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Abstract: The use of Visible Light Communications (VLC) in vehicular applications has become
a major research area due to its simplicity, high performance to cost ratio, and great deployment
potential. In this context, this article provides one of the very few analyses and experimental
evaluations concerning the integration of a light dimming function in vehicular VLC systems. For
this purpose, a vehicle-to-vehicle VLC prototype has been implemented and used to evaluate the
systems’ communication performances in light dimming conditions, while decreasing the duty cycle
from 40% to 1%, and increasing the communication range from 1 to 40–50 m. The experimental
results showed that in normal lighting conditions, the VLC technology can easily support low duty
cycle light dimming for ranges up to 40 m, while maintaining a 10−6 BER. Nevertheless, in strong
optical noise conditions, when the system reaches its SNR limit, the communication range can
decrease by half, whereas the BER can increase by 2–4 orders of magnitude. This article provides
consistent evidence concerning the high potential of the VLC technology to support inter-vehicle
communication links, even in light dimming conditions.

Keywords: inter-vehicle communications; light dimming; “lights-off” visible light communications;
optical communications; vehicle-to-vehicle communications; vehicular communications; visible
light communication

1. Introduction

Mobility is fundamental for most human activities; thus, the safety of the trans-
portation system is a stringent research topic for the automotive industry, for vehicle
manufacturers, and for the academic community. Preoccupation with this aspect has been
an important subject for more than a century of automotive history, not only through
controlling driver behavior, but also through improvements made in the design of vehicles
and road infrastructures. Nowadays, intelligent systems implemented in cars and transport
infrastructures are widespread, providing innovative services in terms of safety [1]. Increas-
ing concern in this area has led to the implementation of new concepts, which incorporate
state-of-the-art wireless communications technologies that enable smart vehicles to share
information with other vehicles and with the transportation network, in order to limit the
risk of accidents [2–5] and to improve the efficiency of road transportation.

Being superior to incandescent bulbs and fluorescent tubes in terms of efficiency, life
term expectancy, and high tolerance to humidity, LEDs are on the way to becoming the
new normal in lighting [6,7]. Thus, their market share is gradually increasing, as LEDs
are replacing other lighting solutions not only in home settings but also in vehicle lighting
systems and in transportation lighting infrastructures (see Figure 1). Furthermore, due to
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their fast-switching ability, LEDs also enable the usage of the visible light spectrum for
data transmission, in addition to their main lighting or signaling function.
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In short, Visible Light Communications (VLC) technology involves a VLC emitter that
has a lighting function and a VLC receiver. In order to enable the information transfer,
the data to send are modulated onto the VLC emitter’s optical carrier at frequencies that
are unperceivable by the human eye. The VLC receiver converts the modulated light into
an electrical signal, from which data can be extracted by various processing techniques.
Thus, the VLC technology can turn virtually any LED light source into a data transmission
device, standing out as one of the possible solutions in communication-based vehicle
safety applications [1,4,5]. In this area, the performances of automotive VLC systems
have continuously improved [4–11], although there are still challenges that require further
attention [5]. Therefore, if a vehicle has to deal with an unexpected event, various data,
including inter-vehicle distance [12–14], can be passed to the rear vehicles, in order to
avoid an accident or a traffic jam. In road transport applications, there are currently many
LED light sources as part of the road infrastructure and of the vehicle lighting systems,
so VLC technology is easier to implement [5], while providing many advantages, such
as low latencies [10,11], and being complementarity to 802.11p RF-based technology [15],
where the VLC technology can counteract most common vulnerabilities associated with RF
interferences in heavy traffic scenarios.

Dissimilar to any other wireless communication technology, in VLC, the data carrier
is visible to the human eye. Under these circumstances, the IEEE 802.15.7 standard for
short-range optical communications [16,17] introduces strict requirements, according to
which the use of a light source in data transmission applications must not affect in any way
the main function of the device. As the lighting function is considered of a higher priority
compared to the data transmission function, several obstacles emerge, whereas technical
solutions have already been found [11,17,18]. One of the conditions the standard imposes
is related to light dimming. Thus, the VLC emitter must be able to support light dimming
while providing optical wireless data transfer. If it is to apply this regulation to vehicular
applications, one can understand that light dimming is less stringent, whereas the use
cases that could integrate light dimming are less numerous. Nevertheless, in the context of
applications for energy harvesting technologies gaining popularity, several possibilities
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emerge. Thus, light dimming could be used in street lighting applications, informative
panels, or advertising displays. In such scenarios, the light source optical power could
be adapted in accordance with ambient light, whereas in the case of battery-operated
devices, the output light intensity could be corroborated with the remaining available
power, including the special case of electric vehicles. This function would be very suitable
in auto-dimmable headlights, enabling the vehicle to change the light intensity in order to
prevent drivers from sudden glare at night conditions. In this context, the existing literature
focused on the usage of the VLC technology in automotive applications provides very few
investigations concerning the effect of light dimming on the performances of vehicular
VLC applications. On the other hand, these effects have been only partially investigated in
indoor applications, pointing out that further investigations concerning the effect of light
dimming on the VLC performances are required.

In this context, the present article provides an analysis and an intensive experimental
investigation concerning the effect of light dimming on automotive VLC performances.
This article considers a Vehicle-to-Vehicle (V2V) communication scenario, analyzing the
case when the brake lights transmit the data, but the intensity of the modulated light
is dimmed to a level that can be considered as taillights by the current regulations. In
order to provide a comprehensive investigation, the V2V VLC system operating in light
dimming mode is tested in controlled laboratory conditions as well as in outdoor daytime
uncontrolled conditions. The experimental evaluation is performed for variable communi-
cation distances, different lighting conditions, and variable duty cycles. Additionally, the
particular case of dimming the light to such an extent that can be considered “off” for the
human eye, but the transmission of data is still going on with ultra-short pulses, is analyzed.
As far as we know, this article is one of the very few works addressing the issues associ-
ated with light dimming in vehicular VLC links. As this topic has been neglected in the
existing literature addressing automotive VLC applications, this work provides important
evidence that demonstrates the ability of the VLC technology to be compatible with such
use scenarios. The rest of this article is structured as follows. Sections 2 and 3 provide an
overview concerning the issues associated with light dimming in VLC applications and on
the existing solutions to these problems. Section 4 presents the V2V VLC prototype that has
been used in the experimental evaluations. Section 5 describes the experimental evaluation
procedure and presents the experimental results, whereas Section 6 provides a discussion
concerning these results. Finally, Section 7 provides the conclusions of this work.

2. State-of-the-Art in Light Dimming and Lights-Off Visible Light Communications
2.1. Light Dimming in IEEE 802.15.7 Standard for Optical Communications

One of the many obstacles in the development of the Visible Light Communications
technology is standardization [17,19–21], so different attempts to standardize this tech-
nology have been made. Among the different standards that have been proposed, the
IEEE 802.15.7 [16] seems to be the one that has the highest complexity and the widest
acceptance. This standard has been developed with various challenges in mind, such
as avoidance of flickering, dimming support, and maintaining communication when the
lights are necessary to be off. As debated in [17], although the standard has drawbacks and
vulnerabilities, considering the importance of standardization, the IEEE 802.15.7 standard
and its revisions remain for the moment the most covering solution for VLC applications.
The lights-off communication can be seen as a particular case of communication in dim
conditions, but with an average brightness so low, that it cannot be perceived by the human
eye, and therefore, the LED is considered to be “off.” The IEEE 802.15.7 standard specifies
various methods for dimming support during data transmission, but also during idle
periods when no data are being transmitted. Inserting compensation symbols (i.e., idle
patterns and compensation time), controlling pulse width, adjusting the amplitude of the
signal, and/or controlling in the out-of-band frequency (including the option of using
the particular case of an un-modulated DC bias) are the major techniques proposed for
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dimming support [16–18]. Figure 2 illustrates the light dimming mechanisms for these
techniques, which can simultaneously be used for flicker mitigation.

Broadly speaking, there are two main techniques for dimming the lighting of an LED
source: analog and digital. The analog dimming technique is based on the Continuous
Current Reduction (CCR), where the luminous flux is decreased by directly diminishing
the forward current through an LED. This type of dimming control can be used with
various modulations, such as Pulse-Amplitude Modulation (PAM). The main issue of this
technique is the chromaticity shift of the light, due to the under-voltage applied to the
LED [22]. Although it has been established that the use of digital dimming is recommended
to avoid this issue, a relatively recent study [23] showed that color deviation makes its
presence felt even in the digital case, due to different junction temperatures at various fill
factor values.

The digital dimming techniques can be applied to many modulation methods for
VLC data transmission, such as Pulse Position Modulation (PPM). The modulated VLC
data signal is employed over a digital control signal used in a dimming technique, such
as Pulse-Width Modulation (PWM). On these grounds, the IEEE 802.15.7 standard has
introduced the Variable Pulse Position Modulation (VPPM), which combines the ability
of PWM to provide simple light dimming with the data encoding mechanism of PPM.
The resulting VPPM technique is able to provide high-resolution dimming and flicker-free
communication while providing constant data rates.
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2.2. Related Work

The data transmission in VLC is done through Intensity Modulation (IM), i.e., the
variation of the intensity of light in the time domain, and the data reception is done through
Direct Detection (DD). The capability of an LED in terms of bandwidth is no more than a
few megahertz, so one research area is related to modulation formats that can overcome
this limitation. Based on this requirement, the modulation techniques mainly used in VLC
can be classified as Single Carrier Modulation (SCM), Color Shift Keying (CSK) modulation,
and Multi-Carrier Modulation (MCM) [24] (Figure 3). Various dimming techniques can be
implemented based on these modulations.
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2.2.1. Single Carrier Modulations

The most common single-carrier modulations used in VLC are On-Off Keying (OOK),
Pulse Position Modulation (PPM), and Pulse Amplitude Modulation (PAM).

Some of the most important advantages of the OOK modulation are the low cost
and simplicity. OOK is the simplest Amplitude Shift Keying (ASK) modulation method.
Usually, it has a square signal, and the amplitude is on two levels: high power and low
power. OOK can use different coding formats, such as Non-Return to Zero (NRZ), Return
to Zero (RZ), or Manchester coding. The RZ code ensures the returning to a low power
level even when a series of “1” bits are needed to be transmitted. The big advantage here is
the easier recovery of the clock from the data signal, with the exception of long series of “0”
bits, a situation where Manchester code is more suitable.

In order to have dimming capability, one possible approach is Variable On-Off Keying
(VOOK), through the insertion of compensation time [18]. In [25], the authors argue
that in order to be perceived as “off,” the illumination limit of an LED device in indoor
scenarios is dependent on the ambient light, which means that in broad daylight the VLC
emitter can communicate with an increased level of power, without affecting the lights-off
perception in the room. One drawback, however, is the fact that in vehicle scenarios, the
LED emitter is in many cases directly observed, so the glowing must be much lower than
in the indirect observance.

PPM is an attractive modulation technique for optical communications, offering an
increased efficiency in power transmission. There are different types of PPM that can
support dimming control, such as VPPM, and Multiple Pulse Position Modulation (MPPM)
with its variants: Overlapping Pulse Position Modulation (OPPM), Differential Amplitude
Pulse Position Modulation (DAPPM), Digital Pulse-Interval Modulation (DPIM), and so on.

Although is easy to implement the VPPM scheme, which is a combination of PWM
brightness control with a 2-PPM modulation for communication proposed by the IEEE
802.15.7 standard group, the data rate limitation imposed by the binary implementation
asks for a better method of digital dimming. One study [26] evaluated the performance of
an M-ary VPPM scheme with dimmable capability for VLC, with increased performance
of achievable data rate being demonstrated for a large modulation order. In order to
counteract the rapid brightness fluctuations, a novel VPPM scheme was proposed in [27],
where the targeted dimming level is achieved based on a step-by-step change in the
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brightness of the LED while moving average correlation masks are used to keep up with
the change.

Controlling the number of pulses in each signal block, an MPPM communication with
dimming support was proposed in [28], the authors arguing that this modulation is more
efficient in terms of power and spectrum requirements than VOOK or VPPM. These results
confirm the potential of this type of modulation, as seen in other studies, such as [29], where
the band-utilization improved efficiency of MPPM over the PPM was demonstrated. As
opposed to classical solutions, where two different modulations are used when dimming is
necessary, a Variable-Rate Multi-Pulse Position Modulation (VR-MPPM) was proposed in
order to jointly control the brightness control and data transmission in a VLC system based
on white LEDs [30]. A novel dimming control scheme for VLC systems was proposed
in [31]. Based on MPPM, the system can keep an average light intensity to attain different
dimming targets. Another design was made in [32] to provide “lights-off” communication
at 1.6-kbps data rate, over a distance of 1.3 m, using OPPM (encoding 10 times more bits
per light pulse than OOK). Here, there were three challenges to overcome: to generate
and detect ultra-short pulses of light with off-the-shelf LEDs and photodiodes, to find
a suitable modulation and demodulation design, and to solve the collision errors when
pulses from different transmitters are received. The authors even conducted a study to
systematically examine user’s perception of the ultrashort light pulses. There was a study
based on PPM [33] on the possibilities to transmit data in a smart room when the lights
appear off, on the minimum illuminance needed for receiving the information, and on the
factors that influence Signal-to-Noise Ratio (SNR) and Bit Error Ratio (BER), selecting the
parameters and the requirements needed in terms of power, bandwidth efficiency, and
dimming factor.

In [34], the desired dimming control was achieved by optimizing the probability and
the intensity of the PAM constellation points with a hybrid scheme that combines the
analog and the digital technique. Another system was proposed in [35], where a multilevel
transmission scheme has the dimming controlled through the concatenation of PAM
symbols, in order to obtain an average amplitude in line with the dimming requirement.

2.2.2. Color Shift Keying Modulation

Two types of techniques are typically used for dimming control in a CSK environment:
PAM and PWM. In [36], the CSK modulation positions the signal constellation based on
colors, whereas the brightness is controlled through the optical power adjustments of
the RGB LED. Color Intensity Modulation (CIM) is developed in [37] using multicolored
LEDs, to allow simultaneously color matching and dimming requirements. Recently, a
combined CSK-PPM modulation has drawn a lot of attention, with a PWM dimming
control implemented in a similar way as for VPPM [38].

2.2.3. Multi-Carrier Modulation

Orthogonal Frequency Division Multiplexing (OFDM) is a special class of MCM
system that has attracted attention in the optical communication field as a bandwidth-
efficient multiplexing transmission.

The two features related to multicarrier modulation are giving OFDM some advan-
tages over other types of modulations: the ability to divide the OFDM spectrum into
multiple sub-bands, which eases the design, and the adaptation of pilot subcarriers si-
multaneously with data carriers, offering a convenient possibility for phase and channel
estimation [39]. An adaptive PWM dimming control scheme was used in [40] to achieve
a BER of less than 10−3 in a variable Multi-level Quadrature Amplitude Modulation (M-
QAM) OFDM VLC system, where a number of points in each constellation M are adapted
in direct relation with the duty cycle at first, followed by the change of the symbol rate.
The strong point of this approach is that the required power to drive the LED lamp is much
less than in the case of an OOK modulation.
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2.2.4. Coding Techniques

There are two types of coding in VLC systems: line coding and Forward Error Cor-
rection (FEC) codes, such as Reed–Solomon codes. Technical design considerations for
improving the physical layer of VLC systems by reviewing the latest developments in
modulation and coding technologies were presented in [41]. The main technical challenges
for improving the VLC physical layer under lighting limitations are also described.

3. Factors That Could Affect the Performances of Dimming in Visible
Light Communications

As described in Section 2, several solutions to enable VLC in light dimming conditions
have been proposed. Nevertheless, some initial conclusions can be drawn from these
studies, as starting points for some guidelines. First of all, there is no intensive study
(to the best of our knowledge) that analyzes the dimming and/or “lights-off” visible
light communication in the automotive field. The overwhelming majority of these papers
focused on indoor applications. Moreover, most of the existing concepts have only been
evaluated analytically or by simulation means. However, these studies can be very useful
in researching the applicability in the vehicular field, even if the practical implementation
of such VLC solutions is rather challenging. For example, some of these techniques lead
to other situations that are very difficult to handle, whereas in other cases, these lead to a
very complex signal processing approach. Additionally, the use of VPPM to enable light
variable dimming between 1% and 50% generates a significant variation of the pulse width,
which significantly complicates the signal filtering process. Thus, the brightness dimming
of a pulse train of a certain frequency leads to a proportional decrease in the width of each
of its pulses (see Figure 2), and in the end, it is similar to a message transmitted using a
higher frequency. Consequently, such a pulse will be affected by a low-pass filter having
a cut-off frequency calculated based on the initial frequency. Thus, if we have a 400 kHz
message, and apply a 1% dimming, the positive pulse width decreases from 1.25 µs to
25 ns. In such a case, the limit of the low-pass filter should be adapted as well. A possible
solution to this problem would be to use an adaptive filter, of which the cut-off frequency is
modified as a function of the dimming percentage. Nevertheless, as the standard for light
dimming imposes a 0.1% resolution, the hardware complexity of an optimally matched
analog filter significantly increases due to the high number of possible pulse widths. In
such a case, the size of the circuit and the cost of the device significantly increase. A
possible solution to this new problem would be the use of variable value components (i.e.,
digitally-programmable potentiometers, such as MCP41100) that would enable software
control of the band-pass frequency. Nevertheless, in many cases, such components are not
compatible with high-frequency applications. A different solution would be to use a wider
band-pass filter. This approach has the advantage of a simpler hardware configuration that
will allow the passage of a wider frequency range. On the downside, as the bandwidth
increases, the additional noise components will be allowed to pass, affecting, in turn, the
SNR of the received data signal.

This light dimming effect on the pulse width generates additional hardware problems.
From the VLC emitter perspective, the narrow pulses involve LED drivers with a faster
response, whereas in some cases, the light dimming performances could be limited by
the LED’s characteristics. It is well-known that LEDs have switching times that can go
down to a few nanoseconds. Nevertheless, the LED’s switching times are influenced
by their capacitance. Thus, high-power LEDs, such as the ones used in vehicle lighting
systems or in street lighting systems, have higher surfaces and in turn higher capacitances,
affecting significantly the switching times, which can be hundreds of times higher. In such
conditions, it is highly possible that most of the high-power LEDs will not be able to sustain
a reliable link communication for light dimming levels below certain limits. The problems
caused by light dimming become more stringent at the VLC receiver level. In this case, the
VLC receiver should be designed with components that have lower switching times, with
operational amplifiers that have higher slew rates, with DSP-based architecture that have
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significantly higher sampling frequencies, and with considerably more performant data
processing units. All these requirements will increase the overall cost and/or could affect
the reliability of the VLC system as a whole.

Being designed for VLC applications with low data rate requirements in outdoor
conditions, the physical layer type I (PHY I) operating mode described in the IEEE 802.15.7
standard is the appropriate choice for vehicular VLC applications (Table 1). For such appli-
cations, the IEEE 802.15.7 standard specifies the use of OOK modulation with Manchester
coding at data rates between 11.67 and 100 kb/s. Additionally, the standard also mentions
the use of VPPM and of 4B6B coding providing data rates between 35.56 and 266.6 kb/s.
In this case, the light dimming is achieved by modifying the duty cycle, whereas in the
OOK case, this function is achieved by the insertion of compensation symbols and/or
idle patterns (see Figure 2b). The insertion of compensation symbols and idle patterns
accomplishes the light dimming at the cost of the data rate but ensuring at the same time a
constant range. In such a case, the total duration of the compensation symbols or idle times
is established based on the dimming percent. Thus, as the dimming percent decreases, the
entire duration with no data transmission is increasing.

Table 1. PHY operating modes [16].

Modulation RLL Code
Optical Clock

Rate (kHz)

FEC
Data Rate

(kbps)Outer Code
(RS)

Inner Code
(CC)

OOK Manchester 200

(15, 7) 1/4 11.67
(15, 11) 1/3 24.44
(15, 11) 2/3 48.89
(15, 11) none 73.3
none none 100

VPPM 4B6B 400

(15, 2) none 35.56
(15, 4) none 71.11
(15, 7) none 124.4
none none 266.6

Now, if one is to apply this approach to the PHY I OOK use case, it is clear that this
will lead to extremely low data rates that can hamper the safety concept, which should
be the main function of a communication-based vehicle application. Consequently, this
approach can be considered unsuitable for such applications, pointing out that the use of
the VPPM technique for brightness control is more adequate for the automotive industry.

In order to achieve a dimming resolution of 0.1%, an algorithm is described in the IEEE
802.15.7 standard, the definition for VPPM mode being illustrated in Table 2. Because the
VPPM affects the illumination of the transmitter LED, the communication performances
must be expressed as a function of the distance, dimming ratio, and environment settings
in a given VLC scenario [42]. The avoidance of flickering is mandatory in an automotive
VLC system, so extra care is needed in this regard.

Table 2. Definition of data mapping for VPPM mode [16].

Logical Value Physical Value
d is the VPPM Duty Cycle (0.1 ≤ d ≤ 0.9)

0
High 0 ≤ t < dT
Low dT ≤ t < T

1
Low 0 ≤ t < (1−d)T
High (1−d)T ≤ t < T
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4. Description of the Visible Light Communications System

In order to experimentally evaluate the effect of light dimming on vehicular VLC
performances, a VLC prototype has been implemented. The proposed architecture has
been described in [43], where the VLC prototype has been used to evaluate the influence of
vehicle misalignment over the performances of V2V communications. Thus, this section
will provide a brief description that offers an adequate understanding of the concept, while
also focusing on the improvements needed to enable light dimming.

The schematic of the proposed VLC system is illustrated in Figure 4, whereas its
hardware implementation is shown in Figure 5. The most important upgrades consist of
the use of a more performant data processing unit and a more accurate data decoding
process, which make possible the dimming function.
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4.1. Discussion of the VLC Emitter Structure

The proposed VLC emitter is developed based on a set of standard LED vehicle rear
lights. The message to send is generated by a microcontroller board based on an ARM
Cortex-M7 processor running at 600 MHz. The microcontroller commands the LED vehicle
rear lights through an LED driver board isolated by an optocoupler. The VLC emitter
center wavelength is 620 nm.

In line with the IEEE 802.15.7 standard, the VLC emitter prototype uses OOK mod-
ulation along with Manchester coding and enables data rates between 11 and 100 kb/s.
As debated in the analyses presented in Sections 2 and 3, the use of the light dimming
mechanism based on the insertion of compensation symbols significantly downgrades
the data rate. In such conditions, in order to efficiently implement the light dimming
function, the proposed VLC emitter was modified for VPPM-based pulse-width control
dimming method when the payload is transmitted. The high-performance microcontroller
allows it to generate pulses in the microsecond range, which in turn facilitates a highly
precise light intensity variation. Nevertheless, while a better resolution is possible with the
algorithm proposed in IEEE 802.15.7, it should be mentioned that it is still not possible to
have data transmission under a minimum percentage, allowed, for example, by the base
low-resolution visibility patterns. Increasing the base resolution for a more precise dim-
ming control significantly affects the memory requirements. For example, a 1% dimming
resolution necessitates 100 intervals of high/low pulses for each logical bit, whereas a 0.1%
resolution necessitates 10 times more intervals for the same logical bit. At the same time, in
order to keep the data rate values, the processing power must be increased as well.

From our point of view, the VPPM method of dimming proposed by the standard IEEE
802.15.7 (Figure 6) can generate some issues in light dimming conditions, especially when a
“1” bit is followed by a “0” bit. In such conditions, the two pulses join together, regardless
of the duty cycle value, resulting in a single larger pulse. In limited noise conditions,
combined with relatively high duty cycle values, the message extraction remains as simple
as the measurement of the pulse width. However, in extreme light dimming conditions
(e.g., 1%) corroborated with some potential low SNR values, it becomes difficult for the
data processing unit to make the difference between a “1”-followed-by-a-“0” situation and
a single “1” situation (Figure 6a). Thus, when such adverse conditions are fulfilled, the low
SNR can alter the pulse width and give an erroneous result. The main advantage of the
standard method is the possibility to control the duty cycle from 0% to 100% (of course,
with no data transmission possibilities at the extremes).

In light of the above, for enhanced resilience to noise and improved BER performances
in light dimming conditions, the standard VPPM modulation has been adapted with an
improved code, illustrated in Figure 7, and defined in Table 3. As seen in Figure 7a, the
proposed VPPM method does not generate situations in which a dimmed message leads
to the joining of two narrow-width pulses. Two pulses can only join in the case of a 50%
pulse width (which replicates the Manchester code), as seen in Figure 7b, but due to the
wider pulse width, this situation enables an adequate pulse-width measurement and a clear
differentiation between the data bits. The main issue with this approach is the impossibility
to increase the duty cycle over the 50% value. In order to overcome this impediment, the
proposed code will switch the high and low levels between them for any duty cycle greater
than 50%, as seen in Figure 7c. In this way, the advantages presented will be retained, with
the only observation that the coding and decoding will be done with the same software
subroutine, but considering the high as low and vice versa.

The structure of the proposed data frame is illustrated in Figure 8. The frame begins
with a synchronization header, which informs the VLC receiver that a new data frame is
being received. In order to provide a high frame delivery ratio, the synchronization header
is transmitted with a fixed pulse width, as opposed to the payload transmission’s case.
However, the dimming factor must be maintained; therefore, only for the synchronization
header, the mechanism based on the insertion of compensation symbols is used. The
duration of the idle period is dynamically determined, based on the duty cycle value
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calculated for payload, to attain a certain light intensity. The main software program will
determine the idle pattern needed, which will be inserted after the synchronization header,
followed by a start bit, which informs the VLC receiver that the data message is about to
begin. The frame also contains a byte that transmits the length of the data frame to the
VLC receiver. Finally, the frame contains a variable-length data message, followed by a
short tail bits’ sequence that separates different data frames. Special care must be taken
in determining the idle pattern, in order to prevent any light flickering. Therefore, it is
mandatory to limit the light intensity fluctuations through the Maximum Flickering-Time
Period (MFTP). The proposed data frame has a short synchronization sequence, which
ensures the whole range of dimming with an idle pattern only formed with ones or zeros,
as seen in Figure 8. Therefore, if the average brightness needed is less than or equal to
50%, the main software program will determine the low-level compensation time needed,
which will be inserted after the synchronization header, followed by a high-level start bit,
as seen in Figure 8a. If the average brightness needed is greater than 50%, the number of
bits calculated and inserted will have a high-level value, and these will be followed by a
low-level start bit, which precedes the payload, as seen in Figure 8b.
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Table 3. Definition of data mapping for the proposed code.

Logical Value Duty Cycle Value
d is the Duty Cycle

Physical Value
T Is the Bit Period

0

1% ≤ d < 50%
Low 0 ≤ t < (0.5d)T
High (0.5−d)T ≤ t < 0.5T
Low 0.5T ≤ t < T

d = 50% Manchester
High 0 ≤ t < dT
Low dT ≤ t < T

50% < d < 99%
High 0 ≤ t < (d−0.5)T
Low (d−0.5)T ≤ t < 0.5T
High 0.5T ≤ t < T

1

1% ≤ d < 50%
Low 0 ≤ t < (1−d)T
High (1−d)T ≤ t < T

d = 50% Manchester
Low 0 ≤ t < (1−d)T
High (1−d)T ≤ t < T

50% < d < 99%
High 0 ≤ t < (1−d)T
Low (1−d)T ≤ t < T
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To further detail the light flickering aspects, it should be remembered that according
to existing research, and most importantly according to the IEEE 802.15.7 standard, the
human eye does not respond to light intensity modifications unless their frequency is
higher than 100 Hz. To address this issue, the standard introduces a 5 ms MFTP. Basically,
each MFTP should have the same light intensity, and thus, flickering is prevented. In
practice, intra-frame flickering is prevented by using Run Length Limited (RLL) coding
techniques, which ensure the same light intensity for bit 1 as for bit 0. Thus, all coding
techniques specified in the IEEE 802.15.7 standard prevent flickering in this manner. The
same is the case for the coding technique adopted in this article. Hence, to get back to
the topic of this work, light dimming should not affect or disturb human eye, as long
as there are no light intensity fluctuations (inside the data frame or between immediate
frames), which is quarantined by the fact that no matter the duty cycle, the adopted coding
techniques ensure the same light intensity for bits 1 and for bits 0.

4.2. Discussion of the VLC Receiver Structure

The proposed VLC receiver consists of three main stages, each with its own compo-
nent blocks. The front stage is responsible for the optical signal collection and primary
conditioning of the optical signal, the signal conditioning stage is responsible for the
analog signal treatment and the digital signal regeneration, whereas the data processing
stage is responsible for the analysis of the reconstructed signal, message decoding, and
data extracting.

The optical front end is mainly based on a commercial PDA100A silicon optical
detector. The optical detector consists of a PIN photodiode connected in a transimpedance
circuit which transforms the incident optical signal into a proportional voltage. Since
outdoor applications involve a multitude of optical noise sources, the design of the front
stage becomes very important. Therefore, to improve the SNR, the front end uses a 2-inch



Sensors 2021, 21, 4446 15 of 25

optical lens, which focuses the incident light onto the optical receiver’s photosensitive
surface. The optical lens reduces the VLC receiver’s FOV to ±20◦, diminishing the effect
of the parasitic light sources. Additionally, to further enhance the SNR, the VLC receiver
englobes a band-pass optical filter, which only allows the passage of the wavelengths of
interest. In this case, as the VLC emitter is based on a set of red rear lights, the optical
filter only allows the passage of 600–680 nm signals. The optical front end based on this
approach significantly improves the SNR, enhancing the results.

The front end has the purpose of conditioning the optical signal and transforming it
into an electrical signal. From this point on, the electrical signal is being processed by the
signal conditioning stage. At this level, the signal is filtered, gradually amplified from a few
millivolts level to a 3.3 V level, and regenerated to its original square shape. The high-pass
filter eliminates the DC component introduced by unmodulated light sources, such as
the sun or unmodulated LED sources, as well as the low-frequency spectral components
introduced by fluorescent and incandescent light sources, which introduce strong 100 Hz
components. The low-pass filter eliminates the high-frequency noise components mainly
represented by shot noise and thermal noise. To achieve this, a second order high-pass
Bessel filter with a cut-off frequency of 500 Hz and a low-pass fourth order Bessel filter with
a cut-off frequency of 500 kHz were used. This stage also englobes an automatic gain control
stage which enables the VLC receiver to tolerate the variation of the incident optical power,
caused by variable emitter–receiver distances or by different signal propagation conditions.

After that, the regenerated signal is processed in real-time by a 1008 MHz microcon-
troller board. Based on the length of the compensation time and knowing the structure of
the synchronization header, the VLC receiver is able to determine the duty cycle, in order
to correctly decode the received signal. At this stage, the data are decoded based on rising
and falling edge identification and on pulse-width measurement. The high frequency of
the microprocessor allows a high-resolution pulse-width measurement and adequate data
decoding performances.

5. Experimental Results
5.1. Experimental Procedure and Methods

The objective of the experimental procedure is to evaluate the effect of light dimming
on the performances of a vehicular VLC system. As already discussed in Section 4, the
same software subroutine is used for duty cycle values greater than 50%, as well as for
duty cycle values less than 50%. As such, the experiments carried out were done only
for light dimming less than 50%, the results being valid for the other approach as well.
For this purpose, two different setups have been chosen: an indoor setup and an outdoor
setup. For each situation, the V2V VLC prototype has been tested for variable distances
starting from 1 m and a duty cycle of 40%. From this point, the distance has been gradually
increased until a maximum communications distance was achieved while maintaining
a BER lower than 10−4–10−3. At each point, the BER has been determined in real-time,
without using any error-correcting protocol. After that, the duty cycle has been gradually
decreased from 40% to 1% and the measurements were repeated for each of these steps.
For the indoor setup, the communication distance was restricted by the limited length of
the laboratory (i.e., 40 m). In this case, the purpose was to evaluate the system in controlled
conditions, in order to have a clear view concerning the light dimming effects. Thus, the
indoor tests have been performed in high SNR conditions, with limited effect from natural
daylight coming through the windows, and in low SNR conditions with an incandescent
noise source consisting of six bulbs of 70 W each. At maximum power, this noise source can
introduce an optical noise of up to 28,000 µW/cm2. Figure 9 presents the spectral analysis
of the incandescent light source used to test the system’s noise resilience. One can see from
this analysis that the incandescent noise source has its peak in the red region which is the
spectral region for which PIN photodiodes have the highest sensitivity.
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The outdoor tests have been performed in uncontrolled daylight conditions on a
mostly sunny day. In this case, the range could be increased up to 50 m, while the sun gen-
erated a variable noise component which reached values between 3200 and 50,000 µW/cm2

at the VLC receiver level. The summary of the experimental setup, the parameters of the
parasitic light source, and the materials used during the experimental evaluation are
presented in Tables 4–6, whereas Figure 10 illustrates the experimental methodology.

Table 4. Summary of the experimental parameters.

Parameter Feature/Values

Testing conditions

High SNR indoor conditions
Indoor conditions

In the presence of parasitic lights (low SNR)
Outdoor, uncontrolled conditions

Dimming factor 1–40%
VLC emitter LED-based vehicle rear lights

Emitter-Receiver (V2V) distance 1–50 m
VLC receiver PIN Photodiode-based

VLC receiver height 74 cm
Modulation technique VPPM

Data rate 10 kb/s

Measured parameter Real-time BER determination without the use
of forward error correcting protocols

Table 5. Summary of the light source parameters.

Parameter Feature/Value

Light source Incandescent light source
Light source power 6 × 70 W

Light color temperature 3254 K
Light source irradiance Up to 28,000 µW/cm2
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Table 6. Equipment used during the tests.

Equipment type Equipment

Spectral analyzer Sekonic C800
Irradiance meter Delta Ohm HD 2302.0 with LP 471 RAD Probe

Oscilloscope Tektronix TBS 2104
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Figure 10. Schematic of the experimental setup.

5.2. Experimental Determinations Concerning the Effect of Pulse-Width Variation on the Light
Intensity Output

In order to understand the effect of pulse-width variation at the VLC receiver level,
the emitter was positioned at 2 m distance, and a square signal with a frequency of 10 kHz
was transmitted. The irradiance and the amplitude at the optical receiver output were
measured, decreasing the duty cycle from 50% to 0.1%, with the PDA100A optical detector
gain adjusted for 20 dB. The representation depicted in Figure 11a shows that the irradiance
is directly proportional with the duty cycle rate until around 2%, when the intensity of light
is too low to be detected by the irradiance meter (i.e., under 0.1 µW/cm2). On the other
hand, the amplitude of the received signal is stable at around 100 mV until the duty cycle
reaches 3%. Because the PDA100A has a bandwidth of 800 kHz when the gain is adjusted
for 20 dB, at low duty cycle values, the signal starts to lose its squareness, appearing the
effect of pulse overshoot. As such, the amplitude of the deformed pulse starts to increase
until the duty cycle is lowered to around 1%, as seen in Figure 11b. Continuing to decrease
the duty cycle, the pulse starts to drop in amplitude until the duty cycle reaches around
0.12%, when the LED lights of the emitter were unable to keep up with the fast-switching
rate. Taking all this into consideration, at low duty cycle values, it is expected to see an
impact on the maximum distance as well. Additionally, one can see that depending on the
environment illuminance, with a duty cycle below 1%, the results can be considered as
“lights-off.” It should be specified that this represents a particular case of light dimming
in which the lamps are perceived as “off,” while the communication is still going on with
ultra-short pulses. However, because the processing power necessary to decode a message
transmitted with a duty cycle below 1% is too demanding, this proof of concept will be
done with experiments in the 1% to 40% range.
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5.3. Experimental Determinations Concerning the Effect of Pulse-Width Variation on
Communication Performances

This section presents the experimental results showing the effect of the light dimming
on the VLC link BER performances for indoor and outdoor setups.

5.3.1. Indoor Testing Scenario and Results

The indoor experimental evaluation followed the path described in Section 5.1 and
illustrated in Figure 10. Table 7 resumes the experimental results for the indoor evaluation.
As one can see, the experimental results show that the VLC prototype is able to sustain a
communication range of up to 40 m (restricted due to the length of the laboratory) even in
light dimming conditions. Therefore, the VLC receiver is able to maintain a BER of 10−6

for distances between 1 and 40 m, while the duty cycle decreases from 40% to 1%. These
results are extremely important, as they show that, in certain conditions, the VLC system
is able to maintain high reliability while the distance is increasing and the duty cycle is
decreasing to very low values.

Table 7. Summary of the experimental results for the indoor tests.

Pulse Width Modulation Data Rate
(kB/s)

VLC
Distance

(m)
BER Conditions

1–40% VPPM 10 1–40 <10−6 High SNR conditions: no artificial light sources
and limited daylight

1–40% VPPM 10 1–40 <10−6
Low SNR conditions:

the VLC receiver is directly exposed to an
incandescent light source of 18,500 µW/cm2

2–40% VPPM 10 1–40 <10−6 Low SNR conditions:
the VLC receiver is directly exposed to an

incandescent light source of 26,000 µW/cm21% VPPM 10 1–35 <10−6

1% VPPM 10 35–40 <1942 × 10−4 Low SNR conditions: 26,000 µW/cm2

incandescent light

As the BER results were not affected in any way by the duty cycle decrease, an
optical noise source (see parameters in Table 5) has been used to depreciate the VLC
channel. Therefore, the 420 W incandescent light source has been orientated toward the
VLC receiver as illustrated in Figure 12. In such circumstances, when the VLC receiver
is close to its maximum communication range and the amount of incident parasitic light
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pushes the VLC receiver close to its saturation limit, the number of bit errors significantly
increases. Thus, one can see that in such an extreme case, a 1% duty cycle decrease (i.e.,
from 2% to 1%) increases the number of errors by two orders of magnitude. In these
conditions, the 10−6 BER is maintained for a distance of up to 35 m, whereas after that,
the BER has increased to around 10−4. This indicates that light dimming has a slightly
negative effect on the SNR, and in turn, on the overall VLC performances.
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Figure 13 presents the signal reconstruction process at the VLC receiver level and it
illustrates the impact of light dimming for a 40-m communication range. One can see that
even if the SNR level is affected by parasitic light and by the increased communication
distance, the adequate signal processing blocks are able to properly restore the data signal.
This is possible due to an appropriate filtering mechanism, which enhances the SNR,
due to the adaptive amplification, which compensates the attenuation caused by the
increased distance, and due to the software decision algorithm, which enables proper data
decoding even if the pulse-width recognition is slightly affected by the low SNR. All these
mechanisms enable adequate data extraction even in unfriendly conditions.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 12. Indoor experimental setup. 

Figure 13 presents the signal reconstruction process at the VLC receiver level and it 
illustrates the impact of light dimming for a 40-m communication range. One can see that 
even if the SNR level is affected by parasitic light and by the increased communication 
distance, the adequate signal processing blocks are able to properly restore the data signal. 
This is possible due to an appropriate filtering mechanism, which enhances the SNR, due 
to the adaptive amplification, which compensates the attenuation caused by the increased 
distance, and due to the software decision algorithm, which enables proper data decoding 
even if the pulse-width recognition is slightly affected by the low SNR. All these mecha-
nisms enable adequate data extraction even in unfriendly conditions. 

 
(a) 

Figure 13. Cont.



Sensors 2021, 21, 4446 20 of 25

Sensors 2021, 21, x FOR PEER REVIEW 21 of 26 
 

 

 
(b) 

 
(c) 

Figure 13. Oscilloscope print screens presenting the signal reconstruction process at the VLC receiver level: Channel 1 
(yellow) contains the output of the optical receiver adjusted at 20 dB gain; Channel 2 (cyan) contains the output of the 
band-pass filter; Channel 3 (magenta) shows the output of the amplification blocks; Channel 4 (green) displays the recon-
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As suggested in Figure 14, the VLC emitter had a SE-NW orientation, whereas the VLC 
receiver was orientated toward the VLC emitter. In such circumstances, the VLC receiver 
is exposed to a strong and direct sunlight component, perturbing its functionality. Again, 
the outdoor testing scenario respected the methodology presented in Section 5.1. How-
ever, as the experiments were conducted in uncontrolled conditions, with the sun travel-
ing the sky, changing the incidence angle of parasitic light, while the clouds were occa-
sionally reducing its intensity, the test results were influenced by these factors. 
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light conditions, with parasitic irradiance at the VLC receiver level reaching 50,000 
µW/cm2, the decrease of the duty cycle affects the link performances in terms of commu-

Figure 13. Oscilloscope print screens presenting the signal reconstruction process at the VLC receiver level: Channel
1 (yellow) contains the output of the optical receiver adjusted at 20 dB gain; Channel 2 (cyan) contains the output of
the band-pass filter; Channel 3 (magenta) shows the output of the amplification blocks; Channel 4 (green) displays the
reconstructed signal which is used for the data decoding process: (a) 1% duty cycle; (b) 10% duty cycle; (c) 40% duty cycle.

5.3.2. Outdoor Testing Scenario and Results

The outdoor experimental evaluation took place in the Stefan cel Mare University of
Suceava parking lot, on a mostly sunny day, with clouds occasionally covering the sky.
As suggested in Figure 14, the VLC emitter had a SE-NW orientation, whereas the VLC
receiver was orientated toward the VLC emitter. In such circumstances, the VLC receiver is
exposed to a strong and direct sunlight component, perturbing its functionality. Again, the
outdoor testing scenario respected the methodology presented in Section 5.1. However,
as the experiments were conducted in uncontrolled conditions, with the sun traveling the
sky, changing the incidence angle of parasitic light, while the clouds were occasionally
reducing its intensity, the test results were influenced by these factors.
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The experimental results in outdoor conditions are summarized in Figure 15. In this
case, the communication distance reached 50 m. These results suggest that in strong sun-
light conditions, with parasitic irradiance at the VLC receiver level reaching 50,000 µW/cm2,
the decrease of the duty cycle affects the link performances in terms of communication
range, BER, and reliability. Thus, in such conditions, light dimming to 1–2% almost halves
the communication range, while increasing the BER with three orders of magnitude. To
have a clearer effect concerning the light dimming effect, Figure 15 includes for comparison
purposes the results of a different experiment [43] performed without light dimming, on a
less sunny day, with OOK modulation, Manchester coding, and a data rate of 100 kb/s.
These comparative results show that the V2V VLC can provide a communication range
of over 70 m. This comparison reconfirms the negative effect of light dimming on the
SNR level.
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Last but not least, it should be pointed out that although the ±20◦ VLC receiver
FOV and the narrow-band optical filter significantly contributed to the SNR improvement,
exposure to strong optical noise sources still affects the VLC link performances, especially
in the cases when a low duty cycle is used.

6. Debate on the Results and on the Novelty of this Work

In the context of electric vehicles gradually replacing combustion engine vehicles, a
very important challenge is to find solutions for more efficient energy management and
for situations where the electric vehicles remain with critical battery charge. Therefore,
this article is focused on the usage of light dimming on electric vehicles, while supporting
V2V VLC. The envisioned scenario assumes that in extreme conditions, with almost no
more energy remaining, or in situations where the lighting functions are less necessary (i.e.,
in daytime urban conditions), the electric vehicle can activate a light-dimming function,
while also using the VLC technology to transmit its state to approaching vehicles.

In this context, although the effects of light dimming have been evaluated for indoor
conditions in many studies, this is one of the very few articles which addresses this issue in
middle-to-long-range automotive applications. For this purpose, a high-performance VLC
system has been upgraded in order to evaluate the effect of light dimming on the reliability
of a V2V VLC link. The experimental evaluation has been performed in controlled indoor
conditions, and also in uncontrolled outdoor conditions.

The results showed that an optimally designed VLC system, and adequate front-end
design, with a proper signal processing plan, the VLC receiver can have good performances
even in light dimming conditions. Therefore, communication ranges up to 40 m can be
maintained with a relatively low bit-error-rate. The experimental results indicate that in
moderate-to-strong parasitic light conditions, the duty cycle decrease can be compensated
with a proper signal processing plan. However, when the amount of parasitic light increases
over a critical limit, or when the distance between the VLC emitter and the VLC receiver is
close to the maximum coverage, the communication performances are affected. Thus, in
such conditions, the communication range can be reduced to half, whereas the BER can in-
crease by several orders of magnitude. These results confirm the findings of [22,44], which
suggest that light dimming affects VLC performances. However, unlike in [44], where the
communication distance reaches only 10 m, this new work provides a significantly higher
communication range. It should be pointed out that the results presented in this work
report communication ranges and noise robustness comparable to the results obtained by
other VLC experiments without light dimming function. For example, [8–13,45] reported
communication ranges that reached 50 m, while providing data rates between 10 and
100 kb/s. Along with all these works, this new article contributes to the demonstration of
the high potential that VLC technology has in automotive applications. Thus, if a few years
ago the reliability of VLC systems was rather questionable, whereas the communication
ranges were rarely reaching 50 m, today’s prototypes are able to provide reliable commu-
nications in strong sunlight conditions [8,9], snowfall conditions [10], fog conditions [46],
and mobile conditions [45], while providing low latencies [10–12] and high compatibility
to 5.9 GHz RF-based communication solutions [2,3]. Now, with the results reported in this
article, it has been demonstrated that such communication ranges could be achieved while
also supporting light dimming. Thus, as far as we know, this article reports the longest
vehicular VLC link achieved while providing light dimming down to 1%.

From a hardware design point of view, the implementation of the VLC prototype
has shown that the light dimming function requires a significantly more powerful data
processing unit. For example, in order to perform the light dimming function, the micro-
controller performing data encapsulation at the VLC emitter level has been upgraded from
180 MHz to 600 MHz, whereas in order to be able to properly measure the width of the
narrow pulses associated with the 1% dimming scenario, the microcontroller board of the
VLC receiver has been upgraded from 180 MHz to 1008 MHz.



Sensors 2021, 21, 4446 23 of 25

Another negative effect associated with light dimming is related to a significant data
rate decrease. Therefore, the insertion of compensation symbols that decrease/increase the
average lighting generates idle times when no data transfers are possible. Furthermore,
when the processing power reach a certain limit, a higher resolution dimming can only be
achieved by increasing the bit period, which means decreasing the data rate.

7. Conclusions

This article has provided an analysis concerning the manner in which automotive VLC
systems could be used in light dimming conditions. This can be useful for improving road
safety in a variety of scenarios. A broken-down car on the side of the road in the middle
of the night could turn on the car’s lights-off VLC warning when the battery reaches the
minimum allowed voltage instead of shutting down the lights completely.

Based on the experimental results provided by this article, one can consider that the
use of VLC technology in V2V applications is highly promising, even in light-dimming con-
ditions. The intensive evaluation showed that in low to high parasitic lighting conditions,
an automotive VLC system can maintain a 10−6 BER even when the duty cycle decreases
down to 1%. On the other hand, in cases of direct exposure to sunlight, a reduced duty
cycle can affect the reliability of the VLC link, affecting the communication distance and
increasing the BER.

Future work on this project will be focused on achieving higher resolution dimming
and on evaluating the effects of lights-off communication on the V2V VLC link perfor-
mances. Toward this aim, the duty cycle should be further decreased in order to be
perceived by the human eye as being off. According to [32], LEDs appear to be off for
the human eye when a duty cycle of 0.007% is achieved. Nevertheless, general-purpose
high-power LEDs, such as the ones used in vehicle lighting systems, have switching times
in the 0.1–1 µs range. Therefore, if the duty cycle is further reduced, the pulse width will
be lower than the LED switching time. However, higher resolution dimming could still be
achieved by further increasing the bit duration, which is equivalent to a data rate decrease.
Nevertheless, further reducing the data rate below 10 kb/s seems inappropriate because
such an approach would increase the message latency above the limits accepted by vehicle
safety applications, so other modulation techniques must be taken into consideration for
better results [15].

Another step of this project will be to find the optimal ratio for the duty cycle between
maximum and minimum intensity of light, in a scenario where the driver is not braking,
but the stop lights of the car still transmit the data with an intensity of modulated light
dimmed at a level that can be considered as position lights by the current regulations.
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