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Fluorescence intermittency originates from
reclustering in two-dimensional organic
semiconductors
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Fluorescence intermittency or blinking is observed in nearly all nanoscale fluorophores. It is

characterized by universal power-law distributions in on- and off-times as well as 1/f

behaviour in corresponding emission power spectral densities. Blinking, previously seen in

confined zero- and one-dimensional systems has recently been documented in two-dimen-

sional reduced graphene oxide. Here we show that unexpected blinking during graphene

oxide-to-reduced graphene oxide photoreduction is attributed, in large part, to the redis-

tribution of carbon sp2 domains. This reclustering generates fluctuations in the number/size

of emissive graphenic nanoclusters wherein multiscale modelling captures essential experi-

mental aspects of reduced graphene oxide’s absorption/emission trajectories, while simul-

taneously connecting them to the underlying photochemistry responsible for graphene

oxide’s reduction. These simulations thus establish causality between currently unexplained,

long timescale emission intermittency in a quantum mechanical fluorophore and identifiable

chemical reactions that ultimately lead to switching between on and off states.
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O
bserving chemical reactions as they occur reveals unfore-
seen connections. An in situ fluorescence experiment
monitoring single cholesterol oxidase molecules observed

non-Markovian rates of reversible reactions. This indicates
a form of memory in the system which influences future
reaction dynamics1.

For decades, researchers have been trying to determine the
finite states of a system undergoing fluorescence intermittency,
a phenomenon in which a fluorophore consistently cycles
between power-law distributed bright periods and power-law
distributed dark periods. Many models have been developed
to explain the contrast between fast radiative recombination
(ns) and slow timescales seen in fluorescence intermittency
(s-min)2–6. One of the first and most widely used microscopic
models assumes that the dark state is charged7,8, and it is often
invoked to justify the existence of long intermittent periods in
colloidal quantum dot blinking trajectories. In this model, an on-
to-off transition occurs due to Auger ionization of a nanocrystal.
The implicit assumption is that a charged quantum dot remains
non-emissive until neutralized by return of the ejected electron.
Although some of the predictions of the original Efros–Rosen
model are in contradiction with experiments9,10, recent work
by Osad’ko et al.8 showed that a modified version of the
charging model is consistent with power-law kinetics. However,
as shown by Guyot-Sionnest9, charged quantum dots are
emissive, and alternative blinking scenarios also have to be
considered. Quantum dot blinking has also been attributed to
light-induced surface ligand reorganization11 and even to light-
induced defect rearrangement in nanocrystals12. Beyond
quantum dots, blinking has been observed in a host of other
systems. Examples includes instances of fluorescence interm-
ittency in single molecules13 and in single polymer strands14.
Explanations for blinking in these other systems hence range
from surface electron (hole) traps to oxidation. Consequently,
within the broader context of single-particle microscopy, and
even within the realm of quantum dot blinking, there exists no
consensus as to the microscopic origin of blinking.

Graphene oxide (GO) is a 2D material formed by the oxidation
of graphene15. Unlike graphene, GO possesses a band-gap
that gives rise to strong fluorescence in the visible spectrum16

that can be tuned by gradual reduction into reduced
graphene oxide (rGO)17. Prior single sheet absorption and
emission microscopy/spectroscopy studies18,19 have shown
that this novel system’s photophysical properties evolve drama-
tically during photoreduction; GO’s emission first quenches and
then brightens under continuous 405 nm irradiation. This
behaviour is linked to reduction monitored through
synchronous absorption microscopy, emission spectroscopy,
and ensemble characterization techniques18,19. Intriguingly, the
brightening phase is punctuated by spatially heterogeneous
fluctuations in emission intensity with 1/f power spectral
densities (PSDs) typical of fluorescence intermittency (cf. Supple-
mentary Movie 1)20. Although the multiple recombination center
model21 provides a phenomenological framework for the 1/f
power spectrum observed experimentally, it does not provide
a microscopic mechanism for blinking. Our paper provides
a definitive link between blinking in rGO and photostimulated
carbon etching.

In the current study, concerted single-particle optical micro-
scopies are coupled to multiscale spatial (nm2–mm2) and
temporal (ms–h) simulations of relevant photolytic reactions to
demonstrate how the chemical reactivity of individual graphene
oxide sites leads to different reduced graphene oxide domain
structures exhibiting distributed absorption and fluorescence
properties. The agreement between simulation and experiment
additionally grows with model parameterization until new

optical behaviour, fluorescence intermittency, emerges from rules
governing single chemical reactions. This has broader implica-
tions beyond GO/rGO blinking since despite the nearly three
decades of work on the matter22,23, the current study is the first to
link blinking to a definitive chemical process. To determine if
rGO’s blinking and reduction mechanism are implicitly
connected, we have carried out multiscale theoretical modelling
of GO-to-rGO interconversion. Figure 1 shows density functional
theory (DFT)/time-dependent density functional theory
(TDDFT) and Kinetic Monte Carlo (MC) simulations which
connect the photoreduction-induced, structural evolution of GO
to the optical response of its individual sp2 domains. GO
features a sp2-coordinated carbon honeycomb lattice, which
contains vacancies, defects and functional groups distributed
across its basal plane and edges. Different models15,24–27

suggest that epoxide (COC) and hydroxide (COH) groups
predominantly decorate GO’s basal plane while edges are
carbonyl- (CO), carboxyl- (COOH) or hydrogen-terminated.
Consequently, graphenic domains are embedded within a
disordered, sp3-hybridized matrix with photolytic reduction
leading to GO-to-rGO interconversion through changes to the
local number, size and overall density of aromatic sp2

clusters15,17,28.

Results
Optical properties of individual graphenic domains.
DFT/TDDFT29 are first used to establish minimum transition
energies, absorption cross-sections/emission intensities and
quantum yields (QYs) for a series of successively larger
graphenic clusters: C24H12, C54H18, C96H24, C150H30 and
C216H36. Clar’s pioneering work30 demonstrated that the optical
response of polyaromatic hydrocarbons (PAHs) depends
exquisitely on the number of carbon atoms as well as the
maximum number of possible aromatic sextets. Different PAHs,
which conserve the number of carbon atoms and aromatic
sextets, possess near identical optical properties. Consequently,
the chosen graphenic clusters enable construction of a calibration
curve, linking sp2 domain size to QY and spanning the visible
spectrum. Corresponding graphenic cluster emission energies
(QYs) are 4.16 eV (31.8%), 2.90 eV (12.5%), 2.18 eV (4.52%),
1.69 eV (1.25%), and 1.32 eV (0.092%) respectively16,31,32.

Simulation of photoreduction with kinetic Monte Carlo.
MC simulations then model the evolution of GO’s graphenic
clusters during photoreduction (cf. Supplementary Figs 2 and 3).
A 20 nm� 20 nm carbon honeycomb lattice is first generated
whereupon functional groups are incorporated into the lattice by
randomly placing hydroxide and epoxide groups across the basal
plane. Three chemical reactions are simulated to evolve the lattice
during reduction: hydroxyl abstraction equation (1), 1,3 epoxide
abstraction equation (2) and direct carbon sublimation
equation (3) (refs 33,34).

CnOH! CnþOH; Rate Constant ¼ kOHð Þ ð1Þ

CnO! Cn� 1þCO; Rate Constant ¼ kOð Þ ð2Þ

Cn ! Cn� 1þC; Rate Constant ¼ kCð Þ ð3Þ

Although the actual chemical reactions which occur during
GO photoreduction are more complicated and numerous34,
equations (1–3) produce photoreduction and lattice disintegra-
tion which dictate GO’s long-term structural evolution15,16,28.
Additional details regarding the parameterization can be found in
Supplementary Notes 1 and 2.
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Optical properties of clusters in MC. DFT/TDDFT results
are incorporated into MC simulations. Specifically, graphenic
clusters, possessing suitable emission energies and QYs to
be experimentally observed, are monitored. The absorption of an
individual graphenic domain is proportional to its sp2 carbon
content while its corresponding emission intensity is the product
of its absorption cross-section and associated QY. C24H12

and C216H36 have emission energies outside the visible
range. Therefore, only clusters in the range of 50 to 150 carbon
atoms contribute significantly to the observed emission
(cf. Supplementary Table 1; Supplementary Fig. 1). Counter
intuitively, smaller clusters emit more despite their lower
absorption cross-section. By adding the response of all spectro-
scopically relevant graphenic clusters within suitably large areas
of the GO lattice, theoretical emission/absorption intensity
time trajectories are obtained, which can be directly compared
to experiment18.

Emission and absorption time trajectories. Figure 2a shows
emission/absorption trajectories resulting from using equations
(1–3) (kOH4kO4kC) in the MC simulation. The percentage of
epoxide:carbon (COC:C) has been varied from 0 to 25% to find
the trajectory in best agreement with experiment. This yields an
optimal 20%, consistent with previous studies showing C:O ratios
between 4:1 and 2:1 if one assumes that half of the oxygen is in
epoxide form ref. 15. In all cases, remaining sp2 sites have been
OH decorated.

Figure 2b compares an experimental emission/absorption
trajectory to the best match from Fig. 2a (20% epoxide).
This value was chosen by comparing absorption maximum
and valley-to-peak emission intensity ratio. Evident in either
case is that the emission exhibits an initial decay, followed by
a low plateau. Meanwhile, the absorption exhibits an initial
rise followed by a high plateau. The emission then exhibits
a second photobrightening peak with blinking prior to apparent
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Figure 1 | Cascade of domain and length scales used in this study. Optical properties of each size range are connected to the next larger size range.

Colour is used to represent emission intensity as indicated by the scale bar on the right. (a) Typical domain used in DFT calculations to characterize

the absorption/emission properties of individual carbon nanoclusters; (b) Structure of GO at a specific time-step generated by MC simulation;

(c) A 200� 200 nm composite of 100 MC-simulated domains equivalent to the optical response of one pixel monitored in the experiment;

(d) time-averaged emission intensity for one sample used in the study. Scale bar, 0.2 nm (a); 2 nm (b); 20 nm (c); and 2 mm (d).
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Figure 2 | Comparison of experimental and MC time trajectories. (a) Theoretical emission/absorption trajectories for different epoxide concentrations

determined by the ratio of epoxide to total carbon content (COC:C). (b) Typical experimental emission/absorption trajectory compared to the best

theoretical trajectory from a (ref. 18). (c) Close-up of emission profile during the blinking phase. (d) Emission versus absorption correlation plots.
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photobleaching and irreversible sample damage. While
the emission is intermittent, the absorption follows a smooth
decay18.

The calculated emission trajectory remarkably reproduces
the two-peaked structure of the experiment. In addition, the
optimal epoxide percentage simultaneously reproduces
the maximum absorption value of the experiment (1.2%)
and the emission valley-to-peak ratio. The simulations indicate
that the first peak in the emission trajectory arises from
OH removal, equation (1). The plateau stems from COC removal,
equation (2). The final photobrightening peak occurs due to the
sublimation of carbon, equation (3) (cf. Supplementary Fig. 4;
Supplementary Movie 2).

Local structure model of carbon sublimation. Given that
blinking occurs during carbon sublimation, we focus on more
realistically modelling this phenomenon by allowing carbon
sublimation rate constants to differ. This accounts for the varied
local structure found in GO/rGO (for example, singly coordinated
sites versus armchair edges, zigzag edges and triply coordinated
sites). Specifically, we set kC14kCarm4kCzig4kC3 in equation (3),
and this parameterization is used in simulations yielding
Figs 2c,d; 3 and 4.

Figure 2c shows the resulting superb agreement with experi-
ment. Not only is clear intermittency evident in the calculated
trajectories but the magnitude of intensity fluctuations is
comparable to experiment.

Since emission and absorption are intimately tied to
sp2 domain structure, the improved emission versus absorption
correlation shown in Fig. 2d, reveals that the local structure
model for carbon sublimation reproduces the number and size
distribution of sp2 domains that were created in the experiment
both leading up to and during blinking.

Blinking from carbon sublimation. In Fig. 3, the frequency
domain has been used to elicit features of fluorescence inter-
mittency in the experimental and MC trajectories. Figure 3a,b
show the trajectories after Fourier filtering. This process removes
the long-term evolution of GO’s emission and more clearly
reveals the fluorescence intermittency that is present. Blinking
begins and ends at approximately the same time in the MC and
the experiment. This leads us to conclude that the MC simulation
captures the key difference between the stable emission and the
fluorescence intermittency phase of the system.

Subsequent analyses of their power spectral densities reveal that
both simulated and experimental trajectories exhibit
1/f a power-law behaviours (Fig. 3c). Experimental and theoretical
power-law exponents of 0.5oao0.9 and a¼ 1.9 are found, which
fall within the range of exponents (that is, 0.5 to 2.0) typically seen
for other nanoscale emitters exhibiting fluorescence intermittency2.
The quantitative discrepancy between experiment and theory is
narrowed by including Poisson noise. In this regard, Poisson noise
accounts for counting statistics and also provides a simple model
for intensity fluctuations arising from reversible reactions. The
latter, in particular, stems from dynamic changes to the number of
emissive domains, which contribute to the overall observed
emission intensity. Including counting statistics to the Monte
Carlo simulation reduces its power-law exponent to 0.7 , which is
closer to the range of exponents seen in the experiment.
Furthermore, after including cluster fluctuations to model
reversible processes, we recover substantial spectral weight at
high frequencies. Additional details regarding the effect of Poisson
noise on the Monte Carlo results and the methods used to calculate
PSDs can be found in Supplementary Figs 5 and 6; Supplementary
Note 3; Supplementary Method 3.

In whole, the model reproduces the two peaked absorption/
emission trajectories in Fig. 2b. Subsequently accounting for local
structure immediately reproduces the emission versus absorption
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correlation seen experimentally in Fig. 2d and the appearance
of emission intermittency seen in Figs 2c,d and 3. This last
success is especially important, because it points to a structural
mechanism, which underlies blinking in graphene oxide.

Reclustering mechanism of blinking. To explore deeper
mechanistic aspects of GO/rGO blinking, Fig. 4 highlights specific
features of emission/absorption trajectories and associated
structure in a 20 nm� 20 nm area. MC simulations illustrate that
relatively few spectrally relevant clusters exist per unit area in
GO/rGO during the blinking segment of its trajectories. In fact,
approximately one emissive cluster exists per 100 nm2 at any
given time. Reclustering of these graphenic domains is therefore
responsible for corresponding fluctuations in the associated
emission intensity (for example, Fig. 4). The structure at
subsequent time steps reveals how emissive domains separate
from large networks and subsequently photobleach. This explains
why blinking shows up in emission but not absorption. Blinking
is thus a consequence of an evolving equilibrium between the
photolytic separation and disintegration of graphenic clusters
of the correct, spectrally relevant size. Such light-induced
structural changes are also the likely cause of blinking in other
fluorophores35 although there may not be a universal mechanism
for blinking.

Discussion
In summary, a multiscale numerical simulation of GO–rGO
photoreduction reproduces essential experimental features
characterizing the evolution of GO’s optical properties.
Specifically, the modelling successfully explains experimentally
observed emission/absorption trajectories with strong temporal
fluctuations about a second photobrightening feature. In addition,
both experimental and simulated PSDs exhibit power-law
behaviour characteristic of universal emission intermittency
seen other fluorophores. The explicit link established between
emission/absorption trajectories and the structural/chemical

transformation of GO/rGO strongly suggests that blinking
in rGO originates from reclustering—sp2 cluster creation
and destruction processes as well as processes which distort
sp2 domains in a reversible manner. Reclustering alters the
size, shape and ultimately the QY of underlying graphenic
nanoclusters leading to emergent emission intermittency. This
conclusion is especially important from a mechanistic standpoint
since it has been a longstanding mystery12,36 as to how an
inherently quantum mechanical system—such as a quantum dot,
rod, wire, but also rGO –exhibits fluctuations over timescales
much longer than those of fundamental electronic processes.

Methods
In order to provide molecular insight into optically measured experimental data,
the developed model scales six orders of spatial magnitude in a series of steps. First,
DFT and TDDFT is carried out to determine gap energies, radiative recombination
rates, nonradiative recombination rates, and thus QYs on Å–nm scaled fluorescent
domains (cf. Supplementary Fig. 1). The domains we studied via DFT/TDDFT
span the entire visible range and are representative of all sp2 domains which
contribute to the photoluminescence of graphene oxide. Next, MC simulations use
this information to model larger regions of a GO sheet during dynamical chemical
reactions. During the simulation, cluster detection is used to count the number of
connected carbon atoms; the gap energy, associated absorption cross-section and
QY expressions are applied to calculate the colour, absorption and emission
intensity of that cluster. Clusters whose gap energy exceeds the photon excitation
energy are excluded. The absorption cross-section and emission intensity of all
clusters within the region is summed up. The absorption is rescaled to calculate a
per cent absorption. Finally, in order to simulate a region comparable to a pixel in
the experiment many small regions are simulated and the results are averaged.

All DFT calculations were performed with the Gaussian 09 software package.
Structures were relaxed to a force of less than 0.01 eV Å� 1 before optical
calculations were performed. All calculations were performed with the
6–31G* basis set at the B3LYP (refs 37–40) level. QYs are calculated by comparing
the rate of radiative recombination with the total recovery rate to the ground state
(cf. Supplementary Methods 1 and 2). The absorption in MC simulations was
calculated by comparing the number of sp2 carbon atoms in the simulation
with a piece of graphene of the same area. The ratio was then multiplied by
2.3% (The absorption of graphene at 520 nm)32. Emission QYs of the five selected
clusters were calculated by starting with the lowest energy level, which has
a significant dipole element to the ground state and then comparing
photoluminescence rates to internal conversion rates. The gap energy, absorption
cross-section and emission QY of individual clusters formed in MC simulations
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was subsequently estimated through TDDFT-established calibration curves,
eðeVÞ ¼ 20:5

ffiffiffi

N
p , s (a.u.)¼N, and QYð% Þ ¼ 274:5e� 0:44

ffiffiffi

N
p

, where N is the number
of carbon atoms in the cluster. Kinetic Monte Carlo simulations were performed
with 17,280 carbon lattice sites (21.3 nm� 21.3 nm) with larger regions represented
by averaging many such simulations. Each kinetic step removed a carbon
atom/functional group from the simulation, and the reaction to be performed was
chosen randomly with probability proportional to rate, rate constant times number
of reactants, and site of reaction chosen randomly.

Synthesis of graphene oxide. GO was synthesized using a modified Hummers
method19. In brief, 300 mg of graphite, 36 ml of H2SO4 and 4 ml of H3PO4 were
combined in an ice bath and continuously stirred for 4 h. Next, 3.6 mg of KMnO4

was added and the mixture was stirred for an additional 48 h. The temperature was
kept below, 25 �C for this period. The suspension was then diluted to double the
volume with deionized water and subjected to sonotrode sonication at 20 kHz for
1.5 h. Finally, 3% H2O2 was added to the suspension until it turned yellow,
indicating that highly oxidized graphite was produced. Upon centrifugation, the
precipitate was washed with 1 M HCl and then repeatedly washed with deionized
water. The resulting red-brown suspension was then freeze-dried for storage,
yielding a cream coloured solid19.

Individual GO sheet microscopy. Dilute GO/ethanol suspensions were sonicated
at 42 kHz for B10 s and subsequently drop-cast onto flamed fused silica micro-
scope coverslips. This produced a sample coverage of B1 single layer GO sheet
per several mm2, with flake sizes ranging from 1 to 10mm. Individual sheets were
imaged with a home-built inverted microscope utilizing a continuous wave 405 nm
laser. The excitation source was introduced to the sample in an epi-illumination
arrangement, with an associated excitation intensity of 380 W cm–2 and an
B30mm excitation spot. Fluorescence was captured with an electron-multiplied
charge-coupled device (EM-CCD) via a collection objective (Zeiss, 1.4 NA) and
imaging lens (f¼ 160 mm) for a final resolution of B200 nm per pixel19.

Data availability. The Monte Carlo simulation code is available at:
https://github.com/aruth2/GOMonteCarlo. The data that support the findings of
this study are available from the corresponding author upon request.
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