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Abstract: Increased expression of GNAi2, which encodes the α-subunit of G-protein i2, has been
correlated with the late-stage progression of ovarian cancer. GNAi2, also referred to as the proto-
oncogene gip2, transduces signals from lysophosphatidic acid (LPA)-activated LPA-receptors to
oncogenic cellular responses in ovarian cancer cells. To identify the oncogenic program activated by
gip2, we carried out micro-array-based transcriptomic and bioinformatic analyses using the ovarian
cancer cell-line SKOV3, in which the expression of GNAi2/gip2 was silenced by specific shRNA. A
cut-off value of 5-fold change in gene expression (p < 0.05) indicated that a total of 264 genes were
dependent upon gip2-expression with 136 genes coding for functional proteins. Functional annotation
of the transcriptome indicated the hitherto unknown role of gip2 in stimulating the expression of
oncogenic/growth-promoting genes such as KDR/VEGFR2, CCL20, and VIP. The array results
were further validated in a panel of High-Grade Serous Ovarian Carcinoma (HGSOC) cell lines that
included Kuramochi, OVCAR3, and OVCAR8 cells. Gene set enrichment analyses using DAVID,
STRING, and Cytoscape applications indicated the potential role of the gip2-stimulated transcriptomic
network involved in the upregulation of cell proliferation, adhesion, migration, cellular metabolism,
and therapy resistance. The results unravel a multi-modular network in which the hub and bottleneck
nodes are defined by ACKR3/CXCR7, IL6, VEGFA, CYCS, COX5B, UQCRC1, UQCRFS1, and FYN.
The identification of these genes as the critical nodes in GNAi2/gip2 orchestrated onco-transcriptome
establishes their role in ovarian cancer pathophysiology. In addition, these results also point to these
nodes as potential targets for novel therapeutic strategies.

Keywords: ovarian cancer; GNAi2; gip2; transcriptome; gene expression; bio-informatics

1. Introduction

Despite major advances in anticancer drug development research and newer treatment
modalities, ovarian cancer lags behind other cancers by failing to show a significantly
improved survival rate over the years [1,2]. This is primarily due to the late diagnosis
of the disease, which is further compounded by the therapy resistance of the recurrent
disease [3,4]. While targeted therapy is emerging as an important deterrent to overcome
drug resistance in many cancers including ovarian cancer, it requires a better understanding
of the disease mechanism and causative factors involved in disease progression [4,5].
Plasticity of tumor cells, as well as pathway-bypass mechanisms involving the expression
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and/or activation of surrogate signaling molecules, were observed to blunt the effectiveness
of an otherwise proven targeted therapy [6,7]. In this context, it is of interest to note that
the α-subunit of G protein i2, which is encoded by the gene GNAi2 and often referred to
as gip2 proto-oncogene, shows a biased increased expression in the late stages of ovarian
cancer [8]. The role of gip2 in ovarian cancer pathobiology becomes all the more important
considering the fact that GNAi2 is activated by lysophosphatidic acid (LPA), an endogenous
growth factor in ovarian cancer. Such a context-specific expression of gip2 along with its
potent role in activating diverse oncogenic signaling responses such as cell proliferation,
EMT, stemness, and invasive metastatic migration necessitates a need to define the global
transcriptomic changes associated with the expression of gip2 so that potential therapeutic
nodes can be identified. With this rationale, we sought to gain insight into the onco-
transcriptome stimulated by gip2 in ovarian cancer cells and its functional role in ovarian
cancer progression and/or therapy resistance. We report the results from micro-array-
based transcriptomic analysis and gene set enrichment analysis on defining gip2-dependent
transcriptomic network along with the associated hub and bottleneck genes in ovarian
cancer cells.

Transcriptome profiling of SKOV3 cells in which the expression of gip2 was silenced
indicated the gip2-dependent expression of 264 genes, of which 136 were found to be coding
for functional proteins. Many of these genes, totaling 78, are known to be associated with
the hallmarks of cancer. The array results were validated by monitoring the expression
of KDR/VEGFR2, CCL20, and VIP, as a representative set of pro-tumorigenic genes in the
high-grade serous ovarian carcinoma cell lines Kuramochi and OVCAR8. Gene Ontology
(GO) enrichment and protein–protein interaction (PPI) network analyses of the dataset
from the transcriptome were carried out using the web-based Database for Annotation,
Visualization and Integrated Discovery (DAVID), Search Tool for Retrieval of Interacting
Genes (STRING), and Cytoscape applications. Gene enrichment analysis indicated the
oncogenic role of gip2 in inducing the expression of genes involved in cell proliferation,
adhesion, and migration. PPI network analysis identified the critical pathways regulated
by the transcriptome, which include cellular energetics, oncogenic signaling, and therapy
resistance. Further network analysis using Cytoscape application identified the potential
pro-tumorigenic role of hub and bottleneck genes, namely CYCS, VEGFA, IL6, UQCRFS1,
UQCRC1, COX5B, ACKR3/CXCR7, and FYN, in gip2-orchestrated onco-transcriptome.
Functional annotation of the hub and bottleneck genes indicated a triplex signaling mode
driving ovarian cancer progression. This involves the activation of a network cluster
that plays a stimulatory role in cancer cell metabolism, cell proliferation, and invasive
migration. In addition to providing new insights into the network organization of gip2-
stimulated onco-transcriptome in ovarian cancer, the results provide a molecular basis for
investigating the therapeutic potential of the hub and bottleneck nodes such as those of
UQCRFS1, ACKR3/CXCR7, and FYN for the development of second-line targeted therapy
in ovarian cancer.

2. Materials and Methods
2.1. Cell Lines and Culture

High-grade serous carcinoma cell lines OVCAR3 and non-serous ovarian carcinoma
cell line SKOV3 were acquired from American Type Culture Collection (ATCC, Manassas,
VA, USA), OVCAR8 and Kuramochi cells were procured from the National Cancer Institute
(NCI, Bethesda, MD, USA) and Japanese Collection of Research Biosources Cell Bank
(JCRB, Osaka, Japan) respectively. Routine authentication of the cell lines was carried out
by short tandem repeat analysis as described [9]. Cell-culture conditions and the use of
SKOV3 cell lines expressing shRNAs targeting GNAi2/gip2 and non-targeting scrambled
shRNA were previously described [10]. OVCAR3, OVCAR8, and Kuramochi cells were
maintained in Roswell Park Memorial Institute (RPMI) 1640 medium (Cellgro, Manassas,
VA, USA) whereas SKOV3 cells were cultured in Dulbecco’s modified Eagle’s (DMEM)
Medium (Cellgro, Manassas, VA, USA) supplemented with 10% FBS (Gemini Bio-Products,
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West Sacramento, CA, USA), 50 U/mL penicillin, 50 µg/mL streptomycin (Cellgro, Manas-
sas, VA, USA) at 37 ◦C and 5% CO2. siRNAs targeting GNAi2/gip2 (siGENOME Human
GNAi2 siRNA SMARTpool; Cat # M-008435-00-0005) and non-targeting scrambled control
siRNAs control (siGENOME Non-Targeting siRNA Pool; Cat # D-001206-13-05) were pur-
chased from Dharmacon/Horizon Discovery, Lafayette, CO. GNAi2/gip2-specific siRNA
and siCon were transfected into Kuramochi, OVCAR3 and OVCAR8 cells using Lipofec-
tamine RNAiMAX (Invitrogen, Life Technologies, Carlsbad, CA, USA) as recommended
by the manufacturer. The knockdown of gip2 in the transfectants was confirmed using
RT-PCR. LPA (1-oleoyl-2-hydroxy-sn-glycero-3-phosphate) used in the study was prepared
as 10 mM stock solution in PBS containing 1% BSA and stored at −80 ◦C until use.

2.2. Transcriptomic Analysis

Serum-starved stable SKOV3-shScr (nonspecific scrambled shRNA control) and SKOV3-
shgip2 cells were stimulated with LPA (10 µM) for 16 h. Qiagen RNeasy mini kit (Qiagen,
Carlsbad, CA) was used to extract total RNA following the manufacturer’s protocol.
Agilent SurePrint G3 Human Comparative Genomic Hybridization 8 × 60 microarray
platform was employed to generate the transcriptomic profile of these stable cell lines.
Complementary RNAs were labeled with Cy3-CTP using the Agilent Quick Amp labeling
kit (Agilent, CA) and hybridized to the array slides following the manufacturer’s protocol.
A total of six samples (3 control and 3 experimental) were used in the microarray platform.
Agilent SureScan scanner was used to scan the array slides at 2 microns resolution and the
spot intensity extracted using Agilent Feature Extraction version 11.0 software. Delineation
of gene expression between the cell lines was established using Agilent GeneSpring GX
version 13.0. gip2-dependent genes, with ≥ a 5-fold decrease over the control cells, were
used for further bioinformatic analyses.

2.3. Bioinformatic Analysis

Multiple web-based enrichment and network analysis were employed to define the
pathways and network their interactions. Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) annotation tool (https://david.ncifcrf.gov/home.jsp) (accessed
on 21 July 2021) was used for the Gene Ontology Enrichment analysis [11]. Protein–protein
interaction (PPI) network analysis was carried out employing the web-based Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING) database (https://string-db.org/)
(accessed on 21 July 2021) with the high confidence interaction score (0.7) and <10 degrees
of interaction limit [12]. Cytoscape software application was used to identify the significant
modules in the PPI network [13]. The hub and bottleneck nodes of the PPI network were
identified using the cytoHubba plugin in Cytoscape [14]. While the hub nodes of the
PPI network were identified using Degree, MCC, MNC, EPC, EcCentricity, Closeness,
Betweenness, and Clustering Coefficient algorithms, the bottleneck nodes were identified
using the BottleNeck algorithm of the cytoHubba plugin [15].

2.4. RT-qPCR Analysis

Total RNA was extracted using Qiagen RNeasy kit (Qiagen, Valencia, CA, USA)
following the manufacturer’s instructions. cDNA synthesis was carried out using iScript™
cDNA Synthesis Kit (BioRad, Hercules, CA, UAS). Real-time quantitative PCR (RT-qPCR)
was carried out using the cDNA from the above step using the SsoAdvanced Universal
SYBR Green Supermix (BioRad, Hercules, CA, USA) in a BioRad CFX96 Real-time PCR
detection system. The raw Cq values were normalized against GAPDH, a housekeeping
gene. The primers used in this study are shown in Table S1.

2.5. Immunoblot Analysis

Immunoblot Analysis. Antibodies to GNAi2 (sc-409), GAPDH (CB1001), peroxidase-
conjugated anti-rabbit IgG (W401B) were from Santa Cruz Biotechnology Inc (Dallas, TX,
USA), Abcam (Cambridge, MA, USA) and Promega Corporation (Madison, WI, USA)

https://david.ncifcrf.gov/home.jsp
https://string-db.org/
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respectively. Immunoblot analysis was carried out using our previously published meth-
ods [10].

2.6. Statistics

All gene expression studies were tested by a two-tailed Student’s t-test with Welch’s
correction using GraphPad Prism software (La Jolla, CA, USA). p values and False Discov-
ery Rates in the bioinformatic analysis were from built-in statistical analytical tools within
respective programs.

3. Results
3.1. Characterization of GNAi2/gip2-Dependent Transcriptome

Our previous studies have shown that LPA-LPAR activation or mutational activa-
tion of GNAi2/gip2 stimulates proliferation, EMT, invasive migration, and metabolic
reprogramming of ovarian cancer cells [9,16–19]. To gain better insight into the global
oncogenic network regulated by gip2, we carried out transcriptome profiling of SKOV3
ovarian cancer cells in which the expression of gip2 was silenced using shRNAs [10]. The
cells were stimulated with LPA and the genes that showed a decrease in the gip2-silenced
cells compared to the scrambled shRNA control group were identified using Agilent ar-
ray. With the fold change cut-off value of ≥5 compared to control cells, gip2-silenced
cells showed a downregulation of 264 genes (Figure 1A; GEO Accession No: GSE173214).
Of the downregulated genes, only 135 genes were found to be protein-encoding genes
(Table S2). Others were represented by genes encoding uncharacterized transcripts or the
ones encoding pseudogenes, anti-sense RNAs, or non-coding RNAs (GEO Accession No:
GSE173214). Analysis of the genes through data mining from published literature indicated
that 78 of these genes are known to play an oncogenic role in different cancers (Table S3).
More interestingly, querying these genes in TCGA ovarian cancer dataset (TCGA, Firehose
Legacy) via CBioPortal, indicated that 61 of these genes showed increased expression in
ovarian cancer (Table S4) and 40 of these genes showed co-occurrence in their expression
profiles (Table S5), thus further validating our results in ovarian cancer patient subgroup.
These array results were experimentally validated by monitoring the expression of a rep-
resentative set of pro-tumorigenic genes in the SKOV3 cell line and high grade serous
ovarian carcinoma (HGSOC) cell lines Kuramochi and OVCAR8. Expression of gip2 was
silenced using shRNA (SKOV3 cells) or siRNAs specifically targeting gip2 (Kuramochi and
OVCAR8 cells). Expression of KDR/VEGFR2, VIP, and CCL20-a representative set of genes
from the array results-were monitored by RT-PCR. As shown in Figure 1B–D, silencing
of gip2 decreased the expression of all these genes in SKOV3 as well as Kuramochi and
OVCAR8 cells, thus validating the array results.

3.2. Gene Ontology Enrichment Analysis of gip2-Dependent Genes

In the gip2-silenced cellular model system used here, the genes that show decreased
expression upon the silencing of gip2-the gip2-dependent genes-are in fact defined as the
genes that would be stimulated by gip2 in situ in ovarian cancer cells. Consistent with this
premise, functional annotation of these genes indicated that at least 50% of the genes (a
total of 78 genes out of 136 protein-coding genes) were found to play an oncogenic role in
different cancers (Table S2). Reasoning that the functional networking of these genes could
provide insight into the mechanism by which gip2 promotes neoplastic growth of ovarian
cancer cells, we carried out pathway and network analyses. Since Gene Ontology (GO)
enrichment analysis could provide information on the functional relationship among a large
set of genes, GO analysis of biological processes (GO:BP), molecular functions (GO:MF)
and cellular components (GO:CC) were carried out using DAVID database [11]. In GO:BP
ontology, the gip2-dependent genes were significantly enriched in biological processes
involving cell adhesion, proliferation, and cell motility (Table 1). In GO:CC ontology,
cellular periphery including plasma membrane and membrane region formed the major
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categories. In GO:MF ontology, the topmost enriched categories were molecular transducer
activity, receptor signaling activity, and lipid and tyrosine kinase binding (Table 1).
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Figure 1. Heatmap of genes downregulated upon silencing of GNAi2/gip2 and validation.
(A) Heatmap and the downregulated genes. The ratio comparing control cells (scrambled shRNA)
and gip2-silenced cells is presented as a heat map. Black and green bands represent unchanged and
downregulated expression, respectively. Total number of genes that show > 5-fold reduction in the
expression compared to control values is presented as a table insert. Array results were validated by
RT-PCR methods using SKOV3 (B) Kuramochi (C) and OVCAR8 (D) cells in which the expression of
gip2 was silenced (sigip2) using specific shRNA or siRNA. In SKOV3 cells, cells stably expressing
scrambled shRNA (shCON) were compared with cells in which gip2/GNAi2 was silenced with the
stable expression of specific shRNA targeting gip2/GNAi2 (shgip2). In Kuramochi and OVCAR8
cells, cells transfected with non-targeting scrambled siRNA pool were used as the control group
(siCON). Downregulated genes were validated by monitoring the expression of the representa-
tive genes KDR, VIP, and CCL20 by RT-PCR. Statistical significance between gip2-knockdown and
scrambled siRNA cells was determined by Student’s t-test (* p < 0.05, ** p < 0.005, *** p < 0.0005,
**** p < 0.0001ACKR3).
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Table 1. Gene ontogeny enrichment analysis of differentially expressed genes.

Category Term Description Gene Count p-Value

GO: BP

GO:0050896 Response to stimulus 67 2.9E−2

GO:0009605 Intracellular signal transduction 25 7.1E−2

GO:0042127 Regulation of cell proliferation 19 1.3E−1

GO:0007155 Cell adhesion 17 9.5E−2

GO:0016477 Cell migration 14 5.2E−2

GO:CC

GO:0005886 Plasma membrane 46 1.7E−2

GO:0071944 Cell periphery 46 2.5E−2

GO:0005576 Extracellular region 41 3.1E−2

GO:0042995 Extracellular space 20 2.8E−3

GO:0098862 Membrane region 6 8.5E−2

GO:MF

GO:0060089 Molecular transducer activity 18 3.8E−2

GO:0038023 Signaling receptor activity 18 3.8E−2

GO:0004888 Transmembrane signaling
receptor activity 15 5.2E−2

GO:0003982 Lipid binding 10 2.5E−2

GO:0001228 Protein tyrosine kinase binding 3 5.5E−2
Gene ontology (GO) enrichment analysis was carried out with the genes downregulated in SKOV3 cells upon
silencing of gip2 using the DAVID gene annotation tool. GO term enrichment analyses in terms of the three
sub-ontologies: Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) are presented.

3.3. Analysis of PPI Networks and Pathways

To further investigate the functional interactions among the proteins encoded by
the gip2-dependent genes, downregulated in gip2-silenced cells, we carried out Protein–
Protein Interaction Networks Functional Enrichment Analysis using STRING database [12].
Gip2-dependent genes were analyzed with a high confidence interaction score (0.7) and
< 10 degrees of interaction. The PPI network was constructed by screening 185 nodes and
473 edges (Figure 2). The most significant modules in the PPI network were determined
using the Cytoscape software application [13].

Using the web-based STRING tool, the PPI network of the genes downregulated
in gip2-silenced cells was constructed. Query proteins and their first shell interactions
are denoted by colored nodes. Second shell interactions are in while. Key pathway clus-
ters defined by specific nodes are denoted by different colors as follows: Red, metabolic
pathway; Blue, Pathways in Cancer; Green, Cytokine–Cytokine Receptor Interactions;
Yellow, Oxidative Phosphorylation; Violet, apoptosis; and Aqua Marine, Platinum Resis-
tance. Predicted functional interactions are indicated by the connecting lines. The colors
of the lines represent the types of evidence that were used to predict the PPI associations.
They are as follows: Red-known gene fusions; Green-gene neighborhood; Blue-gene co-
occurrence; Purple-experimental data; Yellow-text-mining; Light Blue-protein homology;
Aqua Marine-curated database; and Black-co-expression.

KEGG analyses indicated that the top pathways defined by the gip2-dependent genes
were: 1. Metabolic pathways; 2. Oxidative phosphorylation; 3. Pathways in cancer;
4. Platinum resistance; and 5. EGFR-inhibitor resistance (Table 2). Reactome analysis
expanded this further into pathways associated with 1. Respiratory electron transport;
2. Apoptosis; 3. Hemostasis; 4. Mitochondrial protein support; and 5. Interleukin-6
signaling (Table 2).
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Table 2. KEGG and Reactome pathway analysis of differentially expressed genes. KEGG and
Reactome pathway enrichment analyses were carried out with the genes downregulated in gip2-
silenced SKOV3 cells using STRING and Cytoscape applications. Major pathways of the PPI identified
in downregulated and upregulated genes along with the gene count and false discovery rate are
presented.

Pathway Term Description Gene
Count

False Discovery
Rate

KEGG
Pathway

hsa01100 Metabolic pathways 36 5.40e−08
hsa00190 Oxidative phosphorylation 24 6.13e−21
hsa05200 Pathways in cancer 21 5.83e−07
hsa01524 Platinum drug resistance 11 5.45e−09

hsa01521 EGFR tyrosine kinase
inhibitor resistance 9 1.75e−06

Reactome
Pathway

HSA-1428517 TCA Cycle and Respiratory
electron transport 21 7.61e−16

HSA-109581 Apoptosis 14 1.62e−08
HSA-109582 Hemostasis 14 1.67e−02

HSA-1268020 Mitochondrial protein import 4 2.76e−02
HSA-1059683 Interleukin-6 signaling 2 3.69e−02

3.4. Identification of the Hub and Bottleneck Nodes

We probed the network further to identify the critical genes that define the hub nodes
of the network using the cytoHubba plugin in Cytoscape [13]. We applied the multiple
algorithms of the cytoHubba including Degree, MCC, MNC, EPC, EcCentricity, Closeness,
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Betweenness, and Clustering Coefficient to identify the hub nodes of the PPI networks [14].
The intersecting genes identified by the different algorithms were tabulated. Results from
this analysis identified CYC5, VEGFA, COX5B, UQCRFS1, and IL6 as the top five hub nodes
of the network (Table 3). In addition, we identified the bottleneck nodes of the network
since they are considered as the “connector” or “choke points” in PPI networks [19,20] using
the BottleNeck algorithm in cytoHubba application of Cytoscape. The results identified
CYCS, VEGFA, and IL6 along with ACKR3/CXCR7 and FYN as the top five bottleneck
node genes of the network (Table 3). Functional annotation of these genes points to the
diverse oncogenic roles of these genes in many different cancers including ovarian cancer
(Table 3).

Table 3. Hub and bottleneck genes of the PPI network. The top five genes derived from the PPI
network using MCC, MNC, Degree, EPC, and EcCentricity algorithms of the CytoHubba plugins in
Cytoscape and top five bottleneck genes determined from the BottleNeck algorithm are presented.

Genes. Nodes Function References

CYC5 Hub and
Bottleneck

Increased oxidative
phosphorylation and

pro-survival cellular events
Huttemann et al., 2011

VEGFA Hub and
Bottleneck

Overexpression in ovarian
cancer patients; tumor

angiogenesis, associated with
distant metastasis and

resistance to chemotherapy

Guan et al., 2019;
Sopo et al., 2019;

Li et al., 2020

IL6 Hub and
Bottleneck

Ovarian Cancer Growth,
stemness, and therapy

resistance

Wang et al., 2018;
Azar et al., 2020

UQCRFS1 Hub
Oncogenic reprogramming

of metabolism role in
Pancreatic cancer

Kaneko et al., 2003;
Ohashi et al., 2004;
Owens et al., 2011;

Jun et al., 2012

UQCRC1 Hub
Oncogenic reprogramming

of metabolism role in
Pancreatic cancer

Wang et al., 2020

COX5B Hub

COX5B-mediated metabolic
reprogramming is Associated
with poor prognosis in many

cancers

Gao et al., 2017;
Chu et al., 2020

ACKR3/CXCR7 Bottleneck
Chemokine receptor

activated in many cancers to
promote invasive metastasis.

Neves et al., 2019;
Smit et al., 2020

FYN Bottleneck

Mediates oncogenic cell
proliferation, migration,

EMT, and therapy resistance
in many cancers.

Saito et al., 2010;
Lee et al., 2018;
Yu et al., 2020

Gip2-dependent expression of the hub and bottleneck genes were validated by moni-
toring the expression of IL6 and UQCRC1 in gip2-silenced SKOV3, OVCAR8 and OVCAR3
cells by RT-PCR analysis. As shown in Figure 3, gip2-silencing led to the decreased
expressions of both IL6 and UQCRC1 in all the tested cell lines (Figure 3).
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scrambled RNA were used as control group (shCON). In OVACR8 and OVCAR3 cell, cells transfected
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genes were validated by monitoring the expression of the representative bottleneck gene IL6 and
hub gene UQCRC1. Statistical significance was determined by Student’s t-test (* p < 0.05, ** p < 0.005,
*** p < 0.0005, **** p < 0.0001).

3.5. Significance of the Hub and Bottleneck Nodes

Next, we investigated the biological significance of the hub and bottleneck node genes
in relation to ovarian cancer through cBioPortal analysis [20,21]. Oncoprint profile of
CYCS, VEGFA, IL6, UQCRC1, UQCRFS1, COX5B, ACKR3/CXCR7, and FYN indicated
that these genes were either amplified or overexpressed in 4–25% of the ovarian cancer
patients (Figure 4A). Increased amplification or expression seen with UQCRFS1 in ovarian
cancer patients, prompted us to carry out in silico analysis of its expression profile and
overall survival rate of the ovarian cancer patients who show the altered expression of
UQCRFS1. RNASeq data and overall survival plot were obtained through CBioPortal
analyses. As shown in Figure 4B, increased expression of UQCRFS1 (Figure 4B) correlated
with the reduced overall survival of ovarian cancer patients (Figure 4C). More intriguingly,
increased expression of gip2 was not observed in UQCRFS1-patients. It is possible that
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the initiating event involved in the expression of UQCRFS1 is the activation of gip2 rather
than an increased expression of gip2 as in the case of other oncogenes [22]. Together with
the functional annotation of the other hub and bottleneck genes, these results substantiate
the potential role of the gip2-dependent hub/bottleneck nodal network in ovarian cancer
pathophysiology.
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profiles of the hub and bottleneck genes in ovarian cancer patients were visualized in OncoPrint at cBioPortal web-portal (A).
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4. Discussion

Effective targeted therapy in ovarian cancer has remained elusive primarily due to the
heterogenous subtypes and aberrant signaling pathways associated with the disease [23,24].
While PARP inhibitors and anti-angiogenic agents have provided relief to many patients,
the emergence of therapy resistance, especially in late-stage disease, has remained an
unsurmountable clinical problem [25–28]. This has necessitated the critical need to have a
clear understanding of the molecular events associated with different subtypes and stages of
the disease so that context-specific therapeutic strategies can be developed. Although recent
studies have identified major pathways and genetic risk factors associated with ovarian
cancer [29], causative factors involved in sustaining tumor growth in the advanced stages
of ovarian cancer are largely unknown. In this regard, the observation that GNAi2/gip2
shows increased expression in advanced ovarian cancers is quite significant as it suggests
the possibility that gip2 could play a critical, if not unique, role in advanced ovarian cancers.
Therefore, we investigated whether gip2-dependent transcriptome in ovarian cancer can be
probed to identify any novel targets for ovarian cancer therapy. Results from such analysis,
presented here, establish the critical role of the gip2-dependent transcriptomic network
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in pathways related to cell survival, proliferation, metastasis, adhesion, and cancer cell
metabolism (Tables S2 and S3).

While the individual pathways activated by gip2 have been cataloged in the past, the
extent to which gip2 is involved in regulating a comprehensive transcriptomic network to
facilitate ovarian cancer progression has not been fully understood until now. Our results
presented here provide the first evidence to show the synergistic signaling nodes regulated
by gip2 in promoting ovarian cancer growth (Table S2). Functionally, the transcriptomic
nodes regulated by gip2 range from pathways involved in cellular energetics to evading cell
death. The genes validated in the HGSOC cells lines OVCAR8 and Kuramochi substantiate
this point (Figure 1). KDR gene, which encodes vascular endothelial growth factor receptor
2, was shown to promote oncogenic signaling pathways in many different cancers including
ovarian cancer [30,31]. Vasoactive Intestinal Peptide, encoded by VIP, is known to be
involved in autocrine as well as paracrine signaling loop that promotes cancer growth
in multiple cancer types [32]. CCL20 gene encodes the chemokine C-C Motif Chemokine
Ligand 20 and it was identified to play a role in metastasis and therapy resistance of ovarian
cancer cells [33,34].

In addition to these genes, GO enrichment analysis of the data has identified several
novel correlates associated with ovarian cancer growth and progression. Results from
GO:CC enrichment analysis are in conformity with the known cellular and signaling locale
of GNAi2 in transducing the signals from the membrane-bound LPAR when activated by
LPA (Table 1). Similarly, the predicted molecular functions such as molecular transducer ac-
tivity, signaling receptor activity, transmembrane signaling receptor activity, lipid binding,
and protein tyrosine kinase binding, can all be related to the signal-transducing activity
of gip2 (Table 1). More interestingly, GO:BP analysis unravels certain novel aspects of
gip2-regulated biological processes in ovarian cancer transcriptome. While the role of gip2
in biological processes such as response to stimulus and intracellular signal transduction
has been well characterized, gene enrichment in GO:BPs such as cell proliferation, adhesion,
and migration provide a wider glimpse into the transcriptomic landscape activated by
gip2 in ovarian cancer cells. One of the characteristic features of late-stage ovarian can-
cer is the peritoneal dissemination of ovarian cancer cells, which precedes peritoneal and
hematogenous metastasis of ovarian cancer [35]. Biological processes underlying peritoneal
dissemination and subsequent metastasis involve cell migration, adhesion, and subsequent
tumor angiogenesis [36]. While the molecular components of these pathways have been
characterized to a certain extent, the integration of these pathways into a transcriptomic
network and the master regulator that modulates the expression of the downstream signal-
ing nodes have remained unknown. Results from the gene enrichment analyses point to
such a regulatory role for gip2 in the transcriptomic reprogramming in ovarian cancer cells.

Organizational features of the gip2-orchestrated transcriptomic network are more
clearly discernible with the results from the PPI network analysis. Two major clusters
can be identified in the PPI network: one that promotes cancer growth through multiple
cancer-specific signaling pathways and the other that promotes cancer cell metabolism
(Figure 2). The tumorigenic pathways cluster encompasses genes involved in cell prolifera-
tion, suppression of apoptosis, and platinum resistance. This cluster is further augmented
by signaling circuits involving cytokines, chemokines, and their cognate receptors that
are known to play a critical role in cancer cell proliferation, adhesion, invasive migration,
and metastasis. The metabolism cluster, on the other hand, primarily includes the genes
that encode proteins/enzymes involved in oxidative phosphorylation (Figure 2). Analyses
of the hub and bottleneck signaling nodes of the PPI network provide further insight
into the gip2-regulated transcriptome. The finding that the silencing of gip2 leads to the
reduced expressions of all of these hub and bottleneck genes underscores the critical roles
of these nodes in the onco-transcriptome (Figure 3). Functional annotation of these hub
and bottleneck genes as well as the Oncoprint analyses of these genes add further support
to their tumorigenic roles in ovarian cancer (Table 3; Figure 4A).
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The known roles of VEGFA, ACKR3, IL6 and FYN establish them as the major regu-
lators of cancer pathways cluster in the network. Vascular Endothelial Growth Factor A,
encoded by VEGFA, was found to be overexpressed in many cancers including ovarian
cancer. VEGFA expression and its activation of VEGFRs were correlated to metastasis,
tumor angiogenesis, and chemotherapy resistance in ovarian cancer [37–39]. Similarly, au-
tocrine and paracrine signaling pathways stimulated by Interleukin-6, encoded by IL6, were
shown to be associated with cancer cell proliferation, migration, stemness, and therapy
resistance in ovarian cancer [40,41]. Likewise, the signaling pathways activated by CXCR7,
a chemokine receptor encoded by ACKR3, were shown to be critically involved in the
migration and invasive metastasis of multiple cancers [42,43]. Fyn kinase, encoded by FYN,
stimulates a wide array of oncogenic pathways including cell proliferation, migration, EMT,
and therapy resistance in many cancers [44–46]. Similarly, CYCS, UQCRC1, UQCRFS1, and
COX5B genes present themselves as the regulatory nodes in the metabolism cluster of the
network. Cytochrome C, encoded by CYCS, is a major component of the electron transport
chain of mitochondria and it is tightly associated with the pro-survival pathways in normal
as well as cancer cells [47]. UQCRC1 encodes the mitochondrial ubiquinol-cytochrome c
reductase core protein I, which is part of Complex I of the mitochondrial respiratory chain
and was shown to be critically involved in the oncogenic reprogramming of metabolic
pathways in pancreatic cancer [48]. UQCRFS1, another hub gene identified here, encodes
the mitochondrial Ubiquinol-Cytochrome C Reductase/Rieske Iron-Sulfur polypeptide 1
and it is a key subunit of Complex III of the mitochondrial respiratory chain. Its overexpres-
sion and amplification were observed in different cancers including ovarian cancer [49–52].
Its overexpression was implicated in the aggressive phenotype of breast cancer [50,51].
COX5B gene encodes cytochrome c oxidase, and it is another critical component of the
mitochondrial respiratory chain. Overexpression of COX5B is associated with a poor prog-
nosis in many cancers [53,54]. The observation that these critical nodes are part of the gene
cluster involved in mitochondrial oxidative phosphorylation gains further significance in
light of the recent findings that mitochondrial oxidative phosphorylation is upregulated in
many cancers including ovarian cancer [55–57]. Thus, the comprehensive analysis of the
oncogenic network regulated by gip2indicates the activation of a transcriptomic network
that involves cell metabolism, suppression of cell death, invasive metastasis, and tumor
angiogenesis that cumulatively leads to aggressive ovarian cancer growth and progression
(Figure 5).
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Figure 5. Gip2-regulated onco-transcriptome in ovarian cancer. LPA-LPAR-stimulation or mutational
activation of gip2 drove the coordinated regulation of two major network clusters. Gip2-stimulated
pro-tumorigenic network comprised of nodes involved in tumor cell metabolism and angiogenesis
synergizes with the suppression of anti-tumorigenic network consisting of pro-apoptotic and growth-
suppressive nodes. LPA; lysophosphatidic acid; LPAR, lysophosphatidic acid receptor; gip2, G
protein subunit α i2.

It should be noted that the limitation of the results is that the transcriptome network
depicted here is derived from the data using a single ovarian cancer cell line. Nevertheless,
the findings that (1) Representative genes are validated experimentally in HGSOC cell lines
(Figures 1 and 3); (2) More than 50% of the genes in the network (78 genes) were shown to
be dysregulated in many cancers including ovarian cancer (Table S3); (3) Analysis of these
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genes in TCGA ovarian cancer dataset indicated that 61 of these genes showed increased
expression in ovarian cancer (Table S4); and (4). Forty of these genes showed co-occurrence
in their expression profiles (Table S5) provide external validation of the potential role
of these network genes in HGSOC cells and the ovarian cancer patient subgroup. The
identification of CYCS, VEGFA, IL6, UQCRC1, UQCRFS1, COX5B, ACKR3/CXCR7, and
FYN as pro-tumorigenic nodes designates them as the novel and potentially druggable
targets for effective targeted adjuvant therapy for ovarian cancer. In this context, the role of
UQCRFS1 as a hub node warrants special mention. The query of this gene in cBioPortal
indicated that UQCRFS1 is either amplified or overexpressed in 26% of ovarian cancer
patients (Figure 4A). More strikingly, the cBioPortal analysis indicates further that the
aberrant expression of UQCRFS1 could be correlated with the reduced overall survival of
ovarian cancer patients (Figure 4B). While the therapeutic potentials of VEGFA, ACKR3,
and IL6 have been already investigated or exploited [43,58,59], our analysis presented here
points to UQCRSF1 as a, thus far unidentified, potential node for the development of novel
therapeutics.

5. Conclusions

In summary, the results presented here provide a paradigm in which GNAi2/gip2-
dependent transcriptome promotes aggressive cancer growth during advanced stages
of ovarian cancer through the gene network that stimulates cell metabolism, invasive
metastasis, tumor angiogenesis along with the suppression of cell death. Considering the
late-stage expression profile of GNAi2/gip2 in ovarian cancer, the hub and bottleneck nodes
identified here, especially the metabolic signaling nodes such as UQCRFS1, should provide
newer targets for the development of second-line targeted therapy for advanced ovarian
cancers.
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