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Abstract

Objective: Using endoscopic images, we have previously developed computer‐aided
diagnosis models to predict the histopathology of gastric neoplasms. However, no

model that categorizes every stage of gastric carcinogenesis has been published. In

this study, a deep‐learning‐based diagnosis model was developed and validated to
automatically classify all stages of gastric carcinogenesis, including atrophy and

intestinal metaplasia, in endoscopy images.

Design: A total of 18,701 endoscopic images were collected retrospectively and

randomly divided into train, validation, and internal‐test datasets in an 8:1:1 ratio.
The primary outcome was lesion‐classification accuracy in six categories: normal/
atrophy/intestinal metaplasia/dysplasia/early /advanced gastric cancer. External‐
validation of performance in the established model used 1427 novel images from

other institutions that were not used in training, validation, or internal‐tests.
Results: The internal‐test lesion‐classification accuracy was 91.2% (95% confidence
interval: 89.9%–92.5%). For performance validation, the established model achieved

an accuracy of 82.3% (80.3%–84.3%). The external‐test per‐class receiver operating
characteristic in the diagnosis of atrophy and intestinal metaplasia was 93.4� 0%and

91.3 � 0%, respectively.

Conclusions: The established model demonstrated high performance in the diag-

nosis of preneoplastic lesions (atrophy and intestinal metaplasia) as well as gastric

neoplasms.
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INTRODUCTION

Endoscopists' important skills include suspicion of lesions, early

detection, and skillfully separating malignant and pre‐malignant le-
sions from benign lesions during gastrointestinal endoscopy.1–3 Even

highly trained endoscopists cannot avoid missing neoplastic lesions

during screening endoscopy in terms of lesion detection. One sys-

tematic review found that about 10% of gastric cancer screening en-

doscopies were missed, potentially missing one out of every 10

cancers.4 Visual diagnosis during endoscopy for lesion classification is
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also not perfect. The sensitivity and specificity for detecting gastric

cancer were not perfect according to the analysis of the Korean na-

tional cancer screening program (sensitivity: 69% specificity: 96%).5

The results of the analysis of the Japanese local gastric cancer

screening program were also consistent (sensitivity: 89%, speci-

ficity: 85%).6

Conscientious examination with a humble attitude, examination

reducing blind spots, or increasing visibility with image‐enhanced
endoscopy have all been advised for improving diagnostic perfor-

mance in endoscopy.7,8 However, it can be challenging to maintain a

certain level of performance that is unaffected by individual skill or

level of fatigue.

A single center tandem randomized study carried out in China

randomly assigned 1886 upper endoscopic examinations to either

routine conventional endoscopy or artificial intelligence (AI)‐assisted
screening endoscopy. The neoplasm miss rate during AI‐assisted
endoscopic examination was 6.4%. A routine screening endoscopy

without AI support, however, revealed a 25.6% miss rate. The

neoplasm miss rate was significantly lower in the AI‐assisted group.
This study demonstrated that, regardless of an endoscopist's skill level

or level of fatigue, AI can be a complementary technique for their

performance.9

We previously developed computer‐aided diagnosis (CADx)

models7 for classifying the histology of gastric lesions into five classes

(advanced gastric cancer [AGC], early gastric cancer [EGC], low‐grade
dysplasia, high‐grade dysplasia, and non‐neoplasm) or two classes
(cancer vs. noncancer, neoplasm vs. non‐neoplasm). This was fol-
lowed by a model10 that used transfer learning of pre‐trained con-
volutional neural networks to classify the invasion‐depth (mucosa‐
confined vs. submucosa‐invaded) of gastric neoplasms from endo-

scopic images. We also used deep‐learning to develop and validate a
clinical decision support system (CDSS) for the automated detection

(computer‐aided detection [CADe]), diagnosis (CADx), and invasion‐
depth prediction (CADx) of gastric neoplasms in real‐time endos-
copy.8 However, no model has been reported that classifies the entire

process of gastric carcinogenesis. Furthermore, atrophy or intestinal

metaplasia is a preneoplastic condition that requires close monitoring

for the development of gastric cancer and testing for Helicobacter

pylori infection (Figure 1).11,12 Although these two conditions were

categorized as normal (not a neoplasm category) in our previous

studies, they should be monitored and classified differently in a

clinic.13 In this study, a deep‐learning‐based diagnosis model was
developed and validated for the automated classification of all stages

of gastric carcinogenesis, including atrophy and intestinal metaplasia,

in endoscopy images.

MATERIALS AND METHODS

This study was approved by the institutional review board of Chun-

cheon Sacred Heart hospital (approval number: 2022‐03‐002). This
study builds on previous research7,8,10,14 by automating the classifi-

cation of the entire stages of gastric carcinogenesis in endoscopic

images. Because the data were collected retrospectively, the

informed consent was waived. The study's schematic diagram is

displayed in Figure 2. All images from the train, validation, internal‐
test, and external‐test datasets were mutually exclusive.

F I GUR E 1 Schematic diagram of gastric carcinogenesis.

Key summary

Summarize the established knowledge on this subject

� In this study, a deep‐learning‐based diagnosis model was
developed and validated to automatically classify all

stages of gastric carcinogenesis, including atrophy and

intestinal metaplasia, in endoscopy images.

What are the significant and/or new findings of this study?

� The established computer‐aided diagnosis model

demonstrated high performance in the diagnosis of pre-

neoplastic lesions such as atrophy and intestinal meta-

plasia as well as gastric neoplasms. This model can be

implemented in the clinical practice not to miss the at-

rophy or intestinal metaplasia, as well as gastric neo-

plasms in screening upper gastrointestinal endoscopy.
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Datasets

We expanded the data collection procedure used in earlier studies in

order to create the CADx model.7,8,10,14 First, between 2010 and

2022, we enrolled consecutive patients at the Hallym University

Chuncheon Sacred Heart hospital with any type of gastric neoplasms

identified during upper gastrointestinal endoscopy and histologically

confirmed. These three categories—dysplasia, EGC, and AGC—were

used to classify gastric neoplasms.

In the second step, we enrolled all patients diagnosed with at-

rophy or intestinal metaplasia during upper gastrointestinal endos-

copy at Hallym University Chuncheon Sacred Heart hospital between

2019 and 2022. These images were assigned to one of two groups:

atrophy or intestinal metaplasia. To reduce inter‐observer variability
and ensure accurate categorization, two expert endoscopists (C.S.B.

and E.J.G.) cross‐checked all enrolled images. The discussion was
used to resolve the discordant categorized images.

The normal category without atrophy or intestinal metaplasia

was prepared for the final step using the same procedure

described above. Patients were found to be free of gastric

neoplasm, atrophy, or intestinal metaplasia during upper gastro-

intestinal endoscopy at Hallym University Chuncheon Sacred

Heart hospital between 2019 and 2022. As a result, all neoplasm

categories were pathology‐confirmed lesions, but atrophy, intesti-
nal metaplasia, and normal mucosa were classified by expert

endoscopists based on visual diagnosis. To reduce inter‐observer
variability and ensure accurate categorization, two expert endo-

scopists (C.S.B. and E.J.G.) cross‐checked all enrolled images.

Representative endoscopic images of each patient were obtained

in JPEG format from the in‐hospital database, with a minimum
resolution of 512 � 431 pixels. Imaging software INFINITT Pic-

ture Archiving and Communication System (PACS) M6 capturing

device (INFINITT Healthcare) was used. JPEG 2000 compression

was used and the stored images in the PACS have a resolution of

F I GUR E 2 Schematic diagram for the establishment of computer‐aided diagnosis model for the entire steps of gastric carcinogenesis.
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96 or 150 dpi. Post processing was not performed on the images

used in this study.

Finally, 18,701 endoscopic images were enrolled (The number

of images and the number of lesions were the same) and randomly

assigned to train, validation, and internal‐test datasets in an 8:1:1
ratio. Randomization was done on the basis of patients rather than

images.7 Thus, lesions of the same category in a single patient were

assigned in one group to either the training or test dataset. It

should be noted that if a patient had lesions from multiple

categories at the same time, the lesions could belong to various

datasets because lesions from different categories were randomized

independently.7

All training and internal‐test examinations were performed using
GIF‐Q260, H260, or H290 endoscopes (Olympus Optical Co., Ltd.) in
conjunction with an endoscopic video imaging system (Evis Lucera

CV‐260 SL or Elite CV‐290; Olympus Optical Co., Ltd.). Table 1 de-
scribes the detailed distribution of the input images.

Preprocessing of training dataset

Endoscopic still‐cut images contain noise information such as the
date of the examination, the patients' name, age, gender, or identi-

fication number.8 Before training, noise information was anonymized

and not saved in the training dataset. To increase the amount of data,

different combinations of augmentation or copies of modified images

are randomly applied during training. As a result, data augmentation

methods such as hue, rotation (90°), brightness, saturation, contrast,

noise, horizontal or vertical flipping of included images, and image

normalization with linear transformation in terms of three RGB

channels were used.7,10

Establishment of CADx models

In this study, the no‐code deep‐learning tool “Neuro‐X” version 3.1.1
(Neurocle Inc.) was used. Deep‐learning models for image recognition
and classification can be established using a software algorithm that

analyzes the features of the dataset and self‐discovers optimal

hyperparameters, making it simple for non‐experts to build the best
performance models.14 Neuro‐X offers three backbone convolutional
neural network architectures to choose from depending on the size of

your dataset. It consists of compact, normal, and heavy architectures,

with five levels of hyperparameters to adjust, as well as a choice of

optimizer, decay method, batch size, epoch, and patience. We tried to

obtain the best performance model possible. The entire deep‐learning
model development process was approached by simply clicking menus

based on user‐friendly graphical user interfaces in on‐premise soft-
ware. The training system included four RTX 3090ti graphics pro-

cessing units, AMD Ryzen Threadripper PRO 5975WX 32‐Core
central processing units, and 512 GB RAM.

Study outcomes

The primary outcome was the established models'lesion‐classification
accuracy. Precision (defined as [true positive/true positive þ false

positive]), recall (defined as [true positive/true positive þ false nega-

tive]), F1 score (2 precision recall/precision þ recall), and per‐class
area under the receiver operating characteristic (AUROC) were

additional performance metrics.

Performance verification for the lesion classification
accuracy

To ensure the generalizability of classification performance, a per-

formance verification (prospective validation) test was carried out

using external‐test datasets from other institutions. This external‐test
set was gathered from consecutive patients who underwent upper

gastrointestinal endoscopy at Gangneung Asan Hospital between

2018 and 2020. A total of 1427 new images from 1427 patients were

collected that were not used in the training or internal‐testing of the
established model. All external‐tests were performed using GIF‐
Q260, H260, or H290 endoscopes (Olympus Optical Co., Ltd.) in

conjunction with an endoscopic video imaging system (Evis Lucera

CV‐260 SL or Elite CV‐290; Olympus Optical Co., Ltd.). Table 1 de-
scribes the detailed distribution of the external‐test dataset.

TAB L E 1 Data distribution for the establishment and test of computer‐aided diagnosis model.

Number of images (number of patients) Whole dataset Training dataset
Validation
dataset

Internal‐test
dataset

External‐test
dataset

Overall 18,701 (13,951) 14,959 (11,261) 1871 (1343) 1871 (1347) 1427 (683)

Advanced gastric cancer 1358 (542) (7.3%) 1086 (432) (7.3%) 136 (54) (7.3%) 136 (56) (7.3%) 199 (100) (13.9%)

Early gastric cancer 2208 (627) (11.8%) 1766 (511) (11.8%) 221 (60) (11.8%) 221 (56) (11.8%) 204 (59) (14.3%)

Dysplasia 2016 (837) (10.8%) 1612 (660) (10.8%) 202 (87) (10.8%) 202 (90) (10.8%) 207 (139) (14.5%)

Atrophy 4994 (3897) (26.7%) 3996 (3223) (26.7%) 499 (337) (26.7%) 499 (337) (26.7%) 286 (94) (20.0%)

Intestinal metaplasia 3787 (3710) (20.3%) 3029 (2965) (20.2%) 379 (371) (20.3%) 379 (374) (20.3%) 283 (43) (19.8%)

Normal 4338 (4338) (23.2%) 3470 (3470) (23.2%) 434 (434) (23.2%) 434 (434) (23.2%) 248 (248) (17.4%)
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Attention map for explainability

In this study, a gradient‐weighted class activation map (attention
map) was implemented into the layer of a neural network to localize

the discriminative regions in the given images to determine the

specific class. An attention map was created and analyzed for each

external‐test image.15

RESULTS

Characteristics of the dataset

A total of 18,701 endoscopic images were collected retrospectively

and randomly divided into train, validation, and internal‐test datasets
in an 8:1:1 ratio. The proportion of “atrophy” in the total images was

highest (26.7% [4994/18,701]), followed by “normal” (23.2% [4338/

18,701]) and “intestinal metaplasia” (20.3% [3787/18,701]). In terms

of neoplastic lesions, “EGC” had the highest proportion (11.8%

[2208/18,701]), followed by “dysplasia” (10.8% [2016/18,701]) and

“AGC” (7.3% [1358/18,701]).

A total of 1427 novel images with proportions that reflected the

unique characteristics of the own institution were collected for the

external‐test dataset. The proportion of “atrophy” was the highest

(20% [286/1427]), followed by “intestinal metaplasia” (19.8% [283/

1427]) and “normal” (17.4% [248/1427]). The proportion of

“dysplasia” in the neoplasm categories was highest (14.5% [207/

1427]), followed by “EGC” (14.3% [204/1427]) and “AGC” (13.9%

[199/1427]). Table 1 describes the number and distribution of each

category in the dataset.

Training parameters in the establishment of CADx
model

The on‐premise software's own neural network structure was used
with Adam optimizer, Cosine learning rate decay method (decay ends

at 23,400 steps, initial learning rate 0.002), batch size of 40, epoch of

100, and patience of 30 to establish the CADx model. Inference time

was 6.18 ms and loss function was categorical crossenteropy. The

total time spent training was 5 h and 19 min. The validation loss was

0.0708 and the train loss was 0.3476 (at epoch 40).

Internal‐test performance

The established model had an accuracy of 91.2% (95% confidence

interval, 89.9%–92.5%), the precision of 88.4% (86.9%–89.9%), recall

F I GUR E 3 Confusion matrix for the computer‐aided diagnosis model in the internal‐test.
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of 88.1% (86.6–89.6), and F1 score of 88.2% (86.7%–89.7%) in

internal‐tests. The per‐class AUROC is 97.3% for AGC, 94.1% for EGC,
93.4% for dysplasia, 97.3% for atrophy, 96.9% for intestinal meta-

plasia, and 99.5% for the normal category. Figure 3 demonstrates the

confusion matrix for internal‐test performance, and Table 2 describes
the detailed performance of the established CADx model.

External‐test performance

The established model had an accuracy of 82.3% (95% confidence

interval, 80.3%–84.3%), the precision of 83% (81.1%–84.9%), recall

of 82.3% (80.3–84.3), and F1 score of 82.6% (80.6%–84.6%) in

external‐tests. The per‐class AUROC is 96.7% for AGC, 91.8% for
EGC, 93.4% for dysplasia, 93.4% for atrophy, 91.3% for intestinal

metaplasia, and 99.3% for the normal category. Figure 4 demon-

strates the confusion matrix for internal‐test performance, and

Table 2 describes the detailed performance of the established CADx

model.

Attention map

Figure S1 shows representative cases of neoplastic lesions, while

Figure S2 shows representative cases of atrophy or intestinal meta-

plastic lesions that were correctly determined region of interest by

an established CADx model. The white dotted line represents the

ground truth region of interest, which was well matched with the

CADx model's determination.

Figure S3 demonstrates the incorrectly determined cases of the

CADx model. Although the CADx model incorrectly identified a re-

gion of interest (by focusing on only a portion of the lesion), the

characteristic area of the lesion was well noted by an established

CADx model in most cases.

TAB L E 2 A summary of the performance of computer‐aided diagnosis model in white‐light endoscopy images.

% (95% confidence interval) Accuracy Precision Recall F1 score

Internal‐test performance (n = 1871) 91.2% (89.9%–92.5%) 88.4% (86.9%–89.9%) 88.1% (86.6%–89.6%) 88.2% (86.7%–89.7%)

External‐test performance (n = 1427) 82.3% (80.3%–84.3%) 83% (81.1%–84.9%) 82.3% (80.3%–84.3%) 82.6% (80.6%–84.6%)

F I GUR E 4 Confusion matrix for the computer‐aided diagnosis model in the external‐test.
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DISCUSSION

We developed and validated a CADx model for automated diagnosis

of the entire steps of gastric carcinogenesis in upper gastrointestinal

endoscopy. Gastric atrophy and intestinal metaplasia, according

to Correa's hypothesis, are preneoplastic conditions that should be

monitored for the development of gastric neoplasms.16,17 In patients

with atrophy or intestinal metaplasia, the American Gastroenter-

ology Association recommended H. pylori testing and eradication

to prevent the progression of gastric carcinogenesis.18,19 They

must also be monitored on a regular basis. Even after H. pylori

eradication, patients with severe atrophy or intestinal metaplasia

(OLGA, OLGIM stage III‐IV) are at high risk of developing gastric
neoplasms.20

CDSS for the automated detection and diagnosis of gastric

neoplasms in real endoscopic procedures has already been estab-

lished and validated by our group. However, because atrophy or in-

testinal metaplasia were not classified as neoplasms, they were

classified as “normal” at the time of CDSS development. To

compensate for the need for individualized risk stratification, we

added two new classes to the total dataset and extended data

preparation steps to ensure that the model works properly in real‐
world scenarios. Because the diagnostic capability of our previous

CADx models for neoplastic lesions was already qualified, we

concentrated on the diagnostic capability of preneoplastic conditions

such as atrophy and intestinal metaplasia. As a result, the proportion

of “atrophy” (26.7%) or “intestinal metaplasia” (20.3%) was twice that

of neoplastic lesions. We also conducted a pilot study to determine

the best distribution of input training data with the best perfor-

mance, and the model with an even distribution of each category

demonstrated lower diagnostic accuracy than the currently estab-

lished model (approximately half of the “atrophy” or “intestinal

metaplasia” images were used).

Priorities for AI in gastrointestinal endoscopy were recom-

mended by the American Society of Gastrointestinal Endoscopy.21

CADe of gastric cancer precursor lesions, including atrophy and in-

testinal metaplasia, was one of the recommended priorities.21

Although the current work is not a CADe but rather a CADx, we plan

to expand our research by developing a CADe model and combining

CADe and CADx into a single CDSS. According to the European

Society of Gastrointestinal Endoscopy, CADx of gastric preneoplastic

conditions should be one of the top priorities for AI use.22 Real‐time
AI‐assisted diagnosis of gastric preneoplastic conditions with diag-
nostic accuracy measurement was recommended, and our current

study used the same task.

Previous research on this topic has shown that CADe models

have comparable or even better diagnostic performance than endo-

scopists and have clinical utility. Guimares et al. developed an atro-

phy detection model and demonstrated 93% accuracy in an

independent data set, outperforming expert endoscopists.23 Zhang

et al. also established CADe of gastric atrophy and demonstrated

94% accuracy, sensitivity, and specificity, which was higher than that

of endoscopic experts.24 Zhao et al. also created a CADe of atrophy

and carried out a prospective cohort study. They demonstrated that

using the CADe model improved the diagnosis rate of gastric atrophy

when compared to not using the CADe model.25 Luo et al. developed

a CADe model for gastric atrophy that demonstrated comparable

detection performance to endoscopists.26 However, in real‐world
clinical practice, this type of dataset is meaningless. These studies

created a training dataset with only atrophy and no atrophy cate-

gories. In these studies, the categories of gastric cancer, normal, and

intestinal metaplasia are not taken into account. Because only atro-

phy versus no‐atrophy discrimination is possible, these models
cannot be used in clinical settings.

Siripoppohn et al. established a real‐time semantic segmentation
model in terms of intestinal metaplasia.27 Although the diagnostic

performance in this study was excellent, this model was not a CADe

or CADx model; rather, only gastric intestinal metaplasia could be

segmented in real time.

This study developed and validated a CADx model for the

automated diagnosis of all stages of gastric carcinogenesis during

upper gastrointestinal endoscopy. The diagnostic performance

demonstrated clinical utility (internal‐test lesion‐classification accu-
racy of 91.2%, external‐test accuracy of 82.3%, external‐test per‐
class AUROC of atrophy and intestinal metaplasia of 93.4 and 91.3,

respectively). The number of correctly identified regions of interest

for external‐test images was comparable between expert endo-
scopist and established model. To the best of our knowledge, this is

the first study to establish and validate the diagnostic performance of

a CADx model for gastric atrophy and intestinal metaplasia, taking

into account all stages of gastric carcinogenesis.

Despite the promising results mentioned above, several un-

avoidable limitations were discovered. First, the training dataset was

obtained from a single institution, which may indicate a selection or

spectrum bias. Medical AI models developed from a single institution

typically have limitations for widespread implementation due to the

unique characteristics of patients in each institution, highlighting the

importance of external‐testing.28 To compensate for this flaw, we
conducted stringent validations and included images from other in-

stitutions. Second, a CADx model without a CADe model was

created. In general, the flow of conventional screening endoscopy is

lesion detection and classification. However, we only created a CADx

model before creating a CADe model. We created a diagnosis model

first because we determined the distribution of training data while

creating the diagnosis model, and in the follow‐up study, we plan to
create a detection model based on this training data and integrate it

into one CDSS. Third, despite the fact that we used gradient‐
weighted class activation maps for our analysis, these maps have

their own drawbacks, including the inability to localize multiple in-

stances of an object in an image due to partial derivatives premise

and inaccurate localization of the heatmap with respect to the

coverage of the class area.29 Fourth, we used a JPEG baseline format

for model establishment. This compression standard is typically

“lossy” and includes several user‐defined settings that affect image
quality. Although JPEG was the only format that could be collected in

our study, it may have caused a bias in image quality. Further
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research using only TIFF or PNG file formats would avoid this type of

bias.7 Fourth, several lesions from the same patient may be intro-

duced into different sets. Although the study focuses on lesions,

there is still a bias if multiple lesions from the same patient are

included in both training and test sets. However, including only one

image from one lesion could lead to insufficient model performance.

Fifth, the normal category in our study was classified by expert

endoscopists based on visual diagnosis, which may introduce poten-

tial misclassification. Due to the retrospective nature of this study,

histological confirmation of the normal category was not feasible.

This limitation is important to consider when interpreting our find-

ings. Sixth, because images found to be free of gastric neoplasm,

atrophy, or intestinal metaplasia were collected more recently than

the average positive sample, this could result in a difference in image

quality between the negative and positive samples. Seventh, the

current study has the potential for information leakage. Information

leakage refers to a situation where information outside the training

data is used to establish the model. This can lead to inaccurate per-

formance of the mode being built. We tried to limit this risk by using

two independent test sets that are not used for hyperparameter

tuning.

In conclusion, the established computer‐aided diagnosis model
demonstrated high performance in the diagnosis of preneoplastic

lesions such as atrophy and intestinal metaplasia as well as gastric

neoplasms.
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