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Abstract: The current chemotherapy of Chagas disease needs to be urgently improved. With this
aim, a series of 16 hybrids of Cinchona alkaloids and bile acids were prepared by functionalization at
position C-2 of the quinoline nucleus by a radical attack of a norcholane substituent via a Barton–Zard
decarboxylation reaction. The antitrypanosomal activity of the hybrids was tested on different stages
and strains of T. cruzi. In particular, eight out of 16 hybrids presented an IC50 ≤1 µg/mL against
trypomastigotes of the CL Brener strain and/or a selectivity index higher than 10. These promising
hybrids yielded similar results when tested on trypomastigotes from the RA strain of T. cruzi (discrete
typing unit—DTU—VI). Surprisingly, trypomastigotes of the Y strain (DTU II) were more resistant
to benznidazole and to most of the hybrids than those of the CL Brener and RA strains. However,
the peracetylated and non-acetylated forms of the cinchonine/chenodeoxycholic bile acid conjugate
4f and 5f were the most trypanocidal hybrids against Y strain trypomastigotes, with IC50 values of
0.5 and 0.65 µg/mL, respectively. More importantly, promising results were observed in invasion
assays using the Y strain, where hybrids 5f and 4f induced a significant reduction in intracellular
amastigotes and on the release of trypomastigotes from infected cells.

Keywords: Cinchona alkaloids; bile acids; hybrids; Trypanosoma cruzi; amastigotes; antiparasitic
activity

1. Introduction

The current pharmacological treatment (i.e., benznidazole (Bz) and nifurtimox (Nf)) against
Trypanosoma cruzi, the etiological agent of Chagas disease, are highly toxic and not effective, especially
during the chronic stage of the disease. In order to find alternative treatments against the disease,
numerous studies have shown that quinoline derivatives display cytotoxic activity against different
protozoan parasites [1–6]. A unique class of quinoline alkaloids are the Cinchona cinchona alkaloids,
which includes quinine, quinidine, cinchonidine, and cinchonine. These naturally occurring compounds
have all shown some degree of anti-parasitic activity, especially against Plasmodium falciparum.
In particular, quinidine is the most active antiprotozoal alkaloid of this family and has been used for
more than 400 years for the treatment of malaria [7].
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With the strategy of combining the anti-parasitic properties of natural Cinchona alkaloids [8]
with the known properties of bile acids as drug transporters [9], a series of 16 hybrids of Cinchona
alkaloids and bile acids were prepared via a Barton–Zard decarboxylation reaction [10] (Table 1). Briefly,
quinine, quinidine, cinchonine and cinchonidine were functionalized at position C-2 of the quinoline
nucleus by a radical attack of a norcholane substituent. All the hybrids showed antiplasmodial activity
(IC50 ≤ 6 µg/mL), particularly those containing a nor-chenodeoxycholane moiety (4b, 4d, 4f, 4h, 5b,
5d, 5f, 5h) with IC50 values comparable to those of the natural alkaloids and selectivity indices in the
range of 5.6–15.7 [10]. In addition, seven compounds (4d, 4f, 4h, 5b, 5d, 5f, 5h) showed promising
trypanocidal activity against T. brucei, with IC50 values in the same range as the commercial drug
suramin [10]. These results prompted us to evaluate the anti-trypanosomal activity of the hybrids
against different strains and stages of Trypanosoma cruzi.

Table 1. Hybrids of Cinchona alkaloids and bile acids were prepared via a Barton–Zard decarboxylation
reaction.

Hybrid (Alkaloyd + Bile Acid) Peracetylated Non-Acetylated

Quinine + Litocholic
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Table 1. Cont.

Hybrid (Alkaloyd + Bile Acid) Peracetylated Non-Acetylated

Cinchonine + Litocholic
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2. Results

A series of 16 hybrids of Cinchona alkaloids and bile acids were prepared via a Barton–Zard
decarboxylation reaction, as previously described [10]. With the aim of evaluating the anti-trypanosomal
differential activity of the hybrids on different stages and strains of T. cruzi, the hybrids were first tested
on trypomastigotes of the reference strain of T. cruzi, the CL Brener strain. In parallel, cytotoxicity
was assayed on NRK cells, a cell line that we have used as an infection model in the past [11]. To this
end, the trypomastigotes and NRK cells were incubated with increasing concentrations of the hybrids
and the calculated IC50 values (Table 2). All the hybrids showed some degree of trypanosomal
activity. In particular, eight compounds—including the peracetylated and non-acetylated forms of the
quinidine/litocholic bile acid conjugate (4c and 5c), the cinchonine/chenodeoxycholic bile acid conjugate
(4f and 5f), and the cinchonidine/litocholic bile acid conjugate (4g and 5g), as well as the peracetylated
form of the cinchonidine/chenodeoxycholic bile acid conjugate (4h) and the non-acetylated form of the
cinchonin/litocholic bile acid (5e)—displayed IC50 values below 1 µg/mL and/or selectivity indices of
greater than 10 (Table 2, in grey).
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Table 2. IC50 values for trypomastigotes and NRK cells were determined as described in Materials and
Methods. The selectivity index (SI) was calculated as IC50NRK/IC50 parasite. Hybrids with an IC50

close to 1 µg/mL and/or a selectivity higher then 10 (in grey) were selected as cytotoxic studies using
other strains and for infection assays (see text). ND: Not Determined.

T. cruzi CL Brener NRK Cells Selectivity
Hybrid IC50 (µg/mL) IC50 (µg/mL) NRK/T. cruzi

5b 0.90 ± 0.10 5.10 ± 0.76 5.67
4b 0.80 ± 0.13 3.91 ± 0.29 4.89
5a 3.71 ± 0.13 15.30 ± 4.04 4.12
4a 0.64 ± 0.15 1.41 ± 0.13 2.20
5d 0.40 ± 0.05 1.59 ± 0.54 3.98
4d 0.72 ± 0.07 3.30 ± 0.08 4.58
5c 0.78 ± 0.11 >11 >10
4c 1.08 ± 0.23 16.53 ± 0.18 15.30
5f 0.34 ± 0.03 4.02 ± 0.55 12.18
4f 0.51 ± 0.06 6.69 ± 1.51 13.04
5e 3.96 ± 2.69 >30 ND
4e 1.16 ± 0.15 7.50 ± 0.29 6.46
5h 0.30 ± 0.00 0.67 ± 0.05 2.23
4h 0.70 ± 0.18 6.50 ± 0.28 9.28
5g 2.56 ± 0.58 27.11 ± 4.54 10.58
4g 1.30 ± 0.01 12.30 ± 0.81 9.46
Bz 2.5 ± 0.01 ND ND

Because of the high genetic variability and phenotypic diversity that T. cruzi presents, the parasite
has been classified into six genetic groups (discrete typing units, DTUs) named TcI–TcVI [12]. The DTUs
present different eco-epidemiological, clinical, and geographic associations, with several genetic
molecular markers that are being used to classify the strains after their isolation from biological
samples [12]. As a consequence of this variability, in vitro and in vivo differential drug susceptibility
among strains has been reported [13–17]. Taking this into account, hybrids presenting an IC50 ≤ 1µg/mL
and/or a selectivity index (SI) ≥ 10 from the screening with CL Brener, were tested on trypomastigotes
from the Y and the RA strains of T. cruzi (DTU II and VI, respectively) (Table 3). Trypomastigotes
of the RA strain (DTU VI) showed a similar response to the treatment with the hybrids than those
of the CL Brener strain, which is another member of the DTU VI. On the other hand, the Y strain
(DTU II) was more resistant to the control drug, the commercial available Bz, and most of the assayed
hybrids. However, the peracetylated and non-acetylated forms of the cinchonine/chenodeoxycholic
bile acid conjugates 4f and 5f had IC50 values of 0.50 and 0.65 µg/mL, respectively, against Y strain
trypomastigotes. It is noteworthy that these results represented a 20–30-fold difference compared to
the IC50 value of Bz.

Not only the genetic diversity among strains should be taken into account while searching for
new drugs. Differential susceptibility of the different life cycle stages of the parasite within the
same strain [18] should be also considered. In this regard, Bz and Nf effectiveness against axenic
epimastigotes and the intracellular stages of T. cruzi have been already reported [19]. Furthermore,
drug sensitivity exhibited by the extracellular forms (i.e., epimastigotes and trypomastigotes) could
sometimes be higher than the sensitivity of the intracellular form of the parasite, in part because of its
intracellular availability [20] More importantly, given that in the chronic phase of Chagas disease, current
chemotherapy is not efficient and that parasitemia is usually low, performing new drug screenings on
the intracellular replicative stage of the parasite appears to be the better approach. To confirm their
anti-parasitic activity, nine of the hybrids were evaluated against intracellular amastigotes of the Y strain
at the IC50 found for trypomastigotes of the same strain. Briefly, trypomastigotes were incubated with
NRK cells and left to infect for two hours. After the infection period, free trypomastigotes were removed
from the medium, monolayers were washed, and media containing the final concentration of the drug
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were added. Forty-eight hours post infection, cells were fixed and stained, and amastigotes/100 cells
were calculated. As shown in Figure 1A,B, a significant reduction in intracellular amastigotes was
observed for the hybrids 4f and 5f compared to untreated infected cells.

Table 3. Hybrid IC50 values for T. cruzi tripomastigote strains from different discrete typing units
(DTUs).

T. cruzi RA (DTU VI) T. cruzi Y (DTU II)

Hybrid IC50 (µg/mL) IC50 (µg/mL)

5c 0.79 ± 0.19 ≥2.00

4c ND ≥1.00

5f 0.31 ± 0.10 0.65 ± 0.07

4f 0.25 ± 0.10 0.50 ± 0.03

4h 1.50 ± 0.50 ≥2.00

5g 3.03 ± 0.24 3.25 ± 0.67

4g 1.10 ± 0.21 3.05 ± 0.71

Bz 2.5 ± 0.32 ≥15.00
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Figure 1. (A) Effects of hybrids on intracellular amastigotes. Hybrids were evaluated at the estimated
parasite IC50 concentration for the Y strain (Table 3). Bars indicate mean ± SE of at least three
independent assays (see Methods). * p < 0.05, ** p < 0.01. (B) Representative microscope photographs
of NRK infected cells treated as indicated.
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To fully eliminate the intracellular parasite, a trypanocidal drug action is ideally desired.
For trypanostatic drugs, a longer chemotherapy is required to allow the elimination of the intracellular
parasite, since the anti-parasitic effect could be reversed upon removal of the drug. In order to
characterize the antiparasitic features of the hybrids, our strategy was to remove the hybrids from
the medium of infected NRK cells and let the infection develop. In this approach, after the two hour
infection of NRK cells with trypomastigotes of the Y strain, compounds were added and left for 72 hours
before being replaced with fresh medium without drugs. Six days post infection, the trypomastigotes
released to the supernatant were quantified. Two different scenarios were expected: 1) Upon removal
of a trypanostatic hybrid, intracellular amastigotes would proliferate, and a higher trypomastigote
release, close to control with no hybrid, would be observed; or 2) the hybrids would have a trypanocidal
effect and non-viable amastigotes would not be able to proliferate, so the trypomastigote count would
decrease. The results from Figure 2 clearly indicate that amastigotes could not recover from the
72 hours of treatment with hybrids 5f and 4f, since the trypomastigote count in the supernatant of
infected cells was significantly lower than non-treated control.Molecules 2019, 24, x FOR PEER REVIEW 7 of 10 
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Overall, the results obtained with hybrids 4f and 5f are promising. These hybrids shown to
be active against amastigotes of the Y strain, presenting a lower IC50 than Bz (Figure 1) and this
anti-parasitic action could not reverse upon removal of the hybrids (Figure 2).

3. Discussion

An alternative approach to the discovery of new drugs to treat old neglected diseases, such
as trypanosomiasis, could be the synthesis of new bioactive compounds through hybridization.
In particular, the synthesis of hybrids of bioactive compounds that combine the properties of their
individual components has emerged as a fast growing methodology in medicinal chemistry [5,10,21].
Following the strategy of combining the anti-parasitic properties of natural Cinchona alkaloids with the
known properties of bile acids as drug transporters, a series of 16 hybrids of Cinchona alkaloids and bile
acids were prepared via a Barton–Zard decarboxylation reaction. It was previously shown that these
hybrids have anti-plasmodial and anti-trypanosomal activity [10]. In addition to these results, in this
work, we have shown the promising trypanocidal activity of the hybrids against trypomastigotes of
different DTUs of T. cruzi, such as CL Brener, RA, and Y. The high genetic variability and phenotypic
diversity among strains of T. cruzi can lead to differential susceptibilities to drugs, suggesting that
a broader screening, including different strains from different DTUs, should be performed in the
search of new therapeutic drugs. In fact, we observed that the trypomastigotes of the Y strain were
more resistant than the trypomastigotes of the CL Brener and RA strains to Bz and most of the newly
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synthetized hybrids. However, hybrids 4f and 5f presented a strong activity against trypomastigotes
of the Y strain, as well. More importantly, a significant anti-parasite activity was found when these
hybrids were tested on Y strain amastigotes, the intracellular proliferative stage of the parasite. This
activity was reflected in a significant reduction in the number of intracellular amastigotes per infected
cell. In addition, the action of hybrids 4f and 5f appeared to be trypanocidal, since amastigotes could
not recover to proliferate and differentiate when the infection was left to develop. This fact that was
reflected in a decreased in the number free trypomastigotes in the supernatant of infected cells after
removal of the hybrids.

4. Materials and Methods

4.1. Cells and Parasites

The NRK and Vero cell lines were routinely maintained in DMEM (Gibco) supplemented with 10%
SFB (Natocor) and Penicillin/Streptomicin (100 Units/0.1mg/mL, Sigma) at 37 ◦C and 5% CO2 atmosphere.
The trypomatigotes of T. cruzi strains CL Brener, Y, and RA were routinely maintained in Vero cells
cultured in DMEM supplemented with 4% SFB and Penicillin/Streptomicin. The trypomastigotes of
each strain were purified from infected Vero cells supernatants and used in the different assays.

4.2. Parasite IC50 Estimation

2 × 106/mL trypomastigotes were incubated with different concentrations of the hybrids, control
drug or vehicle, by triplicate at 37 ◦C and 5% CO2 for 24 h. Next, trypomastigotes were counted in
a Neubauer chamber. The IC50 ± SD (n = 3) were estimated using the “Dose–Response” module in
Graphpad Prism.

4.3. Cells IC50 Estimation

1 × 105/mL NRK cells were grown overnight in a 96 multi-well plate. The culture medium
was replaced by a culture medium containing increasing concentrations of hybrids, control drugs or
vehicles, and cells incubated at 37 ◦C and 5% CO2 for 48 h. Next, cells were washed, fixed for 10 min
with cold methanol (Sintorgan), and stained with violet crystal (Sigma 0.5% in methanol). After an
exhaustive wash, cells were dried overnight. 10% acetic acid (Biopack) was added to each well, and the
absorbance measured at 600 nm. Similarly, a standard curve was prepared (absorbance vs. increasing
concentrations of NRK cells) to estimate the NRK IC50 using Graphpad Prism.

4.4. Amastigote Count

Infections were performed as previously described [11]. Briefly, NRK cells (growing on glass slides
in a 24 multi-well plate) were infected for 2 h with trypomastigotes of the Y strain. After extensive
washing, a medium containing compounds at the corresponding trypomastigote IC50 concentration
(see Table 1) was added. After 48 h of incubation, cells were fixed with 4% formalin, stained with DAPI
and photographed in a fluorescence microscope (Olympus). The amastigotes/100 cells were determined
counting 1000 cells from each well (3000 cells/compound) using the ImageJ cell counter plugin.

4.5. Trypomastigote Release Assay

NRK cells were cultured and treated as described in Section 4.1. At day 3 post infection (pi),
the medium with hybrids was replaced by fresh media (with 4% SFB). At day 6 pi, the released
trypomastigotes in the supernatant of infected were counted using a Neubauer chamber.

4.6. Statistics

In all cases, 3 independent experiments were done by triplicate. In amastigotes count and
trypomastigotes released from infected cells, the results are presented as normalized relative to control
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without drug. The mean ± SD of amastigotes/100 cells or trypomastigote released were calculated and
analyzed with one-way ANOVA with Dunnett posttest performed with Graphpad Prism software.
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