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Abstract: The incidence of allergic diseases is increasing, and research on their epidemiology, patho-
physiology, and the prevention of onset is urgently needed. The onset of allergic disease begins
in infancy with atopic dermatitis and food allergy and develops into allergic asthma and allergic
rhinitis in childhood; the process is defined as “atopic march”. Atopic march is caused by multiple
immunological pathways, including allergen exposure, environmental pollutants, skin barrier dys-
function, type 2 inflammation, and oxidative stress, which promote the progression of atopic march.
Using recent evidence, herein, we explain the involvement of allergic inflammatory conditions and
oxidative stress in the process of atopic march, its epidemiology, and methods for prevention of onset.

Keywords: atopic march; atopic dermatitis; food allergy; allergic asthma; allergic rhinitis; skin barrier
dysfunction; alarmin; group 2 innate lymphoid cells; type 2 inflammation; oxidative stress; specific
biomarker; epidemiology; phenotype; early intervention; emollient

1. Introduction
1.1. Atopic March and Atopic Dermatitis (AD)

“Atopic march” refers to the natural history of allergic diseases. Atopic diseases
of different organs and causal allergens develop sequentially with age; some symptoms
become more prominent over time, while others subside. AD generally develops first,
followed by immunoglobulin E (IgE)-mediated food allergy (FA), allergic asthma (AA), and
allergic rhinitis (AR), which result in increased sensitization to food and/or environmental
allergens (Figures 1 and 2). AD is regarded as the starting point of atopic march [1,2], and
the risks of FA, AA, and AR increase as the severity of AD increases [3–5]. AD develops
in 17–24% of children, and 48% and 89% of the patients develop AD by 6 months and
5 years of age, respectively. The prevalence of symptoms peaks by two years of age [6].
Furthermore, about half of children with AD go into remission by adolescence, while AD
persists into adulthood in the remaining half [1].

1.2. AD, FA, and Epicutaneous Sensitization

The risk of FA onset is six times higher in children with AD than in those without
AD [5]. The prevalence of FA peaks at about 10% at 1 year of age, and specific IgEs
for food allergens are detectable in infants at 1 month of age. In most cases, allergic
sensitization appears to occur before oral intake of food. The Learning Early About Peanut
Allergy (LEAP) screening study showed that as AD severity (assessed by Scoring Atopic
Dermatitis (SCORAD) score) increases, the corresponding rate of cutaneous sensitization
to peanuts, hen eggs, and sesame also increases in 4–10-month-old infants [7]. Moreover,
50% of children with early onset and severe AD had challenge-proven FA by the age of
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12 months [8]. The risk of FA increases remarkably in early-onset and severe AD, especially
within the first 1–4 months after birth [8–10].
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Figure 1. Atopic march. Atopic dermatitis (AD) generally develops first, followed by IgE-mediated 
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Atopic march is the clinical history of atopic diseases in different organs, wherein different causal 
allergens develop sequentially with age. Some symptoms become more prominent over time, while 
others subside. Atopic dermatitis (AD) generally develops first based on genetic predisposition 
and/or environmental factors. The skin barrier dysfunction derived from AD easily allows the aller-
gen to penetrate the body, causing epicutaneous sensitization and type 2 inflammation in some chil-
dren. Then, memory T helper 2 (Th2) cells circulate back to the skin and exacerbate AD. The cells 
then distribute to the gut, lung, and nose. Patients develop food allergy, allergic asthma, and allergic 
rhinitis with increased sensitization to food and/or environmental allergens, resulting in the induc-
tion of atopic march. 

Figure 1. Atopic march. Atopic dermatitis (AD) generally develops first, followed by IgE-mediated
food allergy (FA), allergic asthma (AA), and allergic rhinitis (AR). Development of FA, AA, and AR
correlates with AD severity in infancy.
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Figure 2. The general course of atopic march and the temporal sequence of major factors involved.
Atopic march is the clinical history of atopic diseases in different organs, wherein different causal
allergens develop sequentially with age. Some symptoms become more prominent over time, while
others subside. Atopic dermatitis (AD) generally develops first based on genetic predisposition
and/or environmental factors. The skin barrier dysfunction derived from AD easily allows the
allergen to penetrate the body, causing epicutaneous sensitization and type 2 inflammation in some
children. Then, memory T helper 2 (Th2) cells circulate back to the skin and exacerbate AD. The
cells then distribute to the gut, lung, and nose. Patients develop food allergy, allergic asthma, and
allergic rhinitis with increased sensitization to food and/or environmental allergens, resulting in the
induction of atopic march.
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In addition, positive associations have been shown between the use of skincare prod-
ucts containing wheat or peanuts and the onset of wheat and peanut allergies, respec-
tively [3]. The expression of skin-related homing molecules on allergen-specific T cells
isolated from patients with peanut allergy has also been demonstrated [11,12]. Additionally,
it has been shown that early aggressive use of topical steroids to shorten the duration of
eczema in infants was associated with decreased development of FA [10].

These findings support the presence of epicutaneous sensitization to food allergens
in highly sensitive individuals. The results also suggest that early suppression of inflam-
mation and reduced duration of eczema lowers the chances of epicutaneous exposure
to environmental food allergens, thereby preventing the sensitization and subsequent
development of FA.

1.3. AA and AR in Atopic March

Infants and young children with AD are at great risk of developing AA and AR later
in life, and this risk ranges from 50 to 75% [13]. The prevalence of AA in children with
mild AD is about 20%, but it increases to >60% in those with severe AD [9]. Early onset of
AD was also associated with an increased risk of sensitization to inhalant allergens [13]
and persistence of AA into adulthood. The risk of AA and AR was associated with
age at AD onset and its severity. Unlike sensitization to food allergens, sensitization to
inhalant allergens mostly occurs after infancy. Its annual incidence and prevalence increase
markedly with age after 3 years of age [14], providing a possible explanation for the late
development of AA and AR in atopic march.

Among children with AA, 74–81% have AR [15], and these children tend to manifest
AR earlier in life (2.9 ± 1.7 years of age) [16]. AA was reportedly more severe and harder
to control in children with both AA and AR, and AA was better controlled when AR was
treated. Appropriate management of AR not only alleviates the symptoms of AA, but also
improves airway hyperresponsiveness [17]. According to these findings, AA and AR are
considered to be “one airway, one disease” [18]. The Guidelines on AR and its Impact
on Asthma (ARIA) indicate that proactive intervention for AR is essential for adequately
controlling AA [18,19].

In addition, otitis media, which is highly associated with AR, is an additional part of
atopic march [20]. Mast cells and eosinophils can cause allergic reactions in the mucosa of
the middle ear as well as in that of the airways [21–23]. Allergic asthma and rhinitis activate
eosinophil cationic protein and other allergy-related mediators in the middle ear [22], and
then increase the risk of otitis media with effusion [24].

1.4. FA and Atopic March

In children with FA, the risk of developing AA and AR is 2.1–5.3-fold and 1.6–5.1-fold
higher than in children without FA, respectively. The risk of developing AA or AR has been
reportedly higher in children with multiple FA than in those with a single FA, and was also
higher in children with severe FA (e.g., anaphylaxis) than in those with non-severe FA [25].
Sensitization to food allergens before 2 years of age increased the risk of wheeze/AA
(pooled odds ratio (OR) 2.9, 95% confidence interval (CI) 2.0–4.0), AD (pooled OR 2.7, 95%
CI 1.7–4.4), and AR (pooled OR 3.1, 95% CI 1.9–4.9) [26]. These findings suggest that there
is a risk that additional allergic conditions will emerge from existing allergic conditions
with the progression of atopic march. Therefore, preventing the onset of atopic march
and its progression at an early stage is crucial. There is an urgent need for progress in
research aimed at developing more effective early intervention strategies to ameliorate
these sequential atopic disorders.

2. The Immune Response behind Atopic March
2.1. Skin Barrier Dysfunction and Its Role in AD

The pathological mechanism of AD comprises three aspects: skin barrier dysfunction,
T helper 2 (Th2) immune skewing, and pruritus. In AD, skin barrier dysfunction increases
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irritability due to external stimuli, and the skin becomes more prone to allergen sensitization
and inflammation [27]. Filaggrin is a major protein that fills the cytoplasm of corneocytes.
It aggregates keratin fibers, and its degradation products serve as moisturizing factors,
indicating that filaggrin plays an important role in maintaining skin barrier function,
retaining moisture, and lowering pH [27]. Abnormal barrier function due to filaggrin
gene mutations was confirmed in patients with AD or AA, and filaggrin gene mutations
have been shown to increase the risk of developing early and severe AD, as well as AA in
patients with AD [28]. In addition, the association of the development of atopic march with
abnormal skin barrier function (e.g., due to filaggrin gene mutations) and epithelial cell
(EC)-derived cytokines, such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33,
and IL-25, has been suggested [2,29].

2.2. The Immune Response of Sensitization in AD and Atopic March

Exposure of skin with impaired barrier function to food allergens and dust mites leads
to the release of EC-derived alarmins (TSLP, IL-25, and IL-33) that induce the activation
of immature dendritic cells (DCs) and group 2 innate lymphoid cells (ILC2s), thereby
triggering innate immune responses [30]. DCs that capture allergens migrate to draining
lymph nodes and then process and present allergens to naïve T cells [31]. The naïve T
cells differentiate into allergen-specific Th2 cells to produce high levels of IL-4 and IL-13
after clonal expansion and activation. Th2 cells cooperate with follicular T helper cells to
induce immunoglobulin class switching in B cells under stimulation with IL-4 and IL-13,
thereby enhancing the production of allergen-specific IgE and IgE memory B cells [32,33].
Allergen-specific IgE binds to the surface of effector cells (i.e., mast cells and basophils) via
the high-affinity IgE receptor (FcεRI). Memory pools of allergen-specific Th2 cells and B
cells are also generated during this phase (Figure 3).
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Figure 3. Immunologic mechanisms underlying atopic march. Exposure of skin with impaired
barrier function to food allergens, dust mites, or mechanical damage leads to the release of epithelial
cell-derived thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, which induce the
activation of immature dendritic cells (DCs) and group 2 innate lymphoid cells (ILC2s). DCs that
capture allergens migrate to draining lymph nodes, process allergens, and present them to naïve T
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cells which promote the generation of allergen-specific Th2 cells. Th2 cells produce high levels of
IL-4 and IL-13 after clonal differentiation and expansion and induce B cell isotype switching to
specific IgE cells, thereby enhancing the production of allergen-specific IgE and IgE memory B cells.
Allergen-specific IgE binds to the surface of effector cells (i.e., mast cells and basophils) via the high-
affinity IgE receptor (FcεRI). ILC2 activation further accelerates antigen-nonspecific Th2 immune
skewing; memory pools of allergen-specific Th2 and B cells are also generated during this phase.
Memory allergen-specific Th2 cells circulate and infiltrate the skin, provoking exacerbation of AD,
and entering the systemic circulation where they spread to remote organs. Then, upon re-exposure
to allergens in individuals previously sensitized to the same allergens, diverse atopic disorders are
initiated, resulting in atopic march. Abbreviation: TMEM, memory allergen-specific T helper 2.

Meanwhile, innate lymphoid cells (ILCs), particularly ILC2, are lymphocytes with
helper activities that are involved in innate immunity. In contrast to Th cells, which require
several days for differentiation, ILCs reside as mature lymphocytes in steady-state tissue
and are rapidly and antigen-nonspecifically activated by EC-derived TSLP, IL-25, and IL-33
to induce type 2 immune responses, including IL-5 and IL-13 responses. ILC2 serves as
the initiation point for the onset of allergic diseases, and has also recently been shown to
induce Th2 cell differentiation. Thus, ILC2 is involved not only in the development of
allergic diseases, but also in disease exacerbation and chronicity [34–36].

2.3. Immune Response of Effector Phases in Atopic March

Once sensitization to an allergen is established, re-exposure to the same allergen
induces degranulation of inflammatory mediators upon crosslinking of FcεRI receptor-
bound specific IgE on mast cells and basophils. This induces an immediate-phase reaction
and acute inflammation, followed by a late-phase allergic reaction through activation
of memory allergen-specific Th2 (TMEM) cells [35]. This process is accompanied by the
infiltration or formation of tertiary lymphatic tissues in the dermis of AD, as well as in the
submucosal tissues of AA.

The accumulation of effector cell-derived mediators and activation of TMEM cells with
antigen presentation by DCs and B cells results in an abundance of IL-4, IL-5, IL-9, IL-13,
and IL-31 in lesions. This results in maintaining allergen-specific IgE levels, eosinophilia,
and the recruitment of inflammatory cells to inflamed tissue, all of which induce tissue
damage and increase mucus production and airway hyperresponsiveness in AA (Figure 4).
This process also induces changes in the skin microbiome and reduces filaggrin expression,
thereby accelerating impairment of skin barrier function in AD [33,36,37]. Furthermore,
IL-31 affects sensory nerves and results in marked pruritus. Scratching behavior due to
pruritus further worsens barrier damage. Then, TSLP, IL-25, and IL-33 are released from
ECs, further accelerating Th2 immune skewing via ILC2 [29].

The TMEM cells generated in the sensitization phase are allergen-specific central mem-
ory T (TCM) cells and effector memory T (TEM) cells, and their immunological memory is
maintained for a long period. TCM cells reside mainly in the T cell region of secondary
lymphoid tissue. TCM cells proliferate rapidly and differentiate partly into TEM cells by
re-exposure to the same allergen. TEM cells reside mainly in local lesions (e.g., the lung and
gut) and can produce high levels of Th2 cytokines when re-exposed to the allergen. These
TMEM cells make it possible to activate a rapid immune response. TMEM cells circulate and
infiltrate the skin, exacerbate AD, and enter the systemic circulation, where they spread
to remote organs [2,29,38]. Then, upon re-exposure to allergens in individuals previously
sensitized to the same allergens, diverse atopic disorders are initiated, resulting in the
induction of atopic march.
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Figure 4. Inflammation in the respiratory tract, a distant organ from the skin in atopic march.
Re-exposure to a previously sensitized allergen induces degranulation of inflammatory mediators
upon crosslinking of FcεRI receptor-bound specific IgE on mast cells and basophils. This induces
an immediate-phase reaction and acute inflammation, followed by a late-phase allergic reaction
through activation of TMEM cells. The TMEM cells produce IL-4, IL-5, IL-9, and IL-13 in cooperation
with ILC2s, and lead to maintenance of allergen-specific IgE levels, eosinophilia, and recruitment
of inflammatory cells to inflamed tissue, all of which induce tissue damage and increase mucus
production and airway hyperresponsiveness in allergic asthma. Abbreviations: IL, interleukin; ILC2s,
group 2 innate lymphoid cells; TMEM, memory allergen-specific T helper 2.

3. Possible Involvement of Increased Oxidative Stress Status in the Atopic March

Oxidative stress is defined as an imbalance between the systemic manifestation of
reactive oxygen species (ROS) and the ability of the biological system to readily detoxify
reactive intermediates or to repair the resulting damage [37,38]. ROS are chemically
reactive entities containing oxygen, either as oxyradicals or nonradical species, such as
superoxide (O2

−·), hydroxyl (OH·), alkoxyl (RO·), peroxyl (ROO·) radicals, hydrogen
peroxide (H2O2), nitric oxide (NO·), and peroxynitrite (ONOO−). ROS are produced
by all cell types, such as neutrophils, eosinophils, monocytes, macrophages, cytotoxic
lymphocytes, epithelial cells, endothelial cells, and other resident cells. ROS can be formed
by the action of many enzymes. Any excess of ROS is strictly limited by endogenous
antioxidative defense mechanisms, which contain various enzymes, proteins, and low-
molecular-weight molecules [39].

Disturbances in the normal redox state of cells can cause toxic effects and damage
all cellular components, including lipids, proteins, and DNA. Some ROS act as cellular
messengers in redox signaling [40,41]; therefore, oxidative stress can cause perturbations
in redox signaling mechanisms that control various cellular functions, such as enzyme
activation/inhibition, membrane signal transduction, transcription factor binding/gene
expression, proliferation/apoptosis, and precursor cell ontogeny.

In the preceding sections, the concept of “atopic march” provides a perceptive for the
mechanistic research, prediction, prevention, and treatment of allergic diseases [9,42]. The
mechanisms involved in atopic march, from AD in infancy to other allergic diseases in
later childhood such as AA and AR, likely arise from the induction of local and systemic
type 2 immune responses via epicutaneous allergen sensitization. These findings support
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the view that AD is not merely a disease confined to the skin, but is a systemic disease.
The inflammatory responses induced by AD are manifested by increased production of
type 2 cytokines, such as IL-4, IL-13, IL-25, IL-33, and TSLP [43]. The major characteristics
of these responses are taken over by AA and AR, which manifests the critical feature
mediating the progression of systemic atopy [44].

The etiopathogenesis of atopic march is multifactorial; both the abovementioned
dysregulated immune responses and genetic and environmental factors are implicated
in its progression [9,42]. Because ROS promote tissue inflammation, barrier defects, and
upregulation of genes encoding proinflammatory cytokines, oxidative stress likely con-
tributes to the progression of atopic march [45–47]. The measurement of various markers
for oxidative damage and antioxidants helps to clarify the role of oxidative stress in a
variety of pediatric diseases [39,48]. In previous studies, oxidative stress biomarkers were
determined in samples of blood, urine, nasal lavage fluid, bronchoalveolar lavage fluid,
and exhaled breath condensate (EBC) in children with various allergic conditions [39,49,50].
A summary of these pointe is presented in Figure 5.
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Figure 5. Multifactorial etiopathogenesis and possible involvement of increased oxidative stress
status in atopic march. The temporal pattern of atopic march is generally from atopic dermatitis
in infancy to gradual development into allergic asthma and allergic rhinitis in childhood. While
its pathogenesis is complex, several essential mechanisms likely underlie atopic march. Oxidative
stress is an imbalance between reactive oxygen species (ROS) generation and antioxidative defense
mechanisms with any excess of the former, resulting in macromolecular damage and dysfunction.
Chronically increased oxidative stress may contribute to the progression, persistence, and exacer-
bation of allergic inflammation, thereby resulting in atopic march. This suggestion is mostly based
on previous clinical studies that have indicated the linkage of oxidative damage attributable to
ROS (quantified by measurement of specific biomarkers) to the pathogenesis and progression of
these atopic diseases. Abbreviations: TSLP, thymic stromal lymphopoietin; IL, interleukin; LMW,
low-molecular-weight.

Herein, we refer to leading articles to investigate the role of oxidative stress in atopic
march. For children with AD, a previous study indicated that patients with AD had signifi-
cantly higher levels of serum malondialdehyde (MDA), a marker of lipid peroxidation, as
compared with healthy controls, in addition to significantly lower levels of antioxidants
such as superoxide dismutase, glutathione peroxidase, catalase, and vitamins A, C, and
E [51]. The oxidative stress biomarkers of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG,
a marker of oxidative DNA damage), acrolein-lysine (a marker of lipid peroxidation),
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and bilirubin oxidative metabolites (a marker of antioxidant bilirubin oxidation) were
significantly higher in children with AD than in control subjects [52,53]. It was recently
found that urinary 8-OHdG levels greater than the 75th percentile were associated with
a higher risk of AA as compared with a reference group of the 0–25th percentiles [54]. In
addition, it was found that the dynamic thiol-disulfide balance in the patient group was
weakened, and the balance shifted towards the oxidative side as compared with a control
group. The total oxidant status, disulfide (SS), and disulfide (SS)/total thiol (-SH plus -S-S-)
ratios were significantly increased in blood samples from the patient group, while native
thiol (-SH) and the native thiol (-SH)/total thiol (-SH plus -S-S-) ratio were significantly
decreased [55]. Interestingly, Peroni et al. reported a significant decrease in pH and an
increase in leukotriene B4 and 8-isoprostane (a marker of lipid peroxidation) in EBC in
children with AD, suggesting the existence of airway inflammation in these patients [56].

The role of ROS and oxidative stress in the pathogenesis of AA has been studied for
many years. The lungs are vulnerable to the effects of oxidative stress due to persistent
exposure to allergens and environmental pollutants [46,57–59]. During exacerbation,
asthmatic children had significantly higher serum MDA and significantly lower serum
antioxidants, such as vitamin C, vitamin E, and uric acid as compared with controls. A
significantly negative correlation between MDA and vitamin C was observed in severe
asthmatic attacks [60]. Significantly lower glutathione peroxidase activity in erythrocytes
was also found in children with controlled asthma as compared with healthy controls,
suggesting an association between chronically increased oxidative stress and asthma
in childhood [61]. Significantly increased levels of 8-isoprostane and proinflammatory
leukotrienes were found in the blood, bronchoalveolar lavage fluid, and EBC of asthmatic
children in several studies, and these increased levels tended to be directly correlated with
asthma severity [62–65]. In addition, the MDA levels were significantly higher and reduced
glutathione levels were significantly lower in both nasal and oral EBC samples of asthmatic
children than those of healthy controls [61,66].

For AR, changes in the studied oxidative biomarkers also indicated increased oxidative
stress status in children with AR. The levels of MDA in erythrocytes and hydroperoxides
in plasma were significantly increased, and those of superoxide dismutase and catalase
in erythrocytes and total antioxidant status in plasma were significantly decreased in the
patients as compared with healthy controls [67]. Total oxidant status and total peroxide
concentration in plasma were both significantly higher in children with AR than in healthy
controls [68]. MDA levels were significantly higher and reduced glutathione levels were
significantly lower than those in healthy controls in both nasal and EBC samples [66].
The plasma paraoxonase 1 levels were significantly lower in children with AR than in
controls and the total oxidant status levels were significantly higher. Significantly negative
and positive correlations were observed between these respective parameters and nasal
symptom scores in the patients [69].

The above results in previous studies likely confirm the hypothesis that sustained
oxidative stress contributes to atopic march. Considering that increased oxidative stress
is part of the driving mechanism for chronic inflammation and disease progression and
exacerbation, targeting oxidative stress with antioxidants might be a logical approach to
attenuate or halt atopic march [58,70]. Reduction of oxidative burden on these children
using a variety of nutritional and pharmacological approaches might hold promise for
this purpose. However, before antioxidative therapy is accepted in clinical practice, it is
necessary to characterize children at high risk for atopic march using specific oxidative
biomarkers (e.g., blood or urinary levels of 8-OHdG or 8-isoprostane, blood levels of MDA,
total hydroperoxides, dynamic thiol-disulfide balance, or antioxidative enzymes in plasma
or erythrocytes). Furthermore, longitudinal studies should be conducted to evaluate panels
of oxidative stress biomarkers together with traditional clinical endpoints in these pediatric
patients [39].
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4. Atopic March and Challenges in Epidemiological Studies

According to the observations of epidemiological studies, AD in early infancy is
followed by AA and AR later in life; thus, atopic march was proposed to describe the
typical order of progression of the development of AD, AA, and AR. For example, Sporik
et al. followed a cohort of children at risk of atopic disease and reported a decrease in
the prevalence of eczema and an increase in the prevalence of AA and AR with age [71].
Moreover, using a birth cohort study of 826 children, Martinez et al. reported that eczema in
the first year of life was an independent risk factor for persistent wheezing [72]. Although
AA and AR generally develop later in atopic march than AD, various epidemiological
studies have also strongly suggested a correlation between AA and AR [73]. For example,
Shaaban et al. proposed that AR is a strong predictor of AA in adults, even in the absence of
AD [74]. Furthermore, a cohort study of children with AA alone suggested the existence of
a “reverse” atopic march in which AA precedes AD [75]. Others have proposed that FA may
also be related to AA and/or AR, either through AD or a different mechanism [26]. Thus,
the interrelationships among pediatric allergic diseases are more complex than initially
suggested in early epidemiological studies.

In recent years, longitudinal epidemiological studies, including larger birth cohorts,
have shown that the sequence of progression of allergic disease at the individual level is
complex and varied. According to a review of 13 prospective cohort studies, only one
in three children who presented with eczema in infancy developed AA in early child-
hood [76]. This may be related to the complexity of the situation, wherein each allergic
disease is composed of different phenotypes. To address these issues and determine a
trajectory that predicts the prognosis of individual patients, it is necessary to specify the
phenotype of each allergic disease. Mechanisms of the Development of Allergy (MeDALL),
the Seventh Framework Program (FP7) of the European Union project, integrated several
European birth cohorts and investigated the complexity of these allergy phenotypes using
unsupervised statistical models, such as exploratory factor analysis, hierarchical cluster-
ing, and latent class analysis (LCA). MeDALL proposed a new vision of multimorbidity
independent of IgE sensitization and showed that monosensitization and polysensitization
are two distinct phenotypes [77]. Subsequently, latent class growth analysis (LCGA) and
longitudinal latent class analysis (LLCA) identified 3–5 different wheeze trajectory groups
among children aged 0–18 years [78].

Recently, Ödling et al. applied LCA to AA trajectories from infancy to young adult-
hood and identified four distinct trajectory groups and their background factors: class 1
(no/infrequent AA) had the highest proportion of breastfeeding for more than 4 months,
class 2 (early onset transient AA) had the highest proportion of parental smoking, and
class 3 (adolescent-onset AA) had the highest proportion of women. Meanwhile, class 4
(persistent AA) had the lowest proportion of women, and almost half had a family history
of allergic disease. The study reported that participants with early allergic comorbidities
fell into the class 3 or 4 trajectory groups, which is consistent with the phenomenon of
atopic march. One-third of classes 3 and 4 had eczema in early childhood and were sen-
sitive to food allergens. More than two-thirds of both classes were sensitized to inhalant
allergens during adolescence and young adulthood [79]. By identifying and systematizing
the different phenotypes of each allergic disease in this way, it is possible to predict the
sequence of allergic disease progression more accurately at the individual level.

In addition to identifying the variations in the possible complex pathways, it is impor-
tant to understand how genetics and environmental factors contribute to each pathway.
Once the factors that can be used for intervention have been identified, steps can potentially
be taken to prevent the progression of allergic diseases. The Multicenter Allergy Study
(MAS) in Germany highlighted the role of risk from allergen exposure and identified a
number of possible environmental factors, such as viral infections and indoor allergens. For
example, children sensitized to airborne allergens before 3 years of age had a substantially
increased risk of AA and lower lung function in later life [80]. Cluster analysis revealed that
the risk of AA was highest in the group sensitized to airborne allergens by 1 year of age [81].
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In addition, the Childhood Origins of ASThma (COAST) cohort and others showed that
preschool wheezing associated with rhinovirus infection significantly increased the risk
of future AA [82,83]. Family or twin studies are ideally suited to assessing the respective
contributions of genetics and the environment. Kahn et al. conducted a systematic review
of sibship and twin data and showed that genetics played a greater role than environment
in the progression from eczema to AA and/or AR, and that the link between eczema and
AA and AR was independent of shared environmental factors in early life [84].

The phenotypic diversity and interrelationships of allergic diseases make it challenging
to elucidate their trajectories and predict individual prognoses (Figure 6). However, given
the recent rapid increase in the prevalence of allergic diseases, systematizing the trajectory
of allergic diseases in the light of phenotypes and research on genetic and environmental
factors is a high priority. Recent epidemiological studies using big data have the potential
to contribute to this area.
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5. Prevention of Atopic March
5.1. Prevention of the Onset of AD

AD has been reported to increase the risk of developing other allergic diseases, that is,
AD can be the starting point for allergic marches [5]. To date, clinical studies have been
conducted to prevent the onset of AD, such as food removal during pregnancy and lacta-
tion [85], long-term breastfeeding [86], ingestion of hydrolyzed milk during infancy [87],
and environmental improvement aimed at avoiding tick antigens [88]. However, their
effectiveness has been denied by meta-analysis. Allergen immunotherapy for mites in
high-risk babies also did not prevent the onset of AD [89].

The effectiveness of nutritional therapies such as vitamin D, fish oil, and probiotics
has also been examined. A correlation between a decrease in blood vitamin D level and
an increase in the incidence of AD was reported, but a randomized comparative study
on the prevention of AD by vitamin D supplementation showed no preventive effect [90].
Oral administration of fish oil to high-risk pregnant women suppressed the onset of AD at
1 year of age, but there was no significant difference at 3 years of age. In addition, it has
been reported that administration of probiotics reduced the risk of developing AD [91].
The World Allergy Organization Guidelines Panel suggests using probiotics for pregnant
women and infants at high risk of allergies, but the evidence of benefit is still uncertain.
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AD is triggered by barrier dysfunction and environmental factors. According to the
barrier dysfunction due to mutation of the filaggrin gene and dual allergen exposure
hypothesis, it has been noted that skin barrier protection is effective as a preventive method
for AD. On the one hand, in a randomized controlled trial (RCT) of high-risk newborns with
a family history of AD in Japan, the prevalence of AD at 32 weeks of age was suppressed
by 32% in a group in which the moisturizer was applied to the whole body every day as
compared with a control group [92]. In addition, in the United Kingdom (UK) and the
United States RCTs of high-risk newborns within 3 weeks of age, the cumulative incidence
of AD at 6 months of age was reduced in a group with systemic moisturizer application
as compared to a control group [93]. In a comparative study of newborns, the use of
moisturizers up to 3 months of age reduced infancy AD [94]. In the Barrier Enhancement
for Eczema Prevention (BEEP) study, skin care by systemic use of moisturizers started from
the neonatal period significantly suppressed the onset of AD at 6 months of age as compared
with a non-use group [95]. On the other hand, in the Preventing Atopic Dermatitis and
ALLergies in childhood (PreventADALL) study, systemic use of moisturizers in high-risk
infants from the neonatal period could not prevent the onset of AD [96]. In a pilot study of
the PEBBLES study in Australia [97], a protocol using a moisturizer containing ceramide
twice a day suppressed the sensitization of food allergens at 12 months of age, although
there was no significant difference [98]. Differences in these RCT results are thought to be
due to differences in intervention methods for skin barrier disorders and differences in the
background of the target child. More detailed RCTs are desired in the future.

5.2. Prevention of the Onset of FA

Some children that develop AD during infancy are often already sensitized to food
antigens. It is also common for fully breastfed infants to be sensitized to eggs and milk
before the start of weaning food. Previously, it was expected that mothers could prevent
infant AD and FA by preventing sensitization to food antigens during the fetal and lactation
periods. However, the removal of food from pregnant and lactating mothers did not prevent
the sensitization of food antigens in the offspring or the development of AD [83,97,98]. It is
not recommended for mothers to remove food during pregnancy or lactation to prevent the
development of FA, because food removal can lead to harmful nutritional disorders for the
mother and baby.

Many children with FA have AD in infancy, suggesting a decrease in skin barrier function
and the presence of eczema as a risk factor for percutaneous sensitization to food antigens. Skin
care for AD may suppress the development of allergen sensitization and FA. Unfortunately,
in an RCT in Japan, there was no significant difference in egg white/ovomucoid sensitization
rates at 32 weeks of age due to infancy skin care interventions [92].

The results of a birth cohort study clarified that delaying feeding babies baby food
increases the incidence of FA [99]. A comparative study in Israel and the UK also showed
that the UK, which started peanuts as a weaning diet later, had a 10-fold higher prevalence
of peanut allergies than Israel, which started earlier [100]. In an Australian cohort study,
the odds ratios were 4.4 for children who started eating eggs at 7 months of age and 5.9 for
children who started eating eggs at 12 months of age, as compared with those who started
eating eggs at 4 months of age [101]. A cohort study in Israel showed that infants who
started milk containing milk protein after 2 weeks of age had a higher risk of milk allergies
than those who started milk containing milk protein by 2 weeks of age [102]. It has also
been reported that infants who were completely breastfed until the first month of life had
significantly more milk allergies, and infants who had been fed artificial milk daily from
an early stage had significantly fewer milk allergies [103]. Delaying the onset of certain
foods for high-risk babies is not currently recommended, because it does not reduce the
risk of developing the disease.

On the basis of the findings of observational studies that delaying baby food increases
FA, various RCTs have been conducted on the effect of early food antigen intake on
the prevention of FA. In the Enquiring About Tolerance study in the UK, the rates of
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sensitization and onset of FA were compared between a group of six types of foods (milk,
chicken eggs, wheat, sesame, fish, and peanuts) for children who were completely breast-
fed, a group that started ingestion by 5 months of age, and a group who started ingestion
after 6 months of age. As a result of analysis only in infants who could comply with the
protocol, a decrease in the sensitization and incidence rates of chicken eggs and peanuts
were observed in the early introduction group [104]. However, more than 60% of the
participants dropped out, and no clear conclusion was reached regarding the early start of
baby food. However, in a UK LEAP study of high-risk infants, the prevalence of peanut
allergies at 5 years of age was lower in the early peanut intake group than in the non-
ingestion group (17.2% vs. 3.2%) [105,106]. Currently, in countries where the risk of
developing peanut allergies is high, peanut intake should be started as soon as possible
during the weaning period of babies [107].

Furthermore, for chicken egg allergy, several RCTs have been conducted to verify
the prevention of onset by early ingestion. In the Australian STAR study, infants with a
history of AD who received raw egg powder from 4 months of age had a lower incidence
of egg allergy at 12 months of age than those who did not. However, this result was not
statistically significant, and 30% of the infants developed allergic symptoms due to raw
egg intake [108]. In addition, the Australian STEP study investigated the prevalence of egg
allergies at 12 months of age between an intake group and a non-ingestion group of raw
egg powder in infants aged 4–6 months who had no history of allergies; however, there
was no significant difference [109]. In a HEAP study in Germany, there was no significant
difference in the incidence of chicken egg allergy between a group receiving a moderate
amount of raw eggs and a placebo group in infants who were not sensitized to eggs [110].
In an Australian BEAT study in 4-month-old infants who were not sensitized to eggs,
there was no significant difference in the incidence of chicken egg allergy between a group
receiving a small amount (350 mg) of raw eggs and a placebo group [111].

However, a PETIT study in Japan conducted an RCT of 4-month-old babies with AD,
who maintained eczema remission with aggressive skin care [112]. The incidence of egg
allergy was significantly reduced in a group that started ingesting a small amount of dried
egg powder from 6 months of age as compared with a group in which the intake of eggs
was removed until 12 months of age (8.3% vs. 37.7%). This study was conducted safely,
without any allergic reactions due to egg intake. It is speculated that the combined use of
aggressive skin care has a preventive effect on the onset of egg allergy. A systematic review
that comprehensively analyzed multiple RCTs concluded that early weaning (4–6 months)
intake of eggs and peanuts reduced the risk of developing egg and peanut allergies.
The American Academy of Pediatrics found that delaying the introduction of allergenic
foods beyond the introduction of baby food at 4–6 months of age could prevent atopic
disease [113]. In particular, for peanuts, early intake can prevent allergies. In addition,
the European Society of Pediatric Gastroenterological and Liver Nutrition states that baby
food should be started 4–6 months after birth, and foods with high allergenicity may be
introduced after 4 months [114]. Currently, weaning guidelines in various countries and
regions have similar descriptions (Table 1).

Table 1. Guidelines and recommendations for early intake of eggs and peanuts in each country.

Country Organization Targeted Children Recommended Age
to Start Peanuts

Recommended Age
to Start Chicken Eggs Reference

United States NIAID Eczema or egg allergy 4–6 months old n.d. [115]
European countries ESPGHAN Eczema or egg allergy 4–11 months old n.d. [114]

Australia ASCIA All children By 12 months old By 8–12 months old [116]
Japan JSPACI Atopic dermatitis n.d. 6 months old [117]

Asian countries APAPARI Severe eczema n.d. 4–6 months old [118]

Canada CPS
Eczema or family
history of allergic

diseases
6 months old 6 months old [119]

Abbreviations: NIAID, National Institute of Allergy and Infectious Diseases; ESPGHAN, European Society for Paediatric Gastroenterology
Hepatology and Nutrition; ASCIA, Australasian Society of Clinical Immunology and Allergy; JSPACI, Japanese Society of Pediatric Allergy
and Clinical Immunology; CPS, Canadian Pediatric Society; n.d: not described.
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6. Conclusions

Because there are complex interrelationships among pediatric allergic diseases in
atopic march, it is important to not only understand the genetic and environmental factors
involved in each allergic disease, but also to elucidate the causes of allergic diseases from
the perspective of atopic march as a whole. In this article, we have outlined atopic march
from various perspectives including not only skin barrier dysfunction and immunological
pathology, but also oxidative stress involvement, epidemiological classification of each
phenotype, and effective early intake of causative foods. In the future, epidemiological
studies using big data and various research approaches to investigate factors involved
in the onset and progression of atopic march will lead to new preventative measures for
this phenomenon.
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