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Abstract

Objective: The lack of the disease biomarker to support objective laboratory tests still constitutes a bottleneck in the clinical
diagnosis and evaluation of major depressive disorder (MDD) and its subtypes. We used metabonomic techniques to screen
the diagnostic biomarker panels from the plasma of MDD patients with and without early life stress (ELS) experience.

Methods: Plasma samples were collected from 25 healthy adults and 46 patients with MDD, including 23 patients with ELS
and 23 patients without ELS. Furthermore, gas chromatography/mass spectrometry (GC/MS) coupled with multivariate
statistical analysis was used to identify the differences in global plasma metabolites among the 3 groups.

Results: The distinctive metabolic profiles exist either between healthy subjects and MDD patients or between the MDD
patients with ELS experience (ELS/MDD patients) and the MDD patients without it (non-ELS/MDD patients), and some
diagnostic panels of feature metabolites’ combination have higher predictive potential than the diagnostic panels of
differential metabolites.

Conclusions: These findings in this study have high potential of being used as novel laboratory diagnostic tool for MDD
patients and it with ELS or not in clinical application.
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Introduction

Major depressive disorder (MDD) is a serious psychiatric mood

disorder, resulting in several detrimental socioeconomic effects,

including increased healthy care expenditures and suicide rates

[1]. And as a complex affective syndrome, the understanding of

this disease is insufficient. Several well-established risk factors have

been reported to increase an individual’s likelihood of developing

depression, including family history for depression, past personal

history of depression, and early life stress (ELS) [2,3]. There is

study reported that the responsive of depressive disorder developed

in relation to early life stress (ELS/MDD) to the treatment of

depression is different [4]. So, the early life stress seems to be

special in those risk factors. The epidemiological studies have

provided strong evidence that the ELS, such as abuse, neglect or

loss, is associated with dramatic increases in the risk to develop

depression [5–7]. The studies in rodents and non-human primates

reported that ELS induce persistent structural, functional, and

epigenomic changes in some neural circuits. These changes

converged in increased endocrine and autonomic reactivity to

stress, anxiety-like behavior, anhedonia, cognitive impairment,

pain sensitivity, and altered sleep [8–10]. Many of the neurobi-

ological and behavioral effects of ELS in animal models closely

parallel signs and symptoms of MDD. In addition, a group has

conducted a series of clinical studies concerned whether early life

adverse experience in humans is associated with neurobiological

changes and whether the changes are related to depression. These

studies focused on studying alterations of the HPA axis in subjects

with histories of ELS and the results suggested that the ELS

contributes to the neuroendocrine features of depression [4].

Because not all forms of depression are associated with ELS, the

group reported the existence of biologically distinguishable

subtypes of depression as a function of ELS [4]. Since the ELS/

MDD may be a biologically distinguishable subtype of depression,

one major question for clinical research concerned is whether

there are characteristic alterations in human blood which can

generate a detectable molecular phenotype for diagnoses.
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Currently the firm diagnosis of the depressive disorder relies

solely on the clinician’s subjective identification of symptomatic

clusters and scales which has the shortage of subjectivity [11].

Moreover, in routine practice, clinicians are typically challenged

by fitting their patients’ presentations, which lie along a continuous

scale of depression severity, into strict DSM-IV based diagnostic

categories, so over one-third of diagnosed depressed patients are

not appropriately diagnosed [12]. An earlier clinical meta-analysis

of 50371 depressed patients from 41 studies found the accuracy of

symptom-based diagnosis of MDD to be a mere 47% [13]. In light

of these factors, the development of empirical laboratory-based

diagnostic approaches for MDD and its subtypes is required.

Plasma is always chosen to be testing sample in the empirical

laboratory-based diagnostic method for it can be collected at

minimal risk and cost to the patients. And peripheral metabolic

disturbances have been increasingly implicated in psychiatric

mood disorder, including MDD [14–16]; it is therefore conceiv-

able that introduction of metabonomic screen may generate a

detectable molecular phenotype for diagnosis MDD and its

subgroup (ELS/MDD and non-ELS/MDD) in plasma.

With the development of analytical technologies and methods,

metabonomics approaches, which enables simultaneous quantita-

tive measurement of numerous small molecules within a particular

sample, are widely applied in the investigation of disease

classification, potential biomarker discovery and molecular mech-

anism of diseases [17–19]. The metabolic profiling techniques,

such as integrated gas chromatography/mass spectrometry (GC/

MS) coupled with multivariate statistical analysis, are being widely

used in metabonomics approaches [20–22]. Early studies em-

ployed the metabonomics approach have identified the panels of

metabolites associated with depression-like behavior in animal

models [23–25] and the metabolic perturbation in diagnosis of

MDD patients [26,27]. In this study, the central hypothesis was

that there is characteristic metabolic alteration associated with the

pathophysiologic mechanisms of the ELS/MDD in the blood

which may generate a detectable molecular phenotype for

diagnosis. Therefore, GC/MS coupled with multivariate statistical

analyses was used to compare the metabolite profiles of plasma

samples from ELS/MDD patients, non-ELS/MDD patients and

healthy subjects. Furthermore, Tclass system [28–30], a machine

learning method combining Fisher’s linear discriminant analysis

and feature selection based on a stepwise optimization process for

classification and feature selection, was applied to overcome the

positively biased cross-validation estimate induced by the diag-

nostic panels which was constituted by the pre-selecting differential

metabolites [31] and to improve the predictive power of diagnostic

metabolites’ panels. The introduction of metabonomic screening

and the Tclass system analysis may provide a novel empirical

laboratory-based test for diagnosing MDD and its subtypes (ELS/

MDD and non-ELS/MDD).

Methods

Subjects and sample collection
Plasma samples were collected from 25 healthy adults, 46

patients with chronic form of MDD, including 23 patients with

previous ELS and 23 patients without previous ELS. The age

ranges for above three groups were 2765, 2968, 3066 years,

respectively. All patients were diagnosed at the Second Xiangya

Hospital of Central South University (Changsha, China). All

subjects enrolled in this study volunteered to participate in this

study. This study was approved by the Ethics Committee of the

Second Xiangya Hospital of Central South University, China. A

complete description of the study was provided to every subject

and his or her legal guardians, and all participants had the

capacity to consent. Written informed consent was obtained from

each subject. All 71 subjects were examined for MDD according

to the criteria of Diagnostic and Statistical Manual of Mental

Disorders (DSM-IV) [32] and the 46 subjects were diagnosed as

MDD patients. Severity of depression was measured with Self-

Rating Depression Scale (SDS). The SDS was designed to assess

the level of depression for patients diagnosed with MDD [33]. The

Self-Rating Anxiety Scales (SAS) was used to monitor the anxiety

mood in MDD patients. The SAS was only designed to measure

the level of anxiety mood [34,35]. The score on a rating scale, like

SDS or SAS, is insufficient for diagnosing, and it just provides an

indication of the severity of this symptom for a time period [36].

And then, the MDD patients were examined for childhood

trauma. For assignment to the major depressive disorder patients

with early life stress experience (ELS/MDD) group, the MDD

patients must have had experienced at least one form of sexual or

physical abuse before the age of 13 years. In our study, sexual

abuse was defined as having been forced to touch another person’s

intimate parts, having been touched in intimate parts, attempted

or completed intercourse. Physical abuse was defined as having

been spanked, kicked or choked in a way that left bruises or

injuries, having been attacked with a weapon or tied up or locked

in a room or a closet. For assignment to the major depressive

disorder patients without early life stress experience (non-ELS/

MDD) group, the MDD patients could not have had experienced

any traumatic or major stressful life event before the age of 13

years. The severity of the ELS was assessed by the Early Trauma

Inventory (ETI). The ETI is a structured interview that assesses

the number, frequency, and duration of early trauma types,

resulting in a score for each trauma type and a total score [37,38].

Blood samples were collected before breakfast on the second day

after hospitalization with the EDTA-anticoagulant tube. After the

centrifugation (30006g) for 10 min at 4uC, the plasma samples

were collected and stored at 280uC until analysis.

Sample preparation
The pretreatment of plasma samples and GC/MS analysis were

performed as previously described [39–41]. 500 mL of methanol

(100%) and 20 mL of ribitol stock solution (0.2 mg/mL in

deionized water) were added to 100 mL aliquots of thawed plasma

samples. The mixture was shaken (100 rpm) at 70uC for 15 min

and then centrifuged at 130006g for 10 min. The supernatant was

collected and mixed with chloroform (270 mL) and deionized

water (450 mL). The mixture was shaken (80 rpm) at 37uC for

5 min and centrifuged at 40006g for 10 min. The polar phase was

separated and evaporated under a stream of N2 gas to dryness

about 90 min. The dried residue was dissolved in 40 mL

methoxamine hydrochloride (20 mg/mL pyridine) and incubated

at 30uC for 90 min with continuous shaking. Then 40 mL of N-

methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) containing

1% trimethylchlorosilane (TMCS) was added at 37uC for

30 min. The derivative samples were stored at room temperature

for 120 min before injection. All chemicals were purchased from

Sigma-Aldrich Chemical Co. (St. Louis, MI).

GC/MS
0.3 mL aliquot of sample solution was injected at a split ratio of

25:1 into a GC/MS system consisting of a HP 6890 gas

chromatograph and a time-of-flight mass spectrometer (Waters

Co., Milford, MA). Chromatography was performed on a DB-5

MS capillary column (30 m60.25 mm i.d., 0.25 mm thickness).

Helium carrier gas was set to a constant flow rate of 1 mL/min.

The temperatures of injection, interface, and ion source were
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adjusted at 230uC, 290uC, and 220uC, respectively, with an

electron energy of 70 eV and a trap current of 70 mA. The GC

oven temperature was first held at 70uC for 5 min solvent delay

and then ramped at 5uC/min to a final temperature of 310uC, and

this was followed by a 1 min isocratic, cool-down to 70uC, and an

additional 5 min delay. The mass spectra over the m/z range 50–

800 were acquired at a scan rate of 0.5 s per scan and an inter

scan delay of 0.1 s in centroid mode. The GC/MS system was

operated at a multichannel plate voltage of 2800 V, a pushout

voltage of 980 V, and a pusher interval of 40 ms.

Data processing and pattern recognition
Total ion current chromatograms (TICs) were obtained by

using the MassLynx software (Waters Co.). Peaks with intensity

higher than 10-fold of the signal-to-noise (S/N) ratio were

recorded and integrated. The electron impact (EI) GC/MS data

were converted into CDF files for peak extraction by Automated

Mass Spectral Deconvolution and Identification System (AMDIS).

The compounds in all recorded peaks in TICs were identified by

using National Institute of Standards and Technology (NIST 02)

library with EI spectra and then be validated using reference

standards [42]. In addition, the GC/MS data were also processed

using the MarkerLynx Applications Manager software (Waters

Co.). A peak deconvolution package was incorporated in the

software, which allowed the alignment of detection and retention

times for peaks in each data file across the whole data set.

MarkerLynx extracted components and generated a matrix of

detected peaks that are represented by their m/z and retention

time pairs along with their associated intensities. And intensities of

the peaks of the validated compounds were normalized as relative

peak area (RPA) to the ribitol’s peak intensity which was defined as

the internal standard, and the ribitol’s peak intensity (internal

standard intensity) was arbitrarily set to 1. The RPA was evaluated

by multivariate data analysis (PCA and PLS-DA) to reduce the

complexity of plasma GC data and facilitate analysis. The RPA

data were also subjected to Tclass system for analysis.

Discriminant analysis
To find out the biomarkers to discriminate patients from

healthy subjects, the multivariate statistical analysis and the Tclass

classification system were used in this study. For multivariate

statistical analysis, PCA and PLS-DA were carried out for group

discrimination. Based on the variable importance on a projection

(VIP) with a threshold of 1.0 from the PLS-DA model, a number

of metabolites variables were obtained to be responsible for the

difference in the metabolic profiles between different groups,

which were defined as the differential metabolites. And then,

logistic regression was fit to find the diagnostic panel of differential

metabolites between these groups.

In addition, Tclass classification system was applied to find out

the diagnostic panel constituted by feature metabolites’ combina-

tion [28]. At first, a feature forward selection procedure with the

leave-one-out cross validation (LOOCV) as the object function

was firstly applied to search for the optimal diagnostic panels, and

then the stability index analysis was used to get an optimal biased

assessment about how well the prediction model constructed by

diagnostic panels will fit an independent data set. Through

randomly dividing the sample into two parts with the partition

ration 85% for 1000 times, the major part was used as the training

set and the minor part was taken as the independent test set for

each partition. The average of 1000 predictive accuracies from the

test sets was defined as the stability index of the diagnostic panels

which was suitable value for evaluating the performance of cross-

validation estimates and the performance of predictive potential of

the diagnostic panels in practice. Finally, the feature metabolites

set with the highest stability indexes was found, and the related

model that is composed of 1000 classifiers was constructed.

Additionally, the ratio of the number of classifiers correctly

predicting a sample and 1000 was taken as the probability (P) to

predict MDD. Therefore, if P value is more than 0.5, the sample

will be predicted to be MDD sample. The subgroups of MDD

(ELS/MDD and non-ELS/MDD) were processed by the same

analysis procedure.

Areas under the receiver operating characteristic curve (AUC)

of the ROC analysis were calculated to evaluate the performance

of these diagnostic panels. And these diagnostic biomarker panels

were also validated by the Tclass system with the stability analysis.

Results

Demographic and clinical data
The demographic and clinical data were summarized in Table 1.

There were no differences in age and racial distribution between

different groups. Patients with MDD had significantly higher SDS

score than that in healthy subjects [F (2,71) = 64.7, P,0.001]. And

according to SAS score, the MDD patients had been observed

existing anxiety mood [F (2,71) = 23.4, P = 0.004]. The 1990-92

National Comorbidity Survey (US) reported that 51% of those

with MDD also suffer from lifetime anxiety [43]. And a study

reported that the anxiety symptoms can have a major impact on

the course of a depressive illness, with delayed recovery, increased

risk of relapse, greater disability and increased risk of relapse,

greater disability and increased suicide attempts [44]. Therefore,

the anxiety mood can be often observed in the MDD patients. The

MDD patients with a history of ELS had higher mean ETI score

than those without ELS [F (1, 46) = 6.42, P,0.001]. There was no

difference in current episode duration between two MDD groups

(ELS/MDD group and non-ELS/MDD group). There was no

difference in objective support between the two subgroups of

MDD. Patients with MDD reported less subjective support and

utilization of support than healthy subjects [F (2,71) = 3.71,

P = 0.03] and [F (2,71) = 7.54, P = 0.001], respectively.

Metabolic profiles and differential metabolites of each
group

Typical GC/MS TICs of plasma samples from three groups

were obtained. Thirty-five peaks of compounds were identified to

be amino acids, fatty acids, carbohydrates, organic acids and

mineral acid (Table 2). The results of the multivariate statistic

analysis towards metabonomic data showed the distinct cluster

between each group, indicating that the metabonomic data in

each group have distinct metabolic profiles (Figure 1 and Figure

S1). Through the PLS-DA loading plot (data not shown), many

identified metabolites contributed strongly to the separation of

groups were obtained. 15 metabolites stood out the VIP threshold

(VIP.1), which were annotated to be differential metabolites

between the healthy control and MDD (Table 2). In the 15

differential metabolites, 3 long-chain fatty acid (linoleic acid, oleic

acid, heptadecylic acid) were found decreased in MDD patients; as

for carbohydrate, the galactose and sorbitol were elevated while

the myoinositol and mannose were decreased in MDD compared

with healthy control; 4 amino acids (glycine, alanine, proline,

serine) were found elevated while only leucine was decreased in

MDD compared with healthy control. Erythronic acid was found

decreased while butanedioic acid was found increased in MDD.

Cholesterol was significantly decreased in MDD patients com-

pared with healthy subjects. Through the same analysis procedure,

16 differential metabolites were annotated between the healthy

The Biomarker Panels for ELS/MDD
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control and ELS/MDD, including 6 amino acids (aspartic acid,

glycine, alanine, threonine, serine, leucine); 5 carbohydrate

(sorbitol, myoinositol, mannose, 6-deoxy-mannopyrannose, galac-

tose); 3 long-chain fatty acid (linoleic acid, oleic acid, heptadecylic

acid); 1 organic acid (erythronic acid) and cholesterol (Table 2).

And then the 12 annotated differential metabolites, which were

cholesterol, linoleic acid, glycine, alanine, butanedioic acid, lactic

acid, glucose, oleic acid, glucopyranose, sorbitol, proline and

stearic acid, were explored by PLS-DA model classifying the non-

ELS/MDD and healthy control (Table 2). Moreover, the levels of

cholesterol, glucopyranose, linoleic acid, glyceric acid, alanine,

butanedioic acid, phosphoric acid, galactose, lactic acid, glycine,

glucose, proline and stearic acid were identified relevant to the

differentiation between the ELS/MDD and non-ELS/MDD

(Table 2). These results suggested that some carbohydrates, amino

acids and fatty acids contributed to the discrimination of ELS/

MDD from healthy control or non-ELS/MDD.

Diagnostic biomarker panels for identification of MDD
and its subgroups (ELS/MDD and non-ELS/MDD)

Based on quantification of fewer metabolites, diagnosis will be

more convenient and economical if the metabolites can provide

sufficient information [31]. To explore the simplified and the

optimal prediction diagnostic panels for MDD and even its

subgroups (ELS/MDD and non-ELS/MDD), the ROC analysis

and Tclass system were all applied.

At first, the differential metabolites in the plasma were used as

biomarkers candidates. And then, the ROC analysis was carried

out to find out the diagnostic panel from these biomarkers

candidates. We sorted the VIP for each differential metabolite in a

descending order. Logistic regression was then fit from 1 to 9

differential metabolites. According to the AUC of the ROC

analysis, the logistic regression with 9 metabolites had the highest

predictive potential because the AUC of this differential metab-

olites panel was 1 between the MDD and healthy control (Figure

S2-A). According to the traditional academic scoring system, the

AUC of 1 represents a perfect prediction test [31]. These 9

differential metabolites were linoleic acid, cholesterol, glycine,

galactose, alanine, oleic acid, heptadecylic acid, myoinositol and

sorbitol. Through the same analysis procedure, a logistic

regression model with 9 differential metabolites was obtained,

which had the highest predictive potential between ELS/MDD

and healthy control. The AUC of this panel was 1 (Figure S2-B).

These 9 differential metabolites were aspartic acid, glycine, linoleic

acid, sorbitol, myoinositol, mannose, 6-deoxy-mannopyrannose,

oleic acid and alanine. Between non-ELS/MDD and healthy

control, the logistic regression with 3 metabolites was confirmed to

have highest predictive potential, and the AUC of this panel was 1

(Figure S2-C). These 3 differential metabolites were cholesterol,

linoleic acid and glycine. At last, a logistic regression model with 4

differential metabolites was found that have highest prediction

potential between the ELS/MDD group and non-ELS/MDD

group (Figure S2-D). These 4 differential metabolites were

cholesterol, glucopyranose, linoleic acid and glyceric acid. The

AUC of this panel was 1. However, Yang et al. reported that the

pre-selecting differential metabolites may result in positively biased

cross-validation estimates which will influence the prediction

potential of the metabolic biomarkers panel [31]. Cross-validation

Table 1. Demographic and clinical features of healthy subjects, non-ELS/MDD and ELS/MDD.

healthy subjects (n = 25) non-ELS/MDD (n = 23) ELS/MDD (n = 23) Statistic

Age (mean, SD)a 27.5 (4.4) 29.8 (6.0) 29.2 (8.3) F(2,71) = .80,ns

Race (n, %) x2(2) = 4.36, ns

the Han nationality 23 (92) 23 (100) 19 (82)

other 2 (8) 0 (0) 4 (17)

Education (mean, SD)b 17.3 (3.2) 11.4 (4.0) 13.8 (2.9) F(2,71) = 17.6, P,0.001

Married or partnered (n, %) 8 (32) 13 (56) 11 (48) x2(2) = 3.09, ns

Employed (n, %) 25 (0) 16 (70) 18 (78) x2(2) = 7.24, P = 0.027

Length of current depression
(mean, SD)c

21.7 (29.5) 27.1 (27.4) F(1,46) = .00, ns

Family history of mental disorder (n, %) 0 (0) 2 (9.0) 3 (39) x2(2) = 3.14, ns

ETI Total (mean, SD) 33.3 (8.2) 49.2 (11.9) F(1,46) = 6.42, P,0.001

Emotional abuse 6.6 (1.8) 9.7 (3.2) F(1,46) = 8.38, P,0.001

Physical abuse 5.9 (1.7) 8 (3.1) F(1,46) = 6.70, P = 0.007

Sexual abuse 5.4 (0.7) 6 (1.1) F(1,46) = 3.1, P = 0.03

Emotional neglect 9.7 (1.9) 14.4 (4.6) F(1,46) = 19.5, P,0.001

Physical neglect 7.2 (1.3) 11.1 (3.7) F(1,46) = 17.5, P,0.001

SDS (mean, SD) 28.3 (5.3) 51.5 (11.0) 54.4 (8.3) F(2,71) = 64.7, P,0.001

SAS (mean, SD) 26.6 (4.6) 42.3 (11.0) 42.7 (10.3) F(2,71) = 23.4, P = 0.004

Social support (mean, SD) 37 (5.8) 32.2 (7.4) 29.5 (8.4) F(2,71) = 6.10, P = 0.004

Objective support 8.4 (3.0) 7.4 (2.0) 7.1 (3.0) F(2,71) = 1.44, ns

Subjective support 20.0 (3.8) 18.0 (5.1) 16.0 (5.6) F(2,71) = 3.71, P = 0.03

Utilization of support 8.6 (1.6) 6.8 (2.1) 6.9 (1.6) F(2,71) = 7.54, P = 0.001

Non ELS/MDD subjects have no history of childhood abuse; ELS/MDD subjects have history of childhood abuse. ETI, Early Trauma Inventory; SDS, Self-Rating Depression
Scale; SAS, Self-Rating Anxiety Scale. a, in years; b, in years; c, in months.
doi:10.1371/journal.pone.0097479.t001
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estimate is an estimate value for assessing how accurately a

prediction model will perform in practice. The traditional

metabnomics studies have still used the pre-selecting differential

metabolites to constitute the diagnostic panel for predicting

diseases which will influence the predictive power of metabo-

nomics approach. To overcome positively biased corss-validation

estimates of the diagnostic panels, the Tclass system was applied

which uses feature selection procedure such as stepwise optimiza-

tion of all possible feature combinations and does not need the pre-

selecting differential metabolites. And stability analysis was carried

out to evaluate the performance of cross-validation estimates and

the performance of predictive accuracy of each diagnostic panels

obtained by Tclass system and the ROC analysis.

First of all, a model was generated by the Tclass system for

classification between the healthy subjects and all MDD patients.

The highest prediction power was reached through Naı̈ve Bayes

method with 9 metabolites combination, including valine, leucine,

proline, glyceic acid, pyroglutamate, galactose, glucopyranose,

palmitic acid and heptadecylic acid. The AUC of the feature

metabolites’ combination was 1 (Figure S2-E). Secondly, a model

generated by Tclass system with 8 metabolites was obtained which

had highest prediction power between the healthy control and

ELS/MDD. And the AUC of these feature metabolites’ combi-

nation including lactic acid, proline, glyceric acid, mannose,

gluconate, tryptophane, stearic acid and cholesterol was 1 (Figure

S2-F). Thirdly, a model with 3 metabolites (6-deoxidation

mannopyrannose, palmitic acid and heptadecylic acid) was

obtained which had the highest prediction power between the

healthy control and non-ELS/MDD. The AUC of the feature

metabolites’ combination was also 1 (Figure S2-G). Finally, the

optimal model generated by Tclass system with 3 metabolites

(oxalic acid, heptadecylic acid and stearic acid) had the highest

predictive power and the AUC of the feature metabolites’

combination was 1 between the ELS/MDD and non-ELS/

MDD (Figure S2-H).

The cross-validation estimates evaluation of the
diagnostic biomarker panels

To evaluate the cross-validation estimates and the prediction

potential of each biomarker panels, the stability analysis was

carried out. Through randomly dividing the sample into two parts

with the partition ration 85% for 1000 times, the major part was

used as the training set and the minor part was taken as the

independent test set for each partition. The average of 1000

predictive accuracies from the test sets was defined as the stability

index of the diagnostic panels which was suitable value for

evaluating the performance of cross-validation estimates and the

performance of predictive potential of the diagnostic panels in

practice [28].

When the diagnostic panel of feature metabolites’ combination

obtained by Tclass system and the diagnostic panel of differential

metabolites established by logistic regression of ROC analysis were

both used to classify the healthy control and MDD, the stability

index of the diagnostic panel constituted by differential metabolites

was 0.7546 and the stability index of the diagnostic panel of

feature metabolites’ combination was 0.9438. When the stability

index analysis analyzed the diagnostic panels between the healthy

control and ELS/MDD, the stability index of the differential

metabolites panel was 0.7872 and the stability index of the feature

metabolites’ set was 0.997. The stability index of the differential

metabolites panel was 0.904 and the stability index of the feature

metabolites’ combination was 1 between the healthy control and

non-ELS/MDD. At last, the stability index of differential

metabolites panel was 0.9098 and the feature metabolites’

combination was 1 between the ELS/MDD group and non-

ELS/MDD group (Figure 2).

The ensemble classifier model for identification MDD and
its subgroups (ELS/MDD and non-ELS/MDD)

Here, the models generated by Tclass system were used for

prediction disease. The relationship between the stability index

and the number of feature metabolites for classification between

the healthy subjects and all MDD patients was provided in Figure

S3-A. The highest predictive power (prediction accuracy and

stability index) was reached using Naı̈ve Bayes method and the

prediction accuracy through Tclass system was 97.436% at a

sensitivity of 95.238% and a specificity of 100%. The final model

constructed by the Tclass system was an ensemble classifier

consisting of 1000 classifiers. The results were shown in Table S1.

Here is the example of the one of the classifier during the ensemble

classifier, which can objectively help for MDD identification.

C1 = -193.22739-348.65282X1+637.70420X2+37.96944X3+
771.28313X4-179.95208X5-21.87057 X6+82.37111 X7+281.58456

X8+3245.21105X9

Figure 1. Score plots for PLS-DA of GC/TOF-MS data from healthy subjects, MDD patients and its subgroup (ELS/MDD patients and
non-ELS/MDD patients). (A) The clustering analysis of metabonomic profiles from healthy subjects and MDD patients; (B) The clustering analysis of
metabonomic profiles from ELS/MDD and non-ELS/MDD patients. MDD indicates depressed patients, ELS/MDD indicates depressed patients with
early life stress experience and non-ELS/MDD indicates depressed patients without early life stress experience.
doi:10.1371/journal.pone.0097479.g001
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MDD1 = -143.65828-251.96156X1+453.25011X2+31.32127X3+
475.62189X4-117.87757X5-10.38482X6+68.85657 X7+224.79745X8+
2492.61184X9

The X1 (valine), X2 (leucine), X3 (proline), X4 (glyceic acid), X5

(pyroglutamate), X6 (galactose), X7 (glucopyranose), X8 (palmitic

acid) and X9 (heptadecylic acid) stand for the RPA level of

metabolites in the diagnostic panel. For one plasma sample, the

RPA values for these metabolites were applied to the 1000

classifiers like this and the sample will be predicted to be the

sample of MDD patients if there were more than 500 classifiers in

which the value in the equation of ‘‘MDD’’ is bigger than the

value in the equation of ‘‘C’’. The relationship between the

predictive power and the number of feature metabolites for

classification between the healthy subjects group and ELS/MDD

patients group was displayed in Figure S3-B. The prediction

accuracy through Tclass system was 100% (Sensitivity is 100%;

Specificity is 100%), when combining eight metabolites. 1000

related classifiers were taken as the final classification profile and

the results were shown in Table S1. The relationship between the

predictive power and the number of feature metabolites for

classification between the healthy subjects and non-ELS/MDD

patients was provided in Figure S3-C. The optimal prediction

result was obtained from the combination of 3 metabolites. The

prediction accuracy was as high as 100% (Sensitivity is 100%;

Specificity is 100%). The related classifiers were displayed in Table

S1. Finally, the Tclass system was applied to generate a model for

classification between the ELS/MDD and non-ELS/MDD

groups. The relationship between the predictive performance

and the number of metabolites was provided in Figure S3-D. The

optimal prediction result was obtained from the combination of 3

metabolites and their prediction accuracy was 100% (Sensitivity is

100%; Specificity is 100%). The related classifiers were shown in

Table S1. These models established by the Tclass system could be

used to identify MDD and its subgroups.

Discussion

MDD is a serious psychiatric mood disorder and it is also a

complex affective syndrome. Numerous epidemiologic and clinical

studies have provided compelling evidence for a strong association

between various forms of early life stress and depressive symptoms

or disorders [5,45,46]. Recently, several studies reported that the

depression developed in relation to early life stress experiences

(ELS/MDD) have a characteristic neuroendocrine alterations

associated with the pathophysiologic mechanisms of ELS/MDD

[4]. To explore the characteristic metabolic alterations of ELS/

MDD, we developed a metabonomics approach that uses GC/MS

coupled with multivariate statistical analysis for identifying the

differences in the global plasma metabolites and generating

mathematic models for diagnosis. Our approach included 3 steps:

1) the distinct metabolic profile of the MDD and its subgroups

(ELS/MDD and non-ELS/MDD) exploration; 2) diagnostic

biomarker panels for prediction of MDD patients and its

subgroups (ELS/MDD and non-ELS/MDD) investigation; 3)

the diagnostic models for prediction of MDD patients and its

subgroups (ELS/MDD and non-ELS/MDD) construction.

Limitations
Through the multivariate statistical analysis, we found that it is

possible to separate the MDD and its subgroup (ELS/MDD and

non-ELS/MDD) with the plasma metabonomic data. The results

of the analysis indicated that each group has distinct metabolic

profiles in the blood (Figure 1 and Figure S1). So the aim of this

study was to examine the feasibility of an empirical laboratory-

based method to diagnose MDD and even its subgroup (ELS/

MDD and non-ELS/MDD). In this study, plasma samples were

collected from 25 healthy subjects, 46 patients with MDD,

including 23 patients with ELS and 23 patients without ELS. We

made appropriate refinement towards the traditional metabo-

nomic data analysis approach to obtain the mathematic model

with optimal predictive power from the relatively small sample

size. In the most of the metabonomics studies, the diagnostic

biomarkers panels for prediction diseases were constituted by the

pre-selecting differential metabolites. However, the pre-selecting

differential metabolites may result in positively biased cross-

validation estimates which will influence the predictive power of

the metabonomics approach [31]. In this metabonomics study, the

Tclass system was applied to search the optimal feature

combinations of metabolites for diagnosis and prognosis. Take

the advantages of selecting biomarker panel without needing pre-

selecting differential metabolites, the Tclass system can overcome

the positively biased cross-validation estimates and improve the

predictive power of the metabonomics method [28]. Through

application of Tclass system, the GC/MS based plasma metabo-

nomics approach identified MDD patients at a sensitivity of

95.2381% and a specificity of 100%; and identified its subgroups,

ELS/MDD patients, at a sensitivity of 100% and specificity of

100%. The small size of the training set for the prediction model

required achieving greater than 90% sensitivity and specificity

highlights the power of this approach [47]. Our analysis is

preliminary, and substantially larger sample size obtained through

application of this refined metabonomics approach to clinical

Figure 2. The stability index of each diagnostic panel. The
diagnostic panels of feature metabolites’ combination established by
Tclass had the higher value than the corresponding diagnostic panels of
differential metabolites, indicating the diagnostic panel of feature
metabolites had higher predictive potential and more objective cross-
validation estimate than the diagnostic panel of differential metabo-
lites.
doi:10.1371/journal.pone.0097479.g002
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practice may further improve the diagnostic sensitivity and

specificity of this novel metabonomics approach.

Novel metabonomic insights and diagnostic method
about ELS/MDD

The results of multivariate statistic analysis suggested that the

ELS/MDD have characteristic metabolic alterations associated

with the pathophysiologic mechanisms of ELS/MDD in the blood.

The PLS-DA model implicated 16 metabolites responsible for

discrimination ELS/MDD and healthy control, and 13 metabo-

lites responsible for discrimination ELS/MDD and non-ELS/

MDD. The overlapping metabolites from these two metabolites

sets may play a role in ELS/MDD pathophysiologic mechanism

and in discriminating ELS/MDD from MDD. These metabolites

included amino acids (alanine, glycine), carbohydrate (galactose),

fatty acids (linoleic acid), and cholesterol.

The altered amino acid profile was noteworthy in light of

previous studies that suggested the synthesis of brain neuro-

transmitters related to ELS/MDD pathophysiologic mechanism

can be influenced by circulating amino acids levels [27,48,49].The

previous study reported that the higher plasma levels of alanine,

glutamine, glycine, and taurine are existed in MDD patients [50]

and our study also found the higher plasma levels of alanine and

glycine in MDD including ELS/MDD and non-ELS/MDD. In

this study, the plasma levels of alanine and glycine were decreased

in the ELS/MDD when they were compared to non-ELS/MDD.

These findings implicated that the decreased plasma levels of

alanine and glycine may be associated with the ELS/MDD

mechanism and provide an ELS-associated metabolic alteration in

discriminating ELS/MDD from non-ELS/MDD. The plasma

level of galactose was found elevated in MDD compared with

healthy control. In MDD, the level of galactose in ELS/MDD was

lower than non-ELS/MDD. Galactose is an important metabolites

involved in the formation of glycans featuring galactose and its

derivatives which were essentially bound by galectins [51,52].

Converging evidence suggested that galectins play an important

role in neuroinflammation and brain development and function

[53–55], and Kraneveld et al. reported that dietary or pharma-

cological modulation with small molecules targeting the galectin

response in neurodevelopment disorders such as MDD could be a

future therapeutic approach [56]. Although galactose’s role in

MDD is not clear, the foregoing reports implied that galactose

may be involved in galectin-glycan interactions associated with the

neuro-immune axis in mental disorders such as MDD and ELS/

MDD. Linoleic acid level in the plasma was found decreased in

MDD (including ELS/MDD and non-ELS/MDD) compared to

healthy control. Inside the MDD group, the plasma level of

linoleic acid in ELS/MDD patients was higher than the MDD

patients without ELS. Consistent with these findings, a previous

study reported that the plasma level of linoleic acid in MDD

patients was significantly lower than the level of healthy subjects

[57]. And many studies reported that ELS altered the metabolic

profile of plasma polyunsaturated fatty acids in adulthood [58,59].

Even a study reported that dietary n-3 polyunsaturated fatty acid,

such as linoleic acid, deprivation together with early maternal

separation increased anxiety and vulnerability to stress in adult

rats [60]. These findings indicated that higher plasma level of the

linoleic acid in ELS/MDD compared with non-ELS/MDD may

be an ELS-associated metabolic alteration in depression patients.

And this study also found the lower plasma level of cholesterol in

MDD (including ELS/MDD and non-ELS/MDD) and this

finding was consistent with the several previous reports’ findings

[61,62]. The plasma level of cholesterol in ELS/MDD was

significantly higher than the level of non-ELS/MDD. A previous

study also reported that the early-life maltreatment may induce

high level of cholesterol in the adulthood of non-human primate

[63]. Those ELS-associated metabolic alterations indicated the

potential of plasma metabonomics method in discriminating ELS/

MDD from MDD and provided a novel plasma metabolic insight

about the ELS/MDD.

Due to the lack of empirical laboratory-based tests, the diagnosis

of MDD relies solely on the clinician’s subjective identification of

symptomatic clusters and scales which has the shortage of

subjectivity [11]. The lack of the disease molecular markers to

support objective laboratory tests constitutes a bottleneck for the

research on MDD. In light of this shortage, this study applied

ROC analysis and Tclass system to obtain the metabolic

biomarker panels for predicting MDD and even its subgroup

(ELS/MDD and non-ELS/MDD). Through the ROC analysis,

the diagnostic panels with pre-selecting differential metabolites

were obtained. The AUC of these obtained diagnostic panels all

attained 1. To overcome the positively biased cross-validation

estimate of the differential metabolites’ panel, the Tclass system

was applied which does not need the pre-selecting differential

metabolites to constitute the diagnostic panels and construct

models [28,31]. The diagnostic panels with feature metabolites’

combination were obtained by Tcalss system analysis. The AUC

values of these diagnostic panels all attained 1, as well. To evaluate

the cross-validation estimates of these diagnostic panels obtained

by Tclass system analysis or ROC analysis, the stability analysis

was carried out. The stability index of stability analysis was a

suitable cross-validation value for evaluating the performance of

cross-validation estimates and the performance of predictive

potential of the diagnostic panels in practice. Our preliminary

results showed that the stability index of the feature metabolites’

combination was generally higher than the differential metabolites

panel (Figure 2). When using the diagnostic panels, for instance,

classify the healthy control and MDD, the stability index of the

diagnostic panel constituted by differential metabolites was 0.7546

and the stability index of the diagnostic panel constituted by

feature metabolites’ combination was 0.9438. Therefore, the

feature metabolites’ combination obtained by Tclass system had

the optimum biased cross-validation estimate and had more

accurate predictive potential compared with the diagnostic panels

of differential metabolites obtained by ROC analysis.

Accordingly, 4 mathematical models (Table S1) were generated

by Tclass system and these models can be used for prediction

MDD and its subgroup (ELS/MDD and non-ELS/MDD). And

on the basis of these mathematical models, the 3 prediction tools

were designed including the prediction tool for MDD, ELS/

MDD, and non-ELS/MDD (Table S1). At first, we should use the

prediction tool for MDD to identify the sample from MDD or not.

The ensemble classifier model for healthy control and MDD is

applied. And if the sample is predicted as MDD, the sample is

from a MDD patient. Next, we will use the prediction tool for

ELS/MDD to identify the sample from ELS/MDD or not. When

using the prediction tool for diagnosing ELS/MDD, we actually

apply 2 ensemble classifier models (healthy control vs. ELS/MDD

and ELS/MDD vs. non-ELS/MDD). Only when the patient’s

plasma sample has been both predicted as ELS/MDD by the 2

ensemble classifier model (healthy control vs. ELS/MDD and

ELS/MDD vs. non-ELS/MDD), the patient will be predicted as

ELS/MDD. In consistent with it, only when the plasma sample

has been both predicted as non-ELS/MDD by both 2 models

(healthy control vs. non-ELS/MDD and ELS/MDD vs. non-

ELS/MDD), the plasma will be identified from non-ELS/MDD.

These tools were shown in Table S1. In these prediction tools,

what the user needs to do is to extract the RPA of the feature
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metabolites that constitute the diagnostic panel with highest

classification accuracy. Then, paste the above RPA of feature

metabolites into the metabolites window. The related discrimina-

tion result will be displayed in the discrimination window.

In summary, this study used metabonomics approach based on

GC/MS coupled with multivariate statistic analysis to characterize

the metabolic profiles of plasma from MDD and its subgroups

(ELS/MDD and non-ELS/MDD). The results showed that the

subgroup of MDD patients with ELS have the distinct metabolic

profiles when compared to non-ELS/MDD patients and healthy

subjects. And the diagnostic panels of feature metabolites’

combination and the ensemble classifiers provide a novel

metabonomics approach for diagnosis and prognosis of MDD

even its subgroups (ELS/MDD and non-ELS/MDD) which can

improve the predictive power of the biomarker panels obtained by

the current metabonomic data analysis approach. Although the

introduction of metabonomic screening and the Tclass system

analysis can help to simply and objectively diagnose MDD and

even its subgroups (ELS/MDD and non-ELS/MDD); the

limitations in this study indicated that the further studies with

large sample size are required to replicate and validate this novel

metabonomic analysis approach.

Supporting Information

Figure S1 Score plots for PLS-DA of GC/TOF-MS data
from healthy subjects, ELS/MDD patients and non-
ELS/MDD patients. The clustering analysis of metabonomic

profiles from healthy subjects and ELS/MDD patients (A); the

clustering analysis of metabonomic profiles from healthy subjects

and non-ELS/MDD patients (B). MDD indicates depressed

patients, ELS/MDD indicates depressed patients with early life

stress experience and non-ELS/MDD indicates depressed patients

without early life stress experience.

(DOCX)

Figure S2 Scatter plots of the values of area under the
receiver operating characteristic curve (AUC) of ROC
analyses. The Scatter plots of the values of AUC were drawn for

evaluating the diagnostic panels of differential metabolites between

the healthy subjects and MDD patients (A), healthy subjects and

ELS/MDD patients (B), healthy subjects and non-ELS/MDD

patients (C), ELS/MDD patients and non-ELS/MDD patients

(D); and the results of ROC analyses for evaluating the diagnostic

panels of feature metabolites’ combination between healthy

subjects and MDD patients (E), healthy subjects and ELS/MDD

patients (F), healthy subject and non-ELS/MDD patients (G),

ELS/MDD patients and non-ELS/MDD patients (H). The

relationship between the number of metabolites and the diagnostic

performance was shown by the AUC values which were based on

the receiver operating characteristic (ROC) analysis and logistic

regression model analysis.

(DOCX)

Figure S3 The results of Tclass discriminant analyses.
Results of Tclass discriminant analyses between the healthy

subjects and MDD patients (A), healthy subjects and ELS/MDD

patients (B), healthy subjects and non-ELS/MDD patients (C),

ELS/MDD patients and non-ELS/MDD patients (D). The

relationship between the number of metabolites and classification

accuracy was shown by Fisher’s test and Naı̈ve Bayes discriminant

analysis. Both methods were based on the feature forward

selection procedure and classification accuracy from leave-one-

out cross-validation (LOOCV).

(DOCX)

Table S1 The ensemble classifier models and the prediction

tools for identification MDD and its subgroups (ELS/MDD and

non-ELS/MDD). This is an excel file with 7 worksheets.

‘‘Ensemble classifier model 1’’ worksheet describes 1000 classifiers

which consist of the ensemble classifier model for discrimination

healthy control and MDD; ‘‘Ensemble classifier model 2’’

worksheet describes the ensemble classifier model for discrimina-

tion healthy control and ELS/MDD; ‘‘Ensemble classifier model

3’’ worksheet describes the ensemble classifier model for

discrimination healthy control and non-ELS/MDD; ‘‘Ensemble

classifier model 4’’ worksheet describes the ensemble classifier

model for discrimination non-ELS/MDD and ELS/MDD. And

then, ‘‘Prediction tool for MDD’’ worksheet describes a prediction

tool to identify the sample from MDD or not; ‘‘Prediction tool for

ELSMDD’’ worksheet describes the prediction tool to identify the

sample from ELS/MDD or not; ‘‘Prediction tool for non

ELSMDD’’ worksheet describes the prediction tool to identify

the sample from non-ELS/MDD or not. In these prediction tools,

what the user needs to do is to paste the RPA of the feature

metabolites into the metabolites window, and then the related

discrimination result will be displayed in the discrimination

window.

(XLSX)
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