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Abstract

Objectives: To propose a point-of-care image recognition system for kidney stone

composition classification using smartphone microscopy and deep convolutional

neural networks.

Materials and methods: A total of 37 surgically extracted human kidney stones con-

sisting of calcium oxalate (CaOx), cystine, uric acid (UA) and struvite stones were

included in the study. All of the stones were fragmented from percutaneous

nephrolithotomy (PCNL). The stones were classified using Fourier transform infrared

spectroscopy (FTIR) analysis before obtaining smartphone microscope images. The

size of the stones ranged from 5 to 10 mm in diameter. Nurugo 400� smartphone

microscope (Nurugo, Seoul, Republic of Korea) was functionalized to acquire micro-

scopic images (magnification = 25�) of dry kidney stones using iPhone 6s+ (Apple,

Cupertino, CA, USA). Each kidney stone was imaged in six different locations. In total,

222 images were captured from 37 stones. A novel convolutional neural network

architecture was built for classification, and the model was assessed using accuracy,

positive predictive value, sensitivity and F1 scores.

Results: We achieved an overall and weighted accuracy of 88% and 87%, respec-

tively, with an average F1 score of 0.84. The positive predictive value, sensitivity and

F1 score for each stone type were respectively reported as follows: CaOx (0.82,

0.83, 0.82), cystine (0.80, 0.88, 0.84), UA (0.92, 0.77, 0.85) and struvite (0.86, 0.84,

0.85).

Conclusion: We demonstrate a rapid and accurate point of care diagnostics method

for classifying the four types of kidney stones. In the future, diagnostic tools that

combine smartphone microscopy with artificial intelligence (AI) can provide

accessible health care that can support physicians in their decision-making process.
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1 | INTRODUCTION

Kidney stones (calculi) are mineral deposits of crystalline and organic

components formed when urine is supersaturated with minerals

and/or organic components.1 The formation of kidney stones

(nephrolithiasis) is a common condition. According to the most recent

National Health and Nutrition Evaluation Survey, the prevalence of

self-reported kidney stones between 2013 and 2014 was 10.1%; the

weighted prevalence of kidney stones was 10.9% (9.1–12.6) for males

and 9.4% (7.6–11.1) for females.2 There are several underlying risk

factors for the formation of kidney stones; family history, race/

ethnicity, systemic disorders, environmental factors, dietary factors

and urinary factors seem to all play a role in the development of kid-

ney stones.3 The abundance of each type of kidney stone varies with

type: calcium stones comprise around 60–80% of all kidney stones,

uric acid 8–10%, struvite 7–8%, and cystine 0.1–1%.1,3

Kidney stones can be treated with minimally invasive surgical

techniques such as Extracorporeal shock wave lithotripsy,

ureteroscopic lithotripsy, and percutaneous nephrolithotomy (PCNL).4

Following the kidney stone extraction and stone analysis, clinicians

determine stone composition to prescribe treatment or diet for pre-

ventative measures.5 The recurrence rate is approximately 50% in 5–

10 years and 75% in 20 years without preventive treatment.6 Hence,

understanding and detecting the formation of specific types of kidney

stone is crucial for prescribing treatment to prevent recurrence.

The gold standard for kidney stone analysis in physical analytic

methods are Fourier transform infrared spectroscopy (FTIR) and X-ray

diffraction.7 Both methods are widely used and considered to be very

accurate and reliable for kidney stone analysis. However, there are cer-

tain limitations; both FTIR and X-ray diffraction need trained laboratory

personnel and specialized equipment in a laboratory setting. Due to

these limitations, clinicians need to send kidney stones to specific

testing centres, and this practice is both time consuming and costly for

each analysis. Therefore, there is a need for a rapid and accurate point-

of-care device for kidney stone analysis in daily clinical practice.

Over the past couple of decades, artificial intelligence (AI) has

become a significant research area in medical diagnostics and

analytics.8 There has been ongoing research in building image-based

diagnosis systems for many medical specialties.9 Similarly, the

adoption of AI in urology is a growing field of interest.10,11 Recently,

Black et al. reported kidney stone classification using deep learning

and digital camera images.12

The aim of the present study was to propose an image recogni-

tion system that can accurately detect the type of kidney stones using

a data set of smartphone-based microscopic images. To our knowl-

edge, this is the first study for combining smartphone microscopy with

deep learning to classify kidney stone types.

2 | MATERIALS AND METHODS

A total of 37 surgically extracted human kidney stones consisting

of calcium oxalate (CaOx) (7 calcium CaOx-monohydrate,

7 CaOx-dihydrate, 6 CaOx-monohydrate + CaOx-dihydrate) (n = 20,

CaOx), cystine (n = 10), uric acid (n = 4, UA), and struvite stones

(n = 3) were included in the study. All of the stones were fragmented

from PCNL. The stones were classified using FTIR analysis before

obtaining smartphone microscope images. The size of the stones

ranged from 5 to 10 mm in diameter. The stones were obtained

between 2018 and 2020 from Bulent Onal MD, Istanbul University-

Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey. All of

the stones were preserved in a dry state and as extracted from the

patients. Nurugo 400� smartphone microscope (Nurugo, Seoul,

Republic of Korea) was functionalized to acquire microscopic images

(magnification = 25�) of dry kidney stones using iPhone 6s+ (Apple,

Cupertino, CA, USA). The smartphone-microscope was hand-held to

obtain images of the kidney stones. Distance from objective and focus

were manually adjusted by the user to mirror real-life point-of-care

usage conditions. Each kidney stone was imaged in six different loca-

tions. In total, 222 images were captured from 37 stones. A summary

of our data set for different stone types is presented in Table 1.

Microscopic image samples of different types of kidney stones are

shown in Figure 1.

We propose a machine learning pipeline that can be used for kid-

ney stone classification. Our approach consisted of multiple stages,

starting with data acquisition and ending with outputting the correct

kidney stone type from our classifier. Each stage output in our

approach was provided as input to the next stage. Our pipeline and

approach for this kidney stone problem was summarized in Figure 2.

Upon the creation of our data set for microscopic images, we uti-

lized image pre-processing for classification. Each microscopic image

was resized into 224 � 224 pixels by cropping at the centre. Then,

random horizontal split and random 5� rotation was applied to random

sets of images to increase generalization. Finally, each image was nor-

malized with specific mean and standard deviation values for each

RGB channel. These specific values were selected after many years of

image processing research for convolutional neural networks

(CNNs).13 Table 2 presents the image processing parameters in detail.

For all of our image processing operations, we used PyTorch’s13 trans-

forms package. Some sample images after image pre-processing are

presented in Figure 1. After the images are processed, the data set is

split into training and testing sets with a ratio of 70% and 30%,

respectively. Thus, it is important to note that 26 stones’ images are

used for training, and 11 stones’ images are used for testing.

Even though most related works for similar classification prob-

lems in medical imaging use the ResNet50 or GoogleNet architecture,

T AB L E 1 Number of kidney stones and the total number of
images for each stone type

Stone types No. of stones Total no. images

Cystine 10 60

Calcium oxalate 20 120

Struvite 3 18

Uric acid 4 24

ONAL AND TEKGUL 311



the complex structure and unnecessary number of layers hinder the

classification’s efficiency. Training such complex architectures might

take days with large data sets. Therefore, we developed our own

novel CNN architecture. The architecture has four convolutional

layers, two pooling layers and two fully connected layers. The pro-

posed architecture is shown in Figure 3. Python 3.6 and PyTorch13

was used for image processing and CNN algorithms. Our model was

trained using a 2.3-GHz Intel Core i5 CPU with 8-GB RAM. All the

hyperparameter values were presented in Table 3. The training of our

proposed model took an average of 45 min. After training, the

machine learning model can classify between the four types of kidney

stones in less than 30 s.

The overall and weighted accuracy, positive predictive value, sen-

sitivity, F1 scores, and confusion matrix for the classification model

were recorded. Accuracy represents the number of correct predictions

divided by the total number of predictions. Because our study has an

imbalanced data set, the classifier might be biased towards the type

of kidney stone that occurs the most in our data set. Therefore, there

is a need to analyse other metrics, such as weighted accuracy, positive

predictive value, sensitivity and F1 scores. Weighted accuracy is com-

puted by taking the mean of the rate of correct predictions in every

class. Sensitivity is computed by the ratio of true positives to the sum

of true positives and false negatives. On the other hand, positive

F I G U R E 1 Microscopic
images of different types of
kidney stones before (1) and after
(2) image pre-processing. Struvite
(a), cystine (b), calcium oxalate (c),
uric acid (d).
(magnification = 25�)

F I GU R E 2 Proposed machine learning pipeline for kidney stone classification

T AB L E 2 Image pre-processing parameters for PyTorch

Image size 224 � 224 pixels

Random rotation 5 degrees

Random horizontal flip probability 20%

Mean normalization constants (R,G,B) (0.485, 0.456, 0.406)

STD normalization constants (R,G,B) (0.229, 0.224, 0.225)
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predictive value is computed by the ratio of true positives to the sum

of true positives and false positives. F1 score is the harmonic mean of

positive predictive value and sensitivity which expresses the perfor-

mance of each class in our classifier. Confusion matrices are used to

explain the performance of classifiers for each class. The actual versus

predicted values represent unseen images (30%) (n = 11) used in test-

ing by our classifier per stone type.

3 | RESULTS

We achieved an overall and weighted accuracy of 88% and 87%,

respectively, with an average F1 score of 0.84. Training and validation

accuracies for the number of epochs are shown in Figure 4. One

epoch corresponds to all training images processed once.

The positive predictive value, sensitivity and F1 score for each

stone type were respectively reported in Table 4 as follows: CaOx

(0.82, 0.83, 0.82), cystine (0.80, 0.88, 0.84), UA (0.92, 0.77, 0.85) and

struvite (0.86, 0.84, 0.85).

The confusion matrix in Figure 5 summarizes the predictions

made by our classifier, where each column represents the predicted

stone type, and each row shows the actual stone type.

4 | DISCUSSION

This study demonstrates a bench-to-bedside platform for rapid classifi-

cation of kidney stones using smartphone microscopic images. Our pro-

posed deep learning pipeline includes image processing, data

augmentation, and a novel CNN architecture. After training our model

with 154 images and testing on 68 unseen kidney stone images, we

achieved an accuracy of 88% with an average F1 score of 0.84. To our

knowledge, this is the first study for combining smartphone microscopy

with deep learning to classify kidney stone types. Our methodology is

rapid and easy to use by medical practitioners and urologists.

In two previous studies, Serrat et al. and Black et al. have demon-

strated digital image-based computational methods to determine kid-

ney stone composition.11,12 Serrat et al. used a data set of 3632

images from 454 kidney stones, including eight kidney stone types

(calcium oxalate monohydrate, calcium oxalate dihydrate, mixed cal-

cium oxalate and hydroxyapatite, hydroxyapatite, struvite, brushite,

uric acid anhydrous and dihydrate, mixed uric acid and calcium oxa-

late). They captured a total of four images per kidney stone using a

conventional camera. Each sample stone was divided into two

fragments; each fragment’s external and internal sides were imaged

using visible lighting. A traditional machine-learning approach (random

forest classifier) was used to determine kidney stone types based on

manually obtained features such as local binary patterns, colour

histogram and grey level histogram obtained from images. Lastly, the

authors included urinary pH as an additive feature to improve classifi-

cation. They achieved an overall accuracy of 63%. Although Serrat

et al. used a larger data set, the overall accuracy for classification

(63%) was lower than our study (88%). We believe this is due to three

main reasons: types of kidney stones used, image collecting methodol-

ogy, and computational approaches for classification. In our study, we

F I GU R E 3 Proposed neural network architecture

T AB L E 3 Parameters used for the convolutional neural network
(CNN)

Loss function Cross-entropy

Learning rate 0.001

Weight decay 1.00E-05

Optimizer Adam

Number of epochs 60

Dropout rate 0.3

F I G U R E 4 Training and validation accuracy results with respect
to number of epochs
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accepted CaOx-monohydrate, CaOx-dihydrate, and their mixed com-

position as CaOx stones. Hence, our study includes four types of kid-

ney stones: calcium oxalate, uric acid, cystine and struvite. On the

other hand, Serrat et al. analysed subclasses of CaOx separately and

further included additional mixed stone types in their study. We

functionalized smartphone microscopy for image collecting methodol-

ogy to analyse magnified crystalline structures of kidney stones,

whereas Serrat et al. used digital images of kidney stones without

magnification. Serrat et al. used internal and external images; similarly,

because the stones were previously fragmented with PCNL, we were

able to capture both internal and external surfaces of stones through

imaging in six different locations. The computational approach used

by Serrat et al. consisted of manually extracting image features and

feeding them into a random forest classifier to determine kidney

stone types. We used CNNs to eliminate any bias that can be intro-

duced by using manual feature extraction. CNN autonomously

extracts all useful features for classification, eliminating bias, and

yielding higher accuracy.

Similar to our study, Black et al. reported using CNNs to classify

kidney stones.12 Their study included 127 images of 63 kidney stones,

including uric acid, calcium oxalate monohydrate, struvite, cystine and

brushite stones. They used a total of two images per kidney stone,

capturing the surface and inner core using a digital camera. Black et al.

reported an overall accuracy of 85%. Our kidney stone classifier

accuracy (88%) was similar to the one reported in Black et al. (85%). This

may be explained by similar data sets and kidney stone types used.

However, in our study, we used smartphone microscopy to obtain mag-

nified images of different parts of each kidney stone, whereas Black

et al. captured digital images without magnification. Black et al. used

internal and external images; as we outlined earlier, we also captured

both internal and external sites through imaging in six different locations

because the stones were previously fragmented with PCNL. Using this

methodology, we obtained a larger set of images (222) than Black et al.

(127). In addition, the image classification method used by Black et al. is

a widely used conventional CNN architecture (ResNet, Microsoft),

whereas we introduced a novel CNN architecture specifically built for

classifying kidney stone types. Lastly, we used a train-test split approach

for testing our classifier and tested on 30% of the unseen kidney stones

images, unlike the leave one out approach from Black et al.

Last, we believe that our technique has the potential to use AI for

linking stone observations with patient data. In most cases such data

will be recent data, acquired from the patient at the time when the

stone problem presented or a few years before that in the case of

recurrence. In that respect, the characteristics of the external parts of

a stone will be linked to the current situation of the patient while the

origin of the stone may be decades older and related to events that

occurred many years earlier in a time period of during which probably

no data are available for that patient.14

Our current study has certain limitations. The low natural fre-

quency of occurrence of some types of kidney stones was an obstacle

in collecting data for representing all types of kidney stones in our

data set. Our data set only represents around 90% of kidney stone

cases, and the current data set has imbalances in the number of sto-

nes for each respective type. In the future, we want to include other

kidney stone types such as brushite and mixed stones to expand the

reach of our classification and improve our data imbalance. The collec-

tion of a larger image data will also improve CNN accuracy. Although

our current study has limitations, it serves as a good first step towards

demonstrating an automated kidney stone classification method using

smartphones.

CONCLUSIONS

We demonstrate a rapid and accurate point of care diagnostics

method for classifying the four main types of kidney stones. Our work

demonstrates the significance of smartphone microscopy and deep

learning for future medical diagnostics platforms. In the future, diag-

nostic tools that combine smartphone microscopy with AI can provide

accessible health care that can support physicians in their decision-

making process.
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T AB L E 4 Positive predictive value, sensitivity and F1 score for
each kidney stone types

Stone types Positive predictive value Sensitivity F1 score

CaOx 0.82 0.83 0.82

Cystine 0.80 0.88 0.84

Struvite 0.86 0.84 0.85

Uric acid 0.92 0.77 0.85

F I GU R E 5 Confusion matrix of our kidney stone classifier (30%
of the total images from each stone type were used as unseen images
for testing)
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