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Annual periodicity in planktonic 
bacterial and archaeal community 
composition of eutrophic Lake 
Taihu
Junfeng Li1,*, Junyi Zhang2,3,*, Liyang Liu1, Yucai Fan2, Lianshuo Li1, Yunfeng Yang4, 
Zuhong Lu2,5 & Xuegong Zhang1

Bacterioplankton plays a key role in nutrient cycling and is closely related to water eutrophication 
and algal bloom. We used high-throughput 16S rRNA gene sequencing to profile archaeal and 
bacterial community compositions in the surface water of Lake Taihu. It is one of the largest lakes 
in China and has suffered from recurring cyanobacterial bloom. A total of 81 water samples were 
collected from 9 different sites in 9 different months of 2012. We found that temporal variation 
of the microbial community was significantly greater than spatial variation (adonis, n = 9999, 
P < 1e−4). The composition of bacterial community in December was similar to that in January, 
and so was the archaeal community, suggesting potential annual periodicity. Unsupervised K-means 
clustering was used to identify the synchrony of abundance variations between different taxa. We 
found that the cluster consisting mostly of ACK-M1, C111 (members of acIV), Pelagibacteraceae 
(alfV-A) and Synechococcaceae showed relatively higher abundance in autumn. On the contrary, the 
cluster of Comamonadaceae and Methylophilaceae (members of lineage betI and betIV) had higher 
abundance in spring. The co-occurrence relationships between taxa were greatly altered during the 
cyanobacterial bloom according to our further network module analysis.

In recent years, eutrophication and consequential algal blooms in aquatic systems have become a major 
environmental issue that alters ecosystems and threatens human lives1,2. Recurring algal blooms can 
be found in freshwater systems all over the world, such as Lake Victoria in Africa3, Lake Erie in North 
America4, and Lake Taihu in China5. A number of studies have been carried out to unveil the mecha-
nism of bloom formation, understand the consequences on ecosystems and find possible solutions. It 
is widely agreed that over-enrichment of nutrients from anthropogenic sources especially nitrogen and 
phosphorus promote the development of algal blooms6–10. Besides, other environment factors such as 
temperature, pH, and day length may also influence the bloom formation9,11,12. Toxic materials such as 
microcystin may be generated during or after bloom and consequently alter the community structure 
of the aquatic ecosystem13,14. Bacterioplankton is a focus of study because it is closely linked to phyto-
plankton bloom15–17 and plays a key role in nutrient cycling18,19. However, time dynamics of the bacteri-
oplankton community in shallow eutrophic lakes remains unclear.
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Lake Taihu, with an area of 2,338 square kilometers and an average depth of 1.9 meters20, is the 
third largest freshwater lake in China. It is a typical shallow eutrophic lake and has been suffering from 
severe cyanobacterial bloom in recent years. Previous studies on Lake Taihu mainly focused on analy-
ses of environmental factors. It has been reported that cyanobacterial bloom usually initiates in spring 
when the temperature gradually rises21,22. Total nitrogen (TN) and total phosphorus (TP) are control 
factors of bloom formation and different ratios of TN and TP have different promotion effects23–25. Those 
aimed at microbial community were mainly based on coarse-resolution technique like PCR-DGGE26–33, 
T-RFLP34–36. Dominating bacteria in both sediment and water are Alpha-, Beta-, Gamma- and 
Deltaproteobacteria, Actinobacteria and Bacteriodetes. The archaeal community varies in different layers 
of sediment and water, and mainly consists of Eruyarchaeota and Crenarchaeota32. Ammonia-oxidizing 
archaea (AOA) has been found to be negatively correlated with the accumulation of organic substances37. 
Several microcystin-degrading bacteria have been identified and isolated38,39.

To obtain a high-resolution profile of the microbial community, we used high-throughput 
next-generation sequencing (NGS) to profile the bacterial and archaeal community compositions on 
a monthly basis for a year at multiple locations of Lake Taihu, using our strategy of next-generation 
sequencing targeting 16S rRNA gene40. We are specifically interested in the following scientific ques-
tions: (i) What the temporal patterns of bacterial and archaeal community compositions are; (ii) How 
the location variation of community composition is when compared to temporal variation; (iii) How the 
co-occurrence relationship between microbes changes with the development of cyanobacterial bloom.

Materials and Methods
Sample Collection and 16S rRNA Gene Sequencing.  To examine temporal and spatial variations 
of the microbial community, freshwater samples were collected at 9 sites in 9 months during 2012 (Fig. 1 
& Table 1). Specifically, 2 l of original water sample at the depth of 0.5 m was pre-filtered through a steel 
mesh with ~0.015 mm diameter pore size to remove large particles. We also took efforts to remove bloom 
species (mainly Microcystis here) in water samples, as otherwise they would consume most of sequenc-
ing capacity and affect the profiling of the microbial community. This was done by re-filtering the water 
samples through a filter with 0.22 μ m diameter pore size to collect microorganisms. These filters were 
stored at − 20 °C until further molecular analysis.

DNA samples were extracted from the filters using E.Z.N.A. ®  Water DNA Kit (OMEGA, USA). The 
quality and the quantity of DNA were examined by agarose gel electrophoresis and spectrophotomet-
rically quantified by Nano Drop ND 2000 (Thermo Scientific, DE, USA). Then the DNA was used as 
the template for amplifying the V6 region of 16S rRNA genes. PCR primers validated in the literature41 
were chosen for bacteria and archaea respectively (Table S1). Barcodes and linkers were designed and 
embedded into PCR primers following our published protocol40. To extract archaeal V6 region, PCR 
amplification was initiated by a denaturation cycle of 96 °C for 5 min, followed by 25 cycles at 96 °C for 
45 sec, 48 °C for 45 sec, 72 °C for 1 min, and a final extension step at 72 °C for 10 min. For the amplifi-
cation of bacterial V6 regions, the following PCR condition was used: 96 °C for 5 min; then 16 cycles 
of 96 °C for 45 sec, 48 °C for 45 sec, 72 °C for 1 min, and, finally, 72 °C for 10 min. The second round of 
PCR amplification was implemented for bacteria and archaea to introduce Illumina sequencing adapters. 
Similar PCR condition was used: 98 °C for 30 sec; then 9 cycles of 98 °C for 10 sec, 65 °C for 30 sec, 72 °C 

Figure 1.  Geographic location of 9 different sample sites in Lake Taihu. Solid stars denote locations of 
the 9 national monitor stations where the samples were collected in this study.
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for 30 sec, and, finally, 72 °C for 10 min. PCR products of the archaea and bacteria DNA were mixed at 
the ratio of 1:5 for subsequent sequencing according to the pre-experiment that we designed to estimate 
the ratio. The Illumina HiSeq 2000 platform was used to sequence paired-end (PE) reads with length 100 
bp in both forward and reverse directions.

In order to measure the influence of embedded barcodes on PCR, we used primers with different 
barcodes to amplify one sample selected from the collected samples and compared the results. To verify 
the consistency and reproducibility of experiment results, 56 out of 81 samples were also sequenced by 
Illumina GAIIx platform using 2*120bp paired-end strategy as replicates.

Data Preprocessing.  Forward-end reads and reverse-end reads of the raw sequencing data were 
matched and joined using PANDAseq42, which was helpful to reduce the error rate of sequencing reads 
and elongate the length of Illumina reads40. Reads containing ambiguous ‘N’ or with length < 120 nt or 
> 140 nt were discarded. Subsequently, FASTX Toolkit43 was applied to trim the barcodes and linkers 
from the remained joined reads. Sequences were assigned to corresponding samples according to the 
trimmed barcodes, and those with unmatched barcodes were discarded. Archaeal and bacterial reads 
were distinguished based on their different PCR primers using customized Perl scripts and then analyzed 
separately. Quality control was carried out with the FASTX Toolkit, and filtering parameters (Archaea: 
90% bases quality score > 30; Bacteria: 100% bases quality score > 30) were chosen based on the results of 
FastQC44. This is a stricter criterion compared to similar studies, ensuring the high quality of the results.

OTU Clustering and Taxonomy Assignment.  The QIIME platform v1.8.045 was applied in the sub-
sequent data processing after quality control. Reads were then clustered into species-level OTUs (oper-
ational taxonomic units) at 97% similarity, using the subsampled open-reference-based OTU-picking 
workflow in QIIME based on UCLUST46. The Greengenes database (version 13_5) was used as the ref-
erence47. Chimera reads and the corresponding OTUs were removed by ChimeraSlayer48 and QIIME 
scripts. We chose 0.001% as the threshold for filtering low-abundance OTUs, i.e., only OTUs with read 
counts > 0.001% of the total reads of all samples were kept. UCLUST consensus taxonomy assigner was 
applied in the taxonomic information assignment for the remained OTUs. The most specific taxonomic 
labels associated with at least 51% (QIIME default) of database hits of OTU reads were assigned to the 
OTU. Representative reads for OTUs were picked using default settings in QIIME and then aligned to the 
Greengenes database by PyNAST49. In the Greengenes database, chloroplast is listed as a class belonging 
to Cyanobacteria and contains orders such as Chlorophyta, Cryptophyta, Haptophyceae and Stramenopiles 
that are actually eukaryotes. Therefore, we did not include them in the downstream analysis since our 
study focused on prokaryotes. Phylogenetic trees were constructed based on the aligned reads using 
FastTree50.

Microbial Diversity and Statistical Analysis.  Microbial diversity was measured by a series of 
OTU-based analyses of alpha- and beta-diversity implemented in the QIIME pipeline. For the alpha 
diversity, rarefaction curves were drawn based on two richness metrics, “observed species” and “PD_
whole tree”51, and two evenness metrics, Shannon entropy and Simpson metric52. We chose a sequencing 
depth that most samples were at the plateau of rarefaction curves and explored microbial richness using 
R scripts. For beta diversity, phylogenetic-based Unifrac metric53 and OTU membership-based dissim-
ilarity Jaccard metric54 were employed to measure the pairwise community similarity between samples 
that were re-sampled to equal sequencing depth. Emperor55 was used to visualize the distance matrix of 
all the 81 samples based on PCoA (Principle Coordinate Analysis). The hierarchical clustering method 
UPGMA was applied to group samples according to their distance matrix; the resulting tree file was vis-
ualized by FigTree v1.4.0 as well as the phylogenetic tree56. Significance of the differential taxa between 
UPGMA groups was tested by Kruskal-Wallis rank-sum test. The threshold was set as Bonferroni 

Sampling Site Coordinate Sampling Month Date

ML 120°10'23″  E, 31°28'8″  N Jan. 2012.01.11–2012.01.12

SZ 120°14'46″  E, 31°22 ‘44″  N Mar. 2012.02.07–2012.03.08

SD 120°21'58″  E, 31°25'45″  N Apr. 2012.04.09–2012.04.10

MS 120°15'33″  E, 31°15'8″  N May 2012.05.08–2012.05.09

XH 120°23'56″  E, 31°10'40″  N Jun. 2012.06.05–2012.06.07

XS 120°10'55″  E, 31°8'41″  N Aug. 2012.08.11–2012.08.12

XM 120°7'19″  E, 30°58'35″  N Sep. 2012.09.13–2012.09.14

DL 120°0’ 42″ E, 31°8'11″  N Oct. 2012.10.18–2012.10.19

DP 119°57'14″  E, 31°18'11″  N Dec. 2012.12.12–2012.12.13

Table 1.   Sampling sites and months in Lake Taihu.
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corrected p-value <  0.05. Adonis57 implemented in QIIME was used to test whether differences among 
groups of samples were significant. Mantel test58 was used to test whether the β -diversity distance matri-
ces of samples from HiSeq 2000 was significantly correlated with those from GAIIx. K-means clustering 
of genera based on relative abundance was performed using R scripts. We firstly resampled the original 
OTU table for normalizing the sequencing depth, which ensured every sample had the same number of 
total reads. Since OTUs were annotated to species level, we summed abundance of OTUs affiliated with 
the same genus and used it as the abundance of that genus. For a certain genus G of all identified genera, 
relative abundance in a certain sampling month T was calculated as formula (1).
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 denote the mean and standard deviation of AbundG, respectively. Transformed 
Z-score of all the genera were calculated as described above. To determine the appropriate number of 
clusters, we used the ratio of within-cluster sum of squares error (SS) to between-cluster SS as a meas-
urement of clustering performance. To reduce biases caused by randomness of the K-means algorithm, 
we used 100 random sets of initial centers and reported the result with the best clustering 
performance.

Co-occurrence Network Analysis.  Co-occurrence and mutual exclusion information of OTUs has 
been widely used to predict species interactions in environments59. The 81 samples were clustered into 
groups based on the UPGMA result, and we constructed an OTU co-occurrence network for each group. 
Network nodes represent OTUs, and edges represent co-occurrence or mutual exclusion relationship 
between OTUs. Pearson Correlation Coefficient (PCC) was adopted to measure the strength of the rela-
tionship as used in the literature60–62. OTUs that existed in less than half of the samples within a certain 
group were removed to reduce false-positives caused by excessive mutual exclusions. To this end, we 
firstly calculated pairwise similarity and generated similarity matrix, and used the scale-free property 
as a criterion for determining the threshold since scale-free is a major characteristics for biological net-
works60,61,63,64, which indicated that a few OTUs held most edges and many other OTUs were rarely 
linked. Cytoscape65 was employed to visualize the resulting networks. We used MCODE plugin66 to find 
network modules in one network and trace them in the others.

Results
Sequencing data analyses and microbial community characterization.  We explored the 
microbial community of Lake Taihu via targeted 16S rRNA gene sequencing. By different experimen-
tal settings, we generated three datasets: (I) All the 81 samples sequenced by Illumina HiSeq2000; (II) 
one of the 81 samples was amplified with 14 different barcodes, generating 14 samples sequenced by 
Illumina HiSeq2000; and (III) 56 of the 81 samples sequenced by Illumina GAIIx. Dataset-I was the 
main data source of this study, while Dataset-II and Dataset-III were used to validate our PCR primers 
and reproducibility of the experiments, respectively. A single run of HiSeq2000 generated 1,046,311,536 
paired raw reads. After PE reads joining and barcode parsing, 955,690,310 reads remained and were 
filtered with strict quality control criteria (see Materials and Methods for details). We finally obtained 
705,037 ±  345,118 archaeal reads and 3,241,126 ±  1,114,800 bacterial reads per sample, which was about 
1:5 as the experiment design. We had done pre-experiment and found that rarefaction curve of archaea 
and bacteria diversity can both level off even at the archaea/bacteria concentration ratio of 1:10 (data 
not shown). Therefore, the present 1:5 ratio was chosen in order to pay more attention on the minority 
archaea while the sequencing depth has been guaranteed. More details about the preprocessing are shown 
in Table S2. The ChimeraSlayer output showed that there were no chimera reads using the Greengenes 
database (gg_13_5) as reference.

Based on these high-quality non-chimeric reads, we finally obtained 3,046 archaeal OTUs and 5,295 
bacterial OTUs. Taxonomic information of archaea and bacteria OTUs were assigned based on the 
Greengenes database. We found that there were some bacteria in the archaeal profile and vice versa, 
which was probably due to limited specificity of PCR primers or the indistinguishability between some 
archaea and bacteria. We discarded those OTUs from this study. As shown in Fig. 2, dominant (relative 
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abundance > 1%) archaeal phyla were Crenarchaeota (43.8 ±  22.6%), Euryarchaeota (22.0 ±  21.1%) 
and Parvarchaeota (22.0 ±  21.1%). Dominant bacterial phyla were Actinobacteria (60.7 ±  10.2%), 
Proteobacteria (21.9 ±  9.6%), Cyanobacteria (12.5 ±  6.5%) and Bacteroidetes (2.1 ±  0.9%). A large por-
tion of archaeal reads remained unassigned (31.2 ±  22.5%), while unassigned bacteria reads accounted 
for only 0.7 ±  0.5%.

Further analysis at lower taxonomic level showed that Nitrosopumilus was the most abundant 
genus in Crenarchaeota (20.7 ±  18.6%). Methanosaeta and an unclassified genus of candidate family 
Methanomassiliicoccaceae represented the most abundant Euryarchaeota genera with average abun-
dance 5.0 ±  7.0% and 5.5 ±  5.1%. For bacteria, Betaproteobacteria (15.4 ±  10.8%), Alphaproteobacteria 

Figure 2.  Phylum-level microbial community profile and species richness of archaea and bacteria.  
(A,B) represent the relative abundances of bacterial and archaeal phyla in the 81 samples, respectively. 
Sample IDs are composed of the sampling month and site name. Bar colors represent different phyla, and 
bar lengths represent the relative abundances. The bacteria and archaea phyla marked with “*” include 
taxonomies that have highly similar 16S rRNA sequences and are not distinguishable by the PCR primer. 
(C,D) show temporal variations of archaeal and bacterial richness within samples, measured with two 
metrics, whole-tree phylogenetic diversity and observed species, respectively. Sequencing data were firstly 
resampled to the same sequencing depth for all samples. The left y-axis and right y-axis are for archaeal and 
bacterial curves, respectively.
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(4.9 ±  3.2%) and Gammaproteobacteria (1.5 ±  1.3%) represented the most abundant groups of 
Proteobacteria. An unclassified genus of ACK-M1 family (clade acI-A) was the dominants of the com-
munity across all samples, accounted for 48.1 ±  8.0% of total abundance. Abundance of different genera 
of Proteobacteria were relatively evenly distributed. The most abundant one was an unclassified genus of 
Pelagibacteraceae family (clade alfV-A, tribe LD12) with 4.5 ±  3.2% of total abundance, while members 
of Comamonadaceae (lineage betI, 6.2 ±  4.6%) and Methylophilaceae (lineage betIV, 3.5 ±  4.4%) repre-
sented the most abundant groups of Betaproteobacteria. Gammaproteobacteria were widely regarded as 
temporary members from anthropogenic or zoonotic sources. It’s reasonable for them to show a low 
abundance in freshwater, mainly Xanthomonadaceae, Pseudomonadaceae and Moraxellaceae (clade gamV, 
gamIV and gamIII). More details about the abundance profiles are listed in Tables S3 & S4. Here, we need 
to point out that these community profiles could be biased due to our pre-filtering operations. However, 
since we carefully chose the pore size of filters in order to keep most prokaryotes, such bias will not have 
significant influence on our conclusions.

Primer validation and experiment reproducibility.  Use of different barcodes in PCR primers may 
have an impact on PCR amplification that may cause bias in species abundance measurements. To check 
this issue, the “Apr.MS” sample was chosen to be sequenced using different barcodes (BC1-BC14). Using 
the same data processing protocol for Dataset-I, we generated Dataset-II and summarized the preproc-
essing information in Table S5. Figure 3A shows that genus-level taxonomic profiles were highly consist-
ent among the Apr.MS samples with different barcodes (details in Table S6), but significant variations can 
be found among other samples. We concluded that the influence of different barcodes on the taxonomic 
profiles can be ignored.

Different sequencing platforms may also cause biases. To check this issue, 56 samples were chosen to 
generate extra sequencing replicates by the Illumina GAIIx platform, leading to Dataset-III. We summa-
rized the preprocessing information in Table S7. Based on the unweighted Unifrac metric, distributions 
of sample points sequenced by the GAIIx platform and the HiSeq2000 platform were largely consistent 
(Fig. 3B). Furthermore, Mantel test showed that the distance matrixes generating two PCoA figures were 
significantly correlated (r =  0.95, p-value =  1e− 4, two-sided, permutation n =  9999). We concluded that 
our results were independent on sequencing platforms.

Figure 3.  Difference of the bacterial community structure and β-diversity between samples with 
different PCR barcodes and sequencing platforms. (A) Genus-level taxonomy profile of samples using 
different PCR barcodes. Sample IDs are composed of sampling month, site and barcode index. Legends of 
the bar colors are omitted in this figure as the purpose is to check the consistence between samples using 
different barcodes. Details of genera are listed in supplementary Table S6. (B) PCoA results of 56 samples 
sequenced by the GAIIx platform and the Hiseq2000 platform based on relative abundance of OTUs using 
unweighted Unifrac metric.
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Temporal and spatial variations of microbial diversity.  We explored microbial diversity within 
samples (α  diversity) by rarefaction curves (Fig. S1). Two diversity metrics defined in QIIME, “observed 
species” and “PD_whole_tree”, were used as measurements. We can see that rarefaction curves nearly 
level off, suggesting that we had captured most of abundant microbes. Figure 2C,D show the numbers 
of observed archaea and bacteria species and PD_whole_tree metric across the sampling months. It 
demonstrated that there was one peak in the archaeal curve of microbial diversity while there were two 
peaks in the bacterial curve of microbial diversity.

To examine whether variations across sampling sites were greater than variations across sampling 
time, we pooled all 81 samples and used PCoA and UPGMA to conduct unsupervised clustering analysis. 
We found that samples collected from the same month were located close to each other on the PCoA plot 
(Fig. 4A), suggesting that spatial variations were smaller. This was verified by adonis showing that varia-
tion across time was more significant (p-value =  1e− 4, R =  0.27, permutation n =  9999) than that across 
different sampling sites (p-value =  0.6668, R =  0.09, permutation n =  9999). Interestingly, we found that 
the microbial community varied from month to month gradually, which suggested a trend of commu-
nity succession. Especially, we observed that the community in December was more similar to that of 
January, which contributed to the ring-shaped PCoA plot. Considering that environmental conditions 
like temperature, which is usually the main factor contributing to community variation, are quite similar 
in the same month, it is reasonable to infer that community in December will be more similar to that in 
the next January. This suggests a potential annual periodicity of the community variation in Lake Taihu. 
Also, previous studies based on multi-year data have reported that seasonal patterns in bacterioplankton 
community structure are reoccurring in freshwater systems67–69, which supports our conclusion.

Based on UPGMA result (Fig.  4B), these samples could be clustered into four stages: Dec. ~ Jan., 
Mar. ~ Apr., May ~ Jun., and Aug. ~ Oct. (adonis p-value =  1e− 4, R =  0.57, n =  9999) in line with the four 
seasons, which also supports the annual periodicity conclusion. The temporal variation was less signif-
icant in archaea (adonis p-value =  1e− 4, R =  0.22, n =  9999) compared to that of bacteria (Fig.  4C,D) 
considering the r2 which showed the percentage of variation explained by the supplied grouping factor. 
However, the site variation of archaeal community was significant (adonis p-value =  1e− 4, R =  0.19, 
n =  9999). Finally, a total of 73 taxa were identified to be significantly different between the Mar. ~ Apr. 
stage and the May ~ Jun. stage (Kruskal-Wallis rank sum test, Bonferroni corrected p-value <  0.05), 
while the numbers for May ~ Jun. versus Aug. ~ Oct., Aug. ~ Oct. versus Dec. ~ Jan., and Dec. ~ Jan. versus 
Mar. ~ Apr. were 42, 24 and 26, respectively (Fig. S2). Further studies about biological functions of these 
taxa may help us understand the characteristics of the four stages.

Figure 4.  PCoA and UPGMA on bacterial community showing significant clustering correlated with 
temporal variations. (A) PCoA result based on OTU relative abundances of samples using unweighted 
Unifrac metric. Temporal variation is the main factor contributing to the community variation. Additionally, 
samples from January to December are distributed in a circled pattern, which implies an annual cycle of the 
temporal variation of microbial community. (B) UPGMA result based on the unweighted Unifrac metric 
used in PCoA. The hierarchical clustering structure helps to determine the similarity of the microbial 
communities between different months. Consequently, we group samples into four stages that are correlated 
with four seasons in a year.
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Bacterial community shift and season-specific genera.  We explored variations of taxa abun-
dance. The variation of abundance can be considered as a kind of response of microbes to the environ-
ment change, which possibly reflects the important biological function of taxa. Therefore, it is reasonable 
to assume that taxa holding the same temporal variation pattern (we call them synchronized taxa) may 
have similar niche preference or have similar function in the community. Using the K-means algorithm 
in R to cluster the genera based on their relative abundances across 9 months measured by Z-scores, 
we grouped taxa with similar changes across the months. We focused on the bacterial community since 
seasonal variation of archaeal community was less significant and bacteria was much more abundant and 
had better annotation. We set the number of clusters as 4 according to Fig. 5B with the method described 
in Materials and Methods.

Figure 5A shows temporal variations of Z-scores of four cluster centers represented in red, blue, green 
and yellow, respectively. The relative abundance of the red cluster was substantially higher in December 
to April than in June to October, while the blue cluster displayed the opposite pattern. Thus, we named 
them as the “spring-specific” cluster and the “autumn-specific” cluster, respectively. There were 84 gen-
era in the “spring-specific” cluster and 71 genera in the “autumn-specific” cluster. These clusters were 
fairly stable across different sample sites in Lake Taihu as shown in Fig. S3. The “spring-specific” and 
“autumn-specific” clusters accounted for 22.5% and 71.7% of total abundance, respectively, and the green 
cluster and the yellow cluster accounted only for 2.8% and 3.0% with 25 and 46 genera, respectively 
(Fig.  5C). We used a set of most abundant genera within each cluster (of which the sum abundance 
accounted for more than 50% of the cluster abundance) as the representatives of that cluster (Fig. 5C). 
We found that representatives were different for 4 clusters. Families ACK-M1 (acI-A), C111 (members 
of acIV), Pelagibacteraceae (alfV-A) and Synechococcaceae represented most abundant members of the 
“autumn-specific” cluster, while Comamonadaceae and Methylophilaceae (members of lineage betI and 
betIV) were most abundant in the “spring-specific” cluster. Most members of the green cluster and 
the yellow cluster were either poorly annotated or annotated to minor phyla such as Acidobacteria, 

Figure 5.  K-means clustering results identifying synchrony of different genera. Relative abundance of 
genera was firstly transformed into Z-scores as described in Materials and Methods. Then, synchronized 
genera defined as genera that have similar temporal variations were identified by K-means clustering.  
(A) Relative abundances of “center” genera of resulted clusters at different sampling months. (B) The ratio 
of within-cluster SS and between-cluster SS as function of the number of clusters. This curve helps to 
determine the appropriate parameter K in K-means clustering. (C) Total abundance of each cluster and 
corresponding representation phylum. Phylum assignments of most abundant genera that take up > 50% of 
cluster abundances were used to represent each cluster.
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Verrucomicrobia. The estimation of minor phyla abundance was less accurate as it is vulnerable to artifi-
cial factors in experiments or dataset noise, which might explain the confusing temporal pattern of these 
two clusters. More details about cluster composition were showed in supplementary Table S8.

Co-occurrence Network Module Variations.  To explore microbial co-occurrence relationship over 
time, we built four co-occurrence networks based on correlations of relative abundance of OTUs across 
different sample sites in the four seasons with the same threshold of 0.90 (Table S9). The r2 of regression 
was 0.80 ±  0.07 and the exponent of “power-law” was 1.50 ±  0.05, suggesting that the networks were 
scale-free.

Topological properties of networks substantially changed over time (Fig. S4). Network density (the 
average number of edges per node) was higher in Dec.-Jan. (8.37) and Mar.-Apr. (8.6) than that in the 
other two stages (5.67 in May-Jun. and 5.56 in Aug.-Oct.), suggesting fewer co-occurrence relationships 
during the period of time of most algal blooms. The difference of bacterial communities between spring 
and autumn was most significant. We identified modules in the network of the Mar.-Apr. stage using 
MCODE and traced the top 10 modules ranked by the average degrees (Fig. S4). Figure 6 illustrates the 
modules and the first neighbors of the nodes of modules in the networks of the four stages. Interestingly, 
modules were often comprised of OTUs affiliated with only one or a few families (Fig.  6A,B). For 
Module-1 and Module-3, most OTUs were members of ACK-M1 (acI-A), C111 (members of acIV), 
Holophagaceae, Sinobacteraceae and Synechococcaceae (mostly Synechococcus genus). For Module-2, 
OTUs were mainly affiliated with Pseudanabaenaceae (mainly the Leptolyngbya genus) and Nostocaceae. 
We also found that different modules might share same families, like ACK-M1 in Module-1,-3 and -10 
or C111 in Module-3 and -8. It could be possibly attributed to the different genus composition within 
the same family. When comparing the four networks, we observed that connections between modules 
were changing significantly over time. For example, members of Module-1 and Module-3 were highly 
connected in the Mar.-Apr. network, but those connections were gradually lost in the following May-Jun. 
network and Aug.-Oct. network. Furthermore, module-2 presented in the Mar.-Apr. network even totally 
disappeared in later time of the year. It’s hard to give the ecological explanations about these patterns 
based on only taxonomic information. We will further discuss about it and propose our hypothesis in 
the discussion section.

Figure 6.  Temporal variations of co-occurrence network modules and relationship between them. 
Network nodes are OTUs; edges indicate co-occurrence or mutual exclusion relationships between nodes. 
Modules found by MCODE in the network of the Mar.-Apr. stage and their first-neighbor nodes are 
demonstrated in (A); same OTUs belong to the modules are traced in other three stages as in (B). Modules 
were annotated using taxonomic names at the most specific level.



www.nature.com/scientificreports/

1 0Scientific Reports | 5:15488 | DOI: 10.1038/srep15488

Discussion
Based on ultra-deep sequencing data targeting the V6 region of microbial 16S rRNA genes, we pro-
filed temporal and spatial variations of archaeal and bacterial communities in Lake Taihu, which was 
prone to severe cyanobacterial bloom. Relative abundances of taxa were studied at different taxonomic 
levels. We observed that a large portion of archaeal OTUs were left “unassigned”. Recent discovery of 
ammonia-oxidizing archaea greatly broadened the knowledge of prokaryotes functioning in ammonia 
oxidation, which is closely related to nitrification and thus the eutrophication. Previous studies has 
revealed ammonia-oxidizing archaea in sediment samples of Lake Taihu32,37. In shallow lakes like Taihu, 
surface sediment has intensive exchange with upper water. The microbial community within sediment 
and water are highly associated. Therefore, more attention needs to be paid to archaea in water besides 
the sediment, especially the “unassigned” part. Rarefaction curves demonstrated that taxa profile of sam-
ples from different sites and different months had revealed most of abundant species within freshwater 
in Lake Taihu. With the results of re-sequencing part of total 81 samples, we confirmed the reliability 
and reproducibility of our analysis results when different barcodes and sequencing platforms were used. 
Cyanobacteria was not detected as the most abundant phylum due to the filtering operations during 
sample collection (see Materials and Methods). Although it may alter the original community structure, 
such filtering was necessary to make sure that rare taxa could be also covered during the sequencing. 
Otherwise, most of the sequenced reads would belong to the members of Cyanobacteria.

The temporal variations of α -diversity of archaeal communities and bacterial communities were dif-
ferent. The observed two peaks of bacterial richness around May and December could correspond to 
the recruitment phase and dormancy phase of bloom development10. Many genera of Cyanobacteria 
especially Microcystis are sensitive to temperature variations and exhibit optimal growth rates at rela-
tively high temperature1. When temperature rises in early spring, Cyanobacteria recruits and increases 
the concentration of dissolved oxygen through the photosynthesis. Microorganisms in water increase 
rapidly at this time as environment conditions are suitable for their growth, which contributed to the first 
peak in diversity curves. But, as Cyanobacteria such as Microcystis dominates the freshwater community 
very quickly and even forms water bloom, other bacteria can be strongly inhibited and even gradually 
die away because of toxic microcystin. This leads to the decrease of diversity. For the later peak of the 
diversity, it could be attributed to the recovery and growth of other bacteria because of the dormancy of 
the dominating Cyanobacteria. When temperature is low, the growth of Microcystis is strongly inhibited. 
But for the other bacteria, some prefer relatively low temperature. The dormancy of the dominating 
Microcystis in Lake Taihu gives room for the growth of such kind of bacteria. Therefore, it leads to 
the increase of microbial diversity. Archaeal diversity showed only one peak that lasted from May to 
December, which might be attributed to the ability of surviving in low oxygen conditions and the higher 
temperature optima of archaea70–73. Even during cyanobacterial bloom when the dissolved oxygen were 
easily exhausted by the excessive bloom species, archaea will not sharply die away so that diversity of 
archaeal community would have less variation. Basically, archaeal communities in the water body of Lake 
Taihu were more stable against the influence of cyanobacterial blooms than that of bacteria.

We observed annual periodicity of temporal variations in both bacterial and archaeal communities. 
Previous studies has reported the existence of seasonal pattern and the annual cycle in microbial com-
munity structure of other aquatic systems67,69,74,75. There are some studies on temporal variations of bio-
chemical factors or specific species in Lake Taihu76–80, but not of the microbial communities. In our 
study, we revealed that both the archaeal and bacterial communities held significant temporal variation 
and potential annual periodicity. The annual periodicity was less significant in the archaeal community 
than that of the bacterial community, which may attribute to the significant difference of archaeal com-
munity across different geographical locations as aforementioned. On the other hand, previous studies 
have shown that archaea in sediments and water are quite different while bacteria are not32. Therefore, 
the extensive vertical motion between different layers of water and sediment can greatly alter archaeal 
community composition and thus disturb the annual pattern. For the annual periodicity, we may spec-
ulate that there is a special “original status” of the community, which is the beginning and the ending of 
the cyanobacterial bloom at the same time. During the development of bloom, the community becomes 
unbalanced from the “original status” and forms the water bloom. After the end of the bloom, the com-
munity tends to restore to the vulnerable “original status” until the next water bloom. Unfortunately, it’s 
difficult to identify the driven taxa contributing to the annual periodicity based on present experiments. 
In our future work, we should try to identify such “original status” first by special experiment design and 
use functional information to study the ecological mechanism.

We identified the synchrony of bacteria using K-means clustering and explored changes of 
co-occurrence between taxa by reconstructing network modules. It suggested that abundances of most 
taxa follow a specific variation pattern rather than irregular changes in this eutrophic lake with cyanobac-
terial bloom. For the “spring-specific” cluster, the most abundant OTU affiliated with Comamonadaceae 
was an unclassified genus. Considering the large diversity of Comamonadaceae family, we couldn’t get 
more specific information for explaining the high abundance in spring. However, Methylophilaceae only 
includes four formally described genera. In the “spring-specific” cluster, the most abundant OTU affil-
iated with Methylophilaceae was an unclassified genus, while the second is the genus Methylotenera. 
According to a very recent study81, Methylotenera is most similar to tribe LD28 among four genera and 
LD28 tends to have higher abundance in Mar.-Apr. and Nov.-Dec. This is consistent with the variation 
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of “spring-specific” cluster. Also, it pointed out that the maximum of LD28 in that period was probably 
mainly determined by the C1 substrates released by phytoplankton. Considering the close relatedness 
between Methylotenera and LD28, we speculated that the variation pattern of the “spring-specific” cluster 
may also be determined by the same factors. For the “autumn-specific” cluster, recent metagenomic and 
single-cell genomic studies have reported the living preference of acI-A for N-rich compounds and their 
potential ability to degrade cyanophycin82,83. As the most abundant family within the “autumn-specific” 
cluster, ACK-M1 is affiliated with acI-A and should reasonably be expected to show the characteristics 
described above. Therefore, it could take good advantage of the large amount of cyanophycin provided 
by excessive Cyanobacteria to acquire energy and carbon during autumn. Consequently, the large prolif-
eration of ACK-M1 (acI-A) demonstrated high abundance in that period. Besides, some previous studies 
also observed that C111 (members of acIV) and Pelagibacteraceae (alfV-A) showed high abundance in 
autumn. But there were still little knowledge about the ecological functions of these taxa explaining their 
abundance variation patterns. Further studies about genomic functions are needed.

Network module analysis provided the overview of the change of coexistence and mutual exclusion 
association between taxa. Since network modules were OTUs that had significant co-occurrence relation-
ships that showed correlated abundance in different environment situations, it is expected that these OTUs 
would potentially have similar functions or be ecologically interacting with each other. Synechococcaceae 
in Module-1 and Module-3 affiliated with Cyanobacteria is one of the most important members of prokar-
yotic autotrophic picoplankton58,84. ACK-M1 (acI-A) and C111 (members of acIV) are heterotrophic 
bacteria85. In early spring when there was no cyanobacterial bloom, the growth of dominant ACK-M1 
(acI-A) and C111 (acIV) might depend on metabolites from Synechococcaceae. Thus, they might be highly 
correlated in abundance, which agreed with the highly connected status between Module-1 and Module-3 
in the network. But cyanobacterial bloom species such as Microcystis spp. gradually developed into dom-
inant species in summer and led to massive death of other microbes. This possibly broke the original 
co-occurrence between ACK-M1, C111 and Synechococcaceae., which can explain the later separation of 
Module-1 and Module-3. In winter, temperature fell and cyanobacterial bloom fade away. The aquatic 
ecosystem restored to the “original status”, which was demonstrated as the recombination of Module-1 
and Module-3. The variation of relationship between Module-1 and Module-3 verifies the reliability of 
our co-occurrence network to some extent. We may speculate that Holophagaceae and Sinobacteraceae in 
Module-1 and -3 may have similar trophic preference as actinobacterial taxa in aquatic systems as well.

In summary, this large-scale ultra-deep 16S rRNA sequencing study provided a comprehensive profile 
about the archaeal and bacterial community in Lake Taihu. The observed temporal variation demon-
strated seasonal patterns and an annual periodicity. The synchrony of bacterial taxa and the change of 
co-occurrence networks between different species are helpful to reveal the influence of the cyanobacterial 
bloom on the microbial community in Lake Taihu. Based on this study, further works can be done in 
the future to gain better understanding of microbial ecosystem of the Lake. (1) Functional profile of 
microbial community by metagenome sequencing is necessary to unveil potential biological functions 
of archaeal or bacterial communities, especially in the restoration stage after bloom and the “original 
status” we discussed above. (2) Although we have explored the variations of the microbial commu-
nity, driven factors contributing to the aforementioned variation patterns were not studied. Therefore, 
environmental factors should be involved in the future work in order to reveal the association between 
community variations and environment changes, such as changes in temperature, pH, dissolved oxygen 
and concentration of nitrogen and phosphorus. Especially, a quantitative measurement for the severity of 
water bloom is needed in order to associate it with community variation. (3) Due to preliminary filtering 
of dominant cyanobacterial species, an important part of microbial community, especially members of 
Microcystis that dominate in Lake Taihu during the summer and autumn, were missed. Perhaps, micro-
bial community assemblage of carpet-like mucilaginous cyanobacterial aggregates86 in Lake Taihu is a 
good target for future experiments, since it is a kind of aggregation of Cyanobacteria and other taxa that 
are highly associated with each other and present real symbiosis relationships.
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