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Abstract: Magnetic skyrmions are promising potential information carriers for future spintronic
devices owing to their nanoscale size, non-volatility and high mobility. In this work, we demonstrate
the controlled manipulation of skyrmion motion and its implementation in a new concept of racetrack
logical device by introducing an inhomogeneous perpendicular magnetic anisotropy (PMA) via
micromagnetic simulation. Here, the inhomogeneous PMA can be introduced by a capping nano-
island that serves as a tunable potential barriers/well which can effectively modulate the size and
shape of isolated skyrmion. Using the inhomogeneous PMA in skyrmion-based racetrack enables the
manipulation of skyrmion motion behaviors, for instance, blocking, trapping or allowing passing
the injected skyrmion. In addition, the skyrmion trapping operation can be further exploited in
developing special designed racetrack devices with logic AND and NOT, wherein a set of logic AND
operations can be realized via skyrmion–skyrmion repulsion between two skyrmions. These results
indicate an effective method for tailoring the skyrmion structures and motion behaviors by using
inhomogeneous PMA, which further provide a new pathway to all-electric skyrmion-based memory
and logic devices.

Keywords: magnetic skyrmion; inhomogeneous perpendicular magnetic anisotropy; logic devices;
micromagnetic simulation

1. Introduction

A magnetic skyrmion is a topologically stable configuration often observed in chiral
magnets with broken inversion symmetry. The nanoscale skyrmion exhibits topologically
stable particle-like behavior, and it can be efficiently created, annihilated and moved
by ultra-low critical current densities. These characters make it promising candidate as
information carrier for next-generation of spintronic devices [1–6]. It has thus aroused
intense research efforts in recent years, leading to a series of breakthrough achievements
in manipulation of skyrmion states, via, e.g., injected spin-polarized currents, or external
electric-field [7–16]. These achievements underpin a wide range of emerging skyrmion-
based spintronic devices, including racetrack memories, high-density magnetic random
access memories, logic gates, etc. [1–10], which hold advantages for all-electrical control
and energy-efficient fashion [2,3].
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It is well known that the skyrmion structure usually arises as a result of energy com-
petition among the exchange energy, Dzyaloshinskii–Moriya interaction (DMI), demagneti-
zation energy, magnetic anisotropy and Zeeman energy [8]. Previous studies demonstrated
that various types of anisotropy terms (e.g., perpendicular magnetic anisotropy (PMA),
easy-plane magnetocrystalline anisotropy and cubic anisotropy) may play a prominent role
in modulating the skyrmion structures and enhancing their stability [17–25]. For instance,
PMA can help create and stabilize skyrmions, regulate their structures [13,17,18,26,27], and
even enables the stabilization of skyrmion at zero magnetic field in confined nanostructures [8].

So far, most of the investigations regarding the effects of PMA on skyrmions focused
on homogenous PMA systems. Recently, inhomogeneous PMA introduced by using
capping layer [28–30] or a voltage-controlled magnetic anisotropy (VCMA) gate [31] has
also attracted more and more interests. Such a nonuniform PMA can serve as potential well
or barriers to control the local dynamic behavior of skyrmion, e.g., pinning or depinning
of skyrmion, which shows promising features for applications in skyrmion transistors,
memories, logic gates, etc. [30,32–37]. To explore the intriguing magnetic devices for
multifunctional logic applications, most investigations were carried out in the multi-channel
and multi-network circuits [34–37]. For example, a recent study proposed a technique
based on reversible computing and conservative logic for achieving large-scale circuits
composed of cascaded logic gates, by utilizing the VCMA scheme [34]. However, to date,
how to design the skyrmion-based logic device in a single-channel circuit (e.g., a straight
nanotrack) with inhomogeneous PMA is still an open question. Therefore, it is crucial to
explore the potential applications for expanding the functions of skyrmionic devices in
this field. To achieve this goal, it is also of great essential for manipulation of skyrmion
structures and their dynamic behaviors.

Inspired by this motivation, we studied the manipulation of skyrmion structure
and dynamic behaviors mediated by local inhomogeneous PMA in heterostructures with
center capping nano-island, by using micromagnetic simulation. We first examine the
effect of inhomogeneous PMA distribution on the structure and dynamic behaviors of
isolated skyrmion confined in nanostructures and nanotracks. Based on these findings,
we proposed the skyrmion-based logical devices with inhomogeneous PMA which can
successfully achieve the logic AND and NOT operations by taking into account of the
complicated dynamical behaviors of two interacting skyrmion movements in nanotracks.
The findings demonstrate an effective approach for tailoring skyrmion structures and
controlling their dynamics behaviors via inhomogeneous PMA, which also provide new
routes to develop more skyrmion-based spintronic devices.

2. Model and Simulation Methods

In this work, we studied the manipulation of skyrmion mediated by local inhomoge-
neous PMA in the heterostructures. We proposed an architecture of a capping nano-island
fabricated on the top surface of an ultrathin Co/Pt film, in which the PMA strength (Kc) of
capping island (Region II) can be largely modified by different capping materials [28–30],
as schematically shown in Figure 1a. Here, the desired Kc can be manufactured by choosing
a proper capping material with modified material parameters, e.g., strain and sample
thickness. The PMA strength (Ku) in the outer ring of the Co/Pt film (Region I, out of
capping region) was considered to be a fixed strength of Ku = 0.8 MJ/m3 [8]. Therefore,
the PMAs in Region I and Region II are different, which induces an inhomogeneous PMA
distribution in the Co/Pt film, as presented in Figure 1b.
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Figure 1. (a) Sketch of magnetic heterostructure of a square-shaped capping nano-island built on a 
square-shaped ultrathin Co/Pt film. (b) Schematic view of inhomogeneous PMA distribution on the 
xy-plane, in which the PMA strength (Kc) in capping island (Region II) is variable by the capping 
materials, and the PMA strength (Ku) in the outer ring of the Co/Pt film (Region I) is fixed with Ku = 
0.8 MJ/m3. The inserted yellow dashed circle with diameter of 30 nm represents spin-polarized cur-
rent injection (p = 0.4) in the central region. (c,d) The nucleation of skyrmion in panel (c) potential 
well for Kc < Ku or (d) potential barrier for Kc > Ku. (e) The isolated skyrmion with diameter d under 
the inhomogeneous PMA distribution of Kc = 0.6 MJ/m3 and a = 40 nm, with the enlarge image of the 
skyrmion structure shown at the right panel. Insert shows the color scale for the z-component of 
magnetization configurations mz. The capping region is enclosed by blue lines. The diameters d, dc 
and du are marked by the cyan solid, green dashed, and yellow dashed circles, respectively. 

Figure 1. (a) Sketch of magnetic heterostructure of a square-shaped capping nano-island built on a
square-shaped ultrathin Co/Pt film. (b) Schematic view of inhomogeneous PMA distribution on the
xy-plane, in which the PMA strength (Kc) in capping island (Region II) is variable by the capping
materials, and the PMA strength (Ku) in the outer ring of the Co/Pt film (Region I) is fixed with
Ku = 0.8 MJ/m3. The inserted yellow dashed circle with diameter of 30 nm represents spin-polarized
current injection (p = 0.4) in the central region. (c,d) The nucleation of skyrmion in panel (c) potential
well for Kc < Ku or (d) potential barrier for Kc > Ku. (e) The isolated skyrmion with diameter d under
the inhomogeneous PMA distribution of Kc = 0.6 MJ/m3 and a = 40 nm, with the enlarge image of
the skyrmion structure shown at the right panel. Insert shows the color scale for the z-component of
magnetization configurations mz. The capping region is enclosed by blue lines. The diameters d, dc

and du are marked by the cyan solid, green dashed, and yellow dashed circles, respectively.
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The magnetic state in the Co/Pt film is usually dependent on the total free energy (E),
including Heisenberg exchange energy, DMI contribution, PMA energy and demagnetiza-
tion energy, which is written as [8]

E =
∫

dr
[

Aex(∇ ·m)2 + D
(

mz
∂mx
∂x −mx

∂mz
∂x + mz

∂my
∂y −my

∂mz
∂y

)
−K(m · ez)− µ0

2 Msm ·Hd
] , (1)

where Aex and K are the ferromagnetic exchange and effective anisotropy energy constants,
respectively. Hd is the magnetostatic self-interaction fields, and D is the DMI constant.
m = M/Ms = (mx, my, mz) is the normalized magnetization vector with Ms the saturation
magnetization. The PMA easy-axis is along the ±z-axis.

To investigate the dynamics of the magnetic structures driven by the spin-polarized
current, the simulation was conducted by employing a three-dimensional Object-Oriented
Micromagnetic Framework (OOMMF) [38], in which time-dependent magnetization dy-
namics was computed by solving the Landau–Lifshitz–Gilbert (LLG) equation [39,40]:

dm
dt

= −γm×He f f + αm× dm
dt

+ T, (2)

where the first and second terms on the right side of the equation describe the gyromagnetic
precession and the Gilbert damping respectively, and the third term T denotes the spin
transfer torque (STT) due to the spin-polarized current. Heff = −(1/µ0Ms)∂E/∂m is the
effective field, γ is the Gilbert gyromagnetic ratio, and α is the damping coefficient.

For creating the isolated skyrmions in the magnetic nanostructures, we inject a spin
polarization current perpendicular the plane (CPP), with the current-induced spin transfer
torque TCPP written as [8]

TCPP =
u
t

m×mp ×m, (3)

where u = γ(h̄jP/2eMs) is the Slonczewski torque coefficient, t is the film thickness of
ferromagnetic layer, j is the current density, e is the elementary charge, p is the polarization
rate and mp is the electron polarization direction.

For simulation of the skyrmion dynamics induced by the current-in-plane (CIP) injec-
tion along x-aixs in the nanotrack, the corresponding spin transfer torque TCIP is given by
the following form [8,10]:

TCIP = um× (m× ∂m
∂x

) + βum× ∂m
∂x

, (4)

where the first and second terms represent the coupling between magnetic moments and
spin-polarized current j via the spin transfer torque and via the non-adiabatic effects
respectively, with β the non-adiabaticity factor.

In the simulations, we considered that the Co/Pt bilayers contain a 0.4-nm-thick
cobalt film. The typical parameters for studying the current-induced skyrmion dynamics
were adopted as [8]: the spontaneous magnetization Ms = 580 KA/m, exchange constant
Aex = 15 pJ/m, DMI constant D = 3 mJ/m2, gyromagnetic ratio γ = 2.211 × 105 m/(A·s),
damping coefficient α = 0.3, non-adiabaticity factor β = 0.3 and polarization rate p = 0.4. The
nanomagnets are divided into unit cells with cell size of 1× 1× 0.4 nm3 for the simulations.

3. Results and Discussion
3.1. Nucleation of Skyrmion in Square-Shaped Nanostructures with Inhomogeneous PMA

We first investigated the nucleation of skyrmion in square-shaped Co/Pt nanostruc-
tures mediated by the inhomogeneous PMA distribution, as presented in Figure 1b. The
simulations were carried out on a heterostructure of a square-shaped capping nano-island
(length a) fabricated on the top surface of a square-shaped ultrathin Co/Pt film (length
80 nm). Here, Kc < Ku and Kc > Ku represent central potential wells and central poten-
tial barriers in the nanostructures, respectively (see Figure 1c,d). We may consider that
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the absolute difference of anisotropy |Kc − Ku| quantifies the depth/height of potential
wells/barriers, and the size a of capping nano-island characterizes the area of central poten-
tial wells/barriers. In this sense, one may understand that the concept of inhomogeneous
PMA distribution, which performs as potential barriers/wells in the nanostructure, with
their height/depth and area tunable by the PMA and size of the capping region in the
heterostructure. In contrast to the VCMA gate, the size of capping nano-island here cannot
be changed on demand once the sample is produced, which reduces the tunability of the
well/barrier. However, circuits made of heterostructures with capping nano-island can
serve as specific functional devices without requiring external control which reduce circuit
complexity.

Here, we focus on the effect of inhomogeneous PMA on the skyrmion size, which is
characterized by the diameter of skyrmion d defined as the diameter of the circle with mz = 0
in the skyrmion configurations [41]. For the skyrmion nucleation in the nanostructures, the
simulation starts from an initial ferromagnetic state (mz = +1, colored red), and then a 1 ns
long CPP-type current pulse with j = 1.0 × 109 A/cm2 is applied locally perpendicular to
the Co/Pt film on the central 30 nm region. Next, the system is relaxed under j = 0.0, and
subsequently the isolated skyrmion structure is obtained as the equilibrium state.

Figure 1e presents a nucleated isolated skyrmion with diameter d in the nanostructure
under inhomogeneous PMA distribution as Kc = 0.6 MJ/m3 and a = 40 nm. In order to
elucidate the effect of inhomogeneous PMA on the skyrmion size, we calculated the special
diameter of isolated skyrmion dc or du, in which a homogeneous PMA with anisotropy of
K = Kc or Ku is set over the whole square nanostructure. Generally, the skyrmion diameter
reduces with increasing the homogeneous PMA strength [17,18,26], and the simulated re-
sults showed that du = 13 nm for K = Ku = 0.8 MJ/m3 and dc = 31 nm for K = Kc = 0.6 MJ/m3

in the homogeneous PMA, as marked in Figure 1e. Remarkably, the inhomogeneous PMA
distribution here changes the energy distribution over the nanostructure, making the
skyrmion diameter d greatly different from du or dc in the homogeneous PMA.

To proceed, we calculated the dependences of skyrmion diameter d on the variables a
and Kc, with the simulated results given in Figure 2. Next, we discuss the simulated results
according to the nano-island size a, which is divided into three regions as: small a (~5 nm
≤ a ≤ ~20 nm), medium a (~20 nm ≤ a ≤ ~70 nm), and large a (~70 nm ≤ a ≤ ~80 nm).

It was found in Figure 2a that d is small and falls within ~6 nm ≤ d ≤ ~15 nm in the
small a case. For medium a, d in the case of central potential wells (Kc < Ku) is always
larger than that in the case of central potential barriers (Kc > Ku). This is because that the
anisotropy energy in capping island decreases with Kc, and it becomes weaker than the
demagnetization energy in the case of small Kc = 0.2 MJ/m3. This results in a crossover
from perpendicular magnetization (i.e., easy-axis magnetization) to in-plane magnetization
(i.e., easy-plane magnetization) with decreasing Kc, and thus the expansion of skyrmion
structures. Note that the skyrmion diameter d increases with a for the cases of central
potential wells, while d keeps nearly constant for the cases of central potential barriers. This
implies that the central potential wells are suited for generating the large-sized skyrmion
(see the maximal diameter dmax ~55 nm at Kc = 0.2 MJ/m3), while the central potential
barriers are applicable for producing the small-sized skyrmion (see the minimal diameter
dmin ~7 nm at Kc = 1.0 MJ/m3).
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Figure 2. Effect of inhomogeneous PMA distribution on the structure of skyrmion. (a) Plots of
skyrmion diameter d as a function of a under various fixed Kc. Here the blue straight line marks
the case of homogeneous PMA with Kc = 0.8 MJ/m3. (b) The spatial profile of the z-component of
some typical magnetization configurations in the nanostructures under various a and Kc. Here all the
shown areas are 80 nm × 80 nm in size for the nanostructures.

In addition, for the large a case, it was noted in Figure 2a that d decreases with
increasing a at 0.2 MJ/m3 ≤ Kc ≤ 0.6 MJ/m3. This tendency especially occurs for the
skyrmion with large size, which manifests the restriction of nanostructure boundary on the
enlargement of skyrmion size. For example, one may see the special case of Kc = 0.2 MJ/m3

in Figure 2b that, the diameter d is ~55 nm at a = 76 nm, while it shrinks sharply to be
~32 nm at a = 78 nm with the skyrmion becoming surrounded by four Néel-type magnetic
kinks (domain walls) [42]. This is because that the skyrmion structures cannot expand
beyond the nanostructure, and it thus shrinks as a result of the boundary constrictions of
the nanostructure.

From the simulation results and analyses above, one may tailor the skyrmion structure
on demand by introducing different energy potential wells or energy potential barriers into
the nanostructure via the inhomogeneous PMA distribution. To preserve the rotational
symmetry of skyrmion, many studies focused on isolated skyrmions confined in circular
nanodisks [8,13], and it was demonstrated that the isolated skyrmions can be stabilized
by using inhomogeneous PMA in disk-shaped heterostructure with circle-shaped capping
layer [30]. In the simulations, we found that isolated skyrmions can be generated and
stabilized in the proposed heterostructures with square-shaped or circle-shaped capping
nano-islands. Moreover, because the inhomogeneous PMA distribution is related to the
sizes/geometries of the capping nano-islands, it provides the possibility to create the
desired skyrmion structures by using different sizes/geometries of capping nano-islands,
which offers a guide for the material synthesis in future studies.

3.2. Skyrmion Motion in Racetrack Controlled by Inhomogeneous PMA Distribution

In this section, we investigated skyrmion motion in the nanotrack controlled by
inhomogeneous PMA distribution, as schematically depicted in Figure 3. The nanotrack
in Figure 3a consists of a convex structure, nanotrack edges of high-K material SmCo5
(colored red, width of w = 5 nm), magnetic tunnel junction (MTJ) write head, capping
island, MTJ read head and a closed-loop electric circuit. In Figure 3b, the PMA strength
(Kc) in nano-island (enclosed by the yellow panel) is variable by the capping materials,
and the PMA strength (Ku) for the Co/Pt film (colored pink) is fixed at Ku = 0.8 MJ/m3.
Here, the high-K material SmCo5 is rimmed at the upper and lower edges of nanotrack to
avoid the undesired annihilation of skyrmions during the motion. This technique had been
proposed in previous studies, and it was proven to be effective to shield the skyrmions
from annihilation at the nanotrack edge, although the skyrmion drift appears during the
motion due to the Magnus force [43,44]. In the simulation, the typical parameters for
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SmCo5 were used as [43,44]: the spontaneous magnetization Ms = 840 KA/m, exchange
constant Aex = 12 pJ/m, DMI constant D = 0.1mJ/m2, PMA strength Ke = 17.1 MJ/m3. In
addition, a special convex structure with a small size of 40 nm × 10 nm was designed in
the nanotrack, because it was essential for the implement of the logic AND operation of
‘1 + 1 = 1’ based on two interacting skyrmions dynamics, as will be elucidated below.
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Figure 3. (a) Sketch of a racetrack memory with Co/Pt nanotrack. (b) Schematic view of nanotrack on
the xy-plane with inhomogeneous PMA distribution. (c) The skyrmion movements in the nanotrack
driven by spin current with density j = 16 MA/cm2. The initial state and the different final states
of skyrmion motion (‘block’, ‘trap’ or ‘pass’) at various Kc, with the movement trajectories marked
by the dashed lines. (d) The state diagram illustrates the condition for the different final states of
the skyrmion under various j and Kc. (e) Plots of the total energy E of the whole nanotrack as a
function of the position x where the skyrmion is located in the nanotrack at various Kc. Here the
depth/height of potential well/barrier was denoted as |∆E|. (f) Plots of the varying E as a function
of simulated time t for the three typical cases in panel (c). Inserts indicate the corresponding final
states of skyrmion motion. (g) Schematic draw of the skyrmion rebound movement in the potential
well for the ‘trap’ state.
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In the simulations, we first created the skyrmion by injecting a local vertical spin-
polarized current through the write head (see Figure 3a). After that, the skyrmion moves
along the x-direction in nanotrack driven by the in-plane spin current. The skyrmion can
be detected if it arrives below the MTJ reader head region, by utilizing the tunnel magneto-
resistance (TMR) effect [32,33,45]. Figure 3c shows the skyrmion movement driven by
in-plane spin current with current density j = 16 MA/cm2 in the nanotrack. We found that
the skyrmion can pass through the capping nano-island at a moderate magnetic anisotropy
Kc = 0.75 MJ/m3, while it is blocked at the left side of the capping nano-island at relatively
large anisotropy Kc = 0.90 MJ/m3 and is trapped inside the capping region at relatively
small anisotropy Kc = 0.70 MJ/m3. These three final skyrmion states are abbreviated to
‘pass’, ‘block’ and ‘trap’. Further simulations generated the phase diagram for the final
states of skyrmion after it reaches the capping region under various driving current density
j and magnetic anisotropy Kc, as summarized in Figure 3d. It was noted that the final
skyrmion states are determined by j and Kc in the capping island. In the diagram, the ‘trap’
states occupy the region of small Kc, while the ‘block’ states dominate the region of large Kc
and small j, and the ‘pass’ states distribute in the rest region.

In fact, one may consider the final states of the skyrmion as a result of the competition
between j and Kc. To further understand these results, we investigated the detailed process
of the skyrmion movements in the three typical cases of Figure 3c, from the viewpoint of
energy competition. We first generated the isolated skyrmion at different position x in the
nanotrack by injecting a local vertical spin current, and then calculated the total energy E
over the whole nanotrack for skyrmion at different position x, as the E-x curves plotted in
Figure 3e under various Kc. For this, one may consider the E-x curves to approximately
represent the potential energy of nanotrack along x direction at various Kc. Therefore,
the capping island with Kc = 0.70 MJ/m3 acts as a deep potential well with depth of
|∆E| = 0.7 × 10−20 J, while the capping island with Kc = 0.75 MJ/m3 and Kc = 0.90 MJ/m3

generate the potential barrier with small height of |∆E| = 0.3 × 10−20 J and large height of
|∆E| = 1.5 × 10−20 J, respectively.

In Figure 3f, the varying E-t curves implies that the skyrmion tries to escape from the
attraction of the potential well at Kc = 0.70 MJ/m3, while it is failed due to the spin current
density j = 16 MA/cm2 here is relatively small and not sufficient to pull the skyrmion out
of the potential well. Thus, the skyrmion first climbs to a position with relatively high E in
the potential well, while rebounds back to a position with relatively low E in the potential
well, and it is finally trapped inside the potential well, as schematically drawn in Figure 3g.
In fact, the skyrmion would like to stay at the lowest E in the potential well in the absence
of driving current, making the ‘trap’ state of skyrmion quite energetically stable as merit in
storing the skyrmionic bits.

On the other hand, the spin current density j = 16 MA/cm2 can help the skyrmion pass
through the low potential barrier at Kc = 0.75 MJ/m3, while it fails to drive the skyrmion
to pass through the high potential barrier at Kc = 0.90 MJ/m3, and the skyrmion finally
is blocked at the left side of the capping region. Therefore, these results suggest that the
height/depth of potential barrier/well can be mediated by Kc in the capping region, which
allows controlling the final ‘pass’, ‘block’ or ‘trap’ state of the skyrmion with suitable values
of j and Kc.

3.3. Skyrmion-based Logic Devices with AND and NOT Operation

Considering the skyrmion motion behaviors in inhomogeneous PMA distribution, we
exploited their possible applications in functional spintronic devices. In this section, we
first utilized the final ‘trap’ state of skyrmion for devising a skyrmion-based nanotrack
device of logic AND operation, taking account of the complicated dynamical behaviors of
two interacting skyrmions movements in nanotracks.

Figure 4 shows the sketch of logic device and operation of logic AND functions. In
Figure 4a, the logic device is mainly composed by three regions, that are the ‘Input A’,
‘Input B’ and ‘Output’ regions. Both ‘Input A’ and ‘Input B’ regions were used as the
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input terminals of skyrmion information carriers, and the ‘Output’ region was used as the
output terminal of the skyrmion information carriers. Magnetic anisotropy in the ‘Input A’
region was set as a constant Ku = 0.8 MJ/m3, and PMA for the capping island in ‘Input B’
region was fixed as Kc = 0.7 MJ/m3 in Figure 4b–d. In the implement of logic operations,
the existence or absence of a skyrmion in these regions represents the data bit ‘1’ or ‘0’,
respectively.
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Figure 4. Layout for logic device and logic AND operation. (a) Sketch of logic device consisting
of three main regions, i.e., ‘Input A’, ‘Input B’ and ‘Output’. (b,c) The movement of an isolated
skyrmion in panel (b) ‘Input A’ or (c) ‘Input B’ driven by in-plane spin current, achieving the logic
AND operation of panel (b) ‘1 + 0 = 0’ or (c) ‘0 + 1 = 0’. (d) The movements of two skyrmions located
in ‘Input A’ and ‘Input B’ driven by in-plane spin current, realizing the logic AND operation of
‘1 + 1 = 1’. All the AND operations in panels (b–d) are carried out under constant Kc = 0.7 MJ/m3

and spin current density j = 16 MA/cm2. The size of the square-shaped capping island in the ‘Input
B’ region is 25 nm × 25 nm. (e) The table for the logic AND operations. (f) The diagram shows
the parameter window for realizing the AND operations. ‘

√
’ and ‘×’ represent the capability and

inability of realizing the AND operations. ‘P’ denotes the ‘pass’ state for the isolated skyrmion when
it runs through the potential well, which also fails to meet the requirement of AND operations.
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In Figure 4b, we first created an isolated skyrmion in ‘Input A’ region by injecting
vertical spin current. Then the isolated skyrmion was pulled from ‘Input A’ region at t = 0
ns to ‘Input B’ region at t ~3.5 ns, by an in-plane driving spin current. Finally, the isolated
skyrmion stays at ‘Input B’ due to the restraint of potential well in ‘Input B’ region, which
attains the logic AND operation of ‘1 + 0 = 0’ in this process. In Figure 4c, an isolated
skyrmion was generated in ‘Input B’ region by injecting vertical spin current, while the
subsequent in-plane spin current does not provide sufficient energy for helping the isolated
skyrmion to escape from the attraction of potential well, and the skyrmion thus becomes
stable in the potential well. In this process, the logic AND operation of ‘0 + 1 = 0’ is
achieved.

In Figure 4d, two skyrmions were first created in ‘Input A’ and ‘Input B’ regions,
denoted as skyrmion m (left) and n (right), respectively. Then, the skyrmion m moves
towards the ‘Input B’ region driven by the in-plane spin current and picks up kinetic
energy [46–48]. In this process, skyrmion n keeps nearly stationary in the ‘Input B’ region
until the skyrmion m is close to the ‘Input B’ region at t ~2 ns. After that, as the kinetic
energy of skyrmion m is larger than that of skyrmion n, skyrmion m pushes skyrmion n
away from the ‘Input B’ region via the repulsion between these two skyrmions [49,50].
At last, the skyrmion n acquires some kinetic energy which enables it to escape from the
energy well and it then runs along the x-axis. While skyrmion m losses some kinetic energy,
it is consequently captured in the potential well and finally ceases movement in ‘Input B’
region. During this process, the logic AND operation of ‘1 + 1 = 1’ is attained, and each
skyrmion undergoes complicated dynamics. In the simulations, we found that the convex
structure in the racetrack is essential for the implementation of logic operation of ‘1 + 1 = 1’,
because the skyrmion m is always blocked at the left side of the capping region without the
designed convex structure, and in this case it is hard for pushing the skyrmion n out of the
capping region by the repulsion between two skyrmions.

Based on the simulation results and analyses above, all the AND operations (see
Figure 4e) are well implemented in such a logic device, noting that the operation of
‘0 + 0 = 0’ is automatically satisfied. In addition, regarding the repeated use of AND
operation in the logic device, one only need to reset the skyrmionic bit in the device by
annihilating the skyrmion staying in the ‘Input B’ region after the AND operation. For
achieving this operation, we found that the skyrmion can be well annihilated by injecting a
vertical spin current with the opposite direction in contrast to that used for the nucleation of
skyrmion. Moreover, further simulations generated the diagram for the condition windows
of realizing the AND operations in Figure 4f. Comparing the conditions of ‘

√
’ and ‘×’ (i.e.,

the capability and inability of realizing AND operations), one may find that the conditions
for realizing the AND operations are relative low Kc for creating a potential well and also
sufficient large j for guaranteeing that the skyrmion m will gain enough kinetic energy for
pushing the skyrmion n out of ‘Input B’ region. In the simulations, it was found that the
inability of realizing AND operations (i.e., ‘×’ region) is mainly attributed to the failure
in attaining the operation of ‘1 + 1 = 1’, because of the relatively low kinetic energy of
skyrmion m.

Besides working as AND logic operations, nanotracks with various geometries and
sizes of capping nano-islands can be extended for exploiting other possible logical func-
tions. We proposed the nanotrack with circle-shaped capping nano-island in Figure 5a,
and employed the similar scheme that used in the AND logic operations to nucleate the
skyrmion and manipulate its motion in the nanotrack. It can be seen in Figure 5c,d that, the
operations of 0→ 1 and 1→ 0 are attained in the nanotrack, which achieves the logic NOT
operation (see Figure 5b). Therefore, the logic AND and NOT operations were successfully
realized in the proposed racetrack logical devices.
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4. Conclusions

Before concluding this work, we briefly discuss the multifunctional logic devices and
thermal stability of the magnetic skyrmions. It is noted that the multiple logic operations
including AND, OR, NAND, NOR, XOR and XNOR had be implemented in the VCMA
controlled logical devices, which usually demands the transport of skyrmions in the multi-
channel and multi-network circuit [34–37]. However, the nanotrack studied here is only a
simple single-channel circuit, which can achieve a few special logic functions. Therefore,
this suggests the opportunity to explore the other logical devices in the multi-channel and
multi-network circuits, in which the nanotracks with AND and NOT logic functions may be
employed as basic circuit elements. This would be an interesting challenge for our further
studies.

On the other hand, all simulations in present study were carried out under zero tem-
perature condition based on OOMMF calculation, in which the thermal effect is neglected.
However, the thermal stability of magnetic skyrmions is also a crucial issue for a detailed
understanding of their underlying physical properties. Besides, the practical applications
of the spintronic devices demand operation at room temperature or above. In this regard,
previous studies [13,51–54] demonstrated that skyrmions in a variety of Co/Pt-based multi-
layers (e.g., Pt/Co/Ta and Pt/Co/MgO) can be stable at room temperature. These provide
us an enlightened approach to enhance the thermal stability of skyrmions in the Co/Pt
systems in the further studies.

In summary, we have investigated the modulation of skyrmion structures and their
motion behaviors in ultrathin Co/Pt heterostructures with inhomogeneous PMA from
the capping nano-island, by means of micromagnetic simulation. The inhomogeneous
PMA distribution can behave as tunable nanoscale potential barriers/wells, which are able
to effective modulate the size and shape of isolated skyrmion in a square-shaped thin-
film heterostructure. In addition, the inhomogeneous PMA can manipulate the skyrmion
motion behaviors in a specifically designed racetrack structure, and enables different motion
modes, i.e., blocking, passing, and trapping. Based on these observations, a set of skyrmion
racetrack logical devices were proposed, which are able to successfully achieve the logic
AND and NOT operations, by taking into account of the complicated dynamical behaviors
of two interacting skyrmion movements in nanotracks. The present study demonstrates a
new pathway for developing new spintronic devices based on manipulation of skyrmion
motion via inhomogeneous PMA. Similar ideas may be extended to explore other functional
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devices using complex geometries of nano-island or tunable VCMA gates in the multi-
channel and multi-network circuits.
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