy in these variations of quantities (Figure 2A).
Noteworthily, N1-methylguanosine (m1G), queuosine (Q),
and Ac4C behave similarly in a central cluster also containing
N1-methyladenosine (m1A), the four of them being partic-
ularly abundant in tRNA.21 An alternative way of addressing
our current question is to apply principal component analysis
(PCA) on the entire vector of individual nucleoside quantities,
which we term the epitranscriptomic prof ile or simply the prof ile
of a sample. When applied to the full cohort, the PCA shows
that 71% of the observed variations are accumulated on the
first three dimensions (Figure 3 and Table S3.2): clearly, the
percentage of variation observed on each component
diminishes considerably until remaining below 8% after the
fourth component and beyond. This means that we can project
the points on the first three dimensions of this space and still
carry over 70% of the variation (Figure 3). One clearly sees
that control and grade-II samples are grouped together on the
left (above value 0 on PC2), while grade-III and grade-IV
samples are located on the right (above 0 on PC1). Moreover,
on PC3, grade-III points tend to group below value 0, while
grade-IV gliomas group above 0. The overall picture suggests
that individual quantities combined in the epitranscriptomic
profile carry sufficient information to “separate” cancer grades
(“control” and grade-II samples appear to be globally mixed).
Importantly, epitranscriptomics-based PCA analysis is not
biased by age of patients (Figure S3.1).
Machine Learning on Epitranscriptomic Profiles

Predicts Cancer Grade Accurately. Obviously, for patient
management applications, it is natural to ask whether the
information contained in epitrancriptomic profiles is sufficient
to make a grade prediction, and with what accuracy. Next, we
investigate this using machine learning approaches (a class of
AI methods). A support vector machine (SVM) with a linear
kernel and default parameters was trained for multiclass
predictions using a randomly chosen subset of 70% of the
samples (with the entire profiles). The resulting SVM is the

Figure 1. Overview of the method. (A) Experimental pipeline. This
part is broken down into three steps: (1) RNA isolation from
biological sample (tissue or plasma); (2) enzymatic processing of
RNA into nucleosides; (3) injection and analysis by liquid
chromatography coupled to tandem mass spectrometry (LC-MS/
MS). (B) Data processing pipeline.
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classifier: given an epitranscriptomic profile as input, it outputs
a label corresponding to the predicted class (C, II, III, or IV).
The SVM was then evaluated using the complementary subset
of samples. The weighted average accuracy of prediction over
all classes reaches 90% (with an ROC AUC score of 92.7%).

We tested the robustness of accuracy prediction with respect
to the type of ML algorithms and obtained again an accuracy
of 90% using linear discriminant analysis (see Sup Information
3). This confirmed that full epitranscriptomic profiles have

sufficient predictive power to distinguish the “control” status
and the three glioma grades.
Toward an Epitranscriptomic Signature for Glioma

Grading. As illustrated earlier, distinct individual nucleoside
measures behave differently with the cancer grade. Natural
questions arise: are full profiles with 27 measures necessary to
achieve prediction? In comparison to the full profile,
nucleoside measures used in isolation are insufficient for
prediction (Table S3.3). Then, among the 27 measures of the

Figure 2. (A) Pairwise Pearson correlation of nucleoside levels. A central cluster displays several RNA modifications enriched in tRNA (dotted
square). (B) Boxplots of selected nucleoside’s levels throughout cancer grading. Three groups of nucleosides can be distinguished based on their
level along cancer grading.
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profile (termed features in ML terminology), which nucleo-
sides contribute most important to prediction of grades? Given
a classifier, recursive feature elimination (RFE) estimates the
importance of each feature using cross validation and searches
for an optimal number features for the prediction. When
applied to the SVM trained with full profiles, RFE found a
subset of nine features that optimizes prediction: {Cm, Psi, Q,
Um, m1G, m2,2,7G, m5C, m6,6A, m6Am} (Figure S3.2). Given
this selection, we rebuilt the SVM classifier as above but using
a profile restricted to these nine measures and obtained the
same accuracy level of 90% for grade prediction with an
improved ROC AUC score of 98.2%, showing that this
selection is meaningful.

Given the redundancy observed in the full profile due to
correlated measures, it is logical that RFE proposes a reduced
subset. Because RFE (like other feature selection algorithms) is
an iterative and heuristic procedure, the output selection likely
is not unique: other subsets may achieve equally good or
slightly suboptimal scores.

■ DISCUSSION
In this study, we implemented a novel experimental pipeline,
coupling mass spectrometry with machine learning, to study
the RNA marks landscape from patient samples. Applying this
method to the glioma/GBM cohort, we uncovered the
potential of analyzing epitranscriptomics for diagnostic/
prognostic purpose. Several RNA marks have been previously
considered as potential biomarkers, either in isolation or in
small combinations,22−25 but never at such a large scale.

While we established a proof of concept, further
investigations will be required to solidify it for clinical
application, in the context of brain cancer or other pathologies.
This will require access to a larger cohort with refined clinic-
biological data in order to get optimal patient stratification and
an improved AI-based algorithm that ensures better prediction.
For instance, diagnosis of gliomas can be further refined based
on genetic characteristics (WHO 2016 and 2021 Classifica-
tion26) such as isocitrate dehydrogenase 1 and 2 (IDH1 & 2)
mutations,27,28 1P/19q codeletion,29 and histone H3 K27 M
mutation.30 In particular, alterations on chromosomes 7 and 10

as well as mutations of TERT, EGFR, and CDKN2A were
better developed in the last WHO 2021 classification.
Depending on the status of the IDH gene mutation, GBM
can be further classified into three subtypes: primary
glioblastomas (wild type IDH), secondary glioblastomas
(mutated IDH), and unclassified glioblastomas (NOS),
which does not represent a GBM category per se due to its
genetic heterogeneity.31 Considering the emerging role of
IDH1 and other metabolites in regulating RNA modifying
enzymes,32,33 we expect significant changes of RNA chemistry
according to mutation status.

A strength of our approach resides in the use of total RNA,
which facilitates RNA isolation and circumvents the issue of
RNA degradation in frozen tissue.34 The whole process could
be easily automated and provide a prediction in matter of
hours to guide clinical decision-making in support of regular
histological and genomic procedures.

This study is in line with several reports showing the
involvement of given RNA modifications throughout cancer
progression (reviewed in ref 8). Epitranscriptomics-based
signatures could be exploited to identify “essential” RNA
modification whose deposition on specific RNA is a driver of
cancer progression or resistance to conventional treatment.
This may promote the development of novel therapeutic
strategies as illustrated by the recent development of biotech
companies in the field of RNA-chemistry-based therapeutics.
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Figure 3. 3D PCA of epitranscriptomic profiles normalized on SUM.
The number of dimensions was limited to three, since most of the
variance can be attributed to three components (see Figure S3.1).
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