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Abstract 

Background:  Recurrence remains a major obstacle to long-term survival of laryngeal squamous cell carcinoma 
(LSCC). We conducted a genome-wide integrated analysis of methylation and the transcriptome to establish methyla-
tion-driven genes prognostic signature (MDGPS) to precisely predict recurrence probability and optimize therapeutic 
strategies for LSCC.

Methods:  LSCC DNA methylation datasets and RNA sequencing (RNA-seq) dataset were acquired from the Cancer 
Genome Atlas (TCGA). MethylMix was applied to detect DNA methylation-driven genes (MDGs). By univariate and 
multivariate Cox regression analyses, five genes of DNA MDGs was developed a recurrence-free survival (RFS)-related 
MDGPS. The predictive accuracy and clinical value of the MDGPS were evaluated by receiver operating characteristic 
(ROC) and decision curve analysis (DCA), and compared with TNM stage system. Additionally, prognostic value of 
MDGPS was validated by external Gene Expression Omnibus (GEO) database. According to 5 MDGs, the candidate 
small molecules for LSCC were screen out by the CMap database. To strengthen the bioinformatics analysis results, 30 
pairs of clinical samples were evaluated by digoxigenin-labeled chromogenic in situ hybridization (CISH).

Results:  A total of 88 DNA MDGs were identified, and five RFS-related MDGs (LINC01354, CCDC8, PHYHD1, MAGEB2 
and ZNF732) were chosen to construct a MDGPS. The MDGPS can effectively divide patients into high-risk and low-
risk group, with the area under curve (AUC) of 0.738 (5-year RFS) and AUC of 0.74 (3-year RFS). Stratification analysis 
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Background
As an aggressively malignant neoplasm, laryngeal squa-
mous cell carcinoma (LSCC) is one of the most preva-
lence cancers in head and neck region, and represents 
85–95% of all laryngeal cancer [1]. According to the 
American Cancer Society, the estimated respective new 
cases and new death are 13 150 and 3 710 annually, with 
incidence and mortality rates of 4.0 and 1.1 per 100 000, 
respectively [2]. Current multimode treatments, includ-
ing surgery, radiotherapy, chemotherapy, targeted ther-
apy and so on, are applied to cure LSCC patients [3]. 
Though treatments have improved during the past dec-
ades, long-term survival is hampered as more than 40% 
of LSCC patients experience disease recurrence approxi-
mately at 5 years after radical treatment [4].

Hence, identifying accurate predictive models and reli-
able biomarkers to screen out which subset of patients 
with LSCC is apt to develop recurrence is urgently 
needed, which help to optimize therapeutic strategies 
and exploit valuable molecular targeted therapy in LSCC 
patients.

LSCC is a heterogeneous disease in terms of therapeu-
tic response and clinical prognosis. To a certain extent, 
clinical heterogeneity can be related to distinct molecu-
lar subtypes by gene expression pattern [5].RNA expres-
sion profiles usually exhibits relative stochastic and rapid 
variations, which can be directly related to important 
pathways in malignant cells. DNA methylation, serves 
as a major epigenetic modification that is involved in the 
transcriptional regulation of genes and maintains the sta-
bility of the genome, is less variable and semi-stable, but 
show large variations linked to the activity of cellular pro-
cesses. Therefore, the combination of transcriptome and 
epigenetic status would be helpful to identify new mark-
ers and improve the accuracy of recurrence prediction. 

What’s more, changes in DNA methylation with a high 
level of plasticity allows tumor cells to quickly adapt to 
changes in metabolic restrictions or physiology during 
the process of tumorigenesis [6, 7]. Hence, it is reason-
able to analyses the DNA methylation pattern in the 
tumor cells in order to find predictors for the recurrence 
and novel therapeutic targets in LSCC patients.

The availability of high throughput genomic assays 
such as RNA-seq and DNA methylation-seq have opened 
the possibility for a comprehensive characterization of all 
molecular alterations of cancers, leading to the discovery 
of new biomarkers of clinical and therapeutic value [8]. In 
present study, we performed a genome-wide integrated 
analysis of methylation and the transcriptome to charac-
terize the crosstalk between DNA methylation and RNA 
regulation for patients with LSCC in The Cancer Genome 
Atlas (TCGA) database. We identify methylation-driven 
genes (MDGs), and then developed a methylation-driven 
genes prognostic signature (MDGPS) capable of predict-
ing the recurrence-free survival (RFS), and further screen 
correlated small molecule target drugs. The proposed 
MDGPS was validated in external datasets from the GEO 
database. In additional, we assessed the predictive ability 
and clinical application of the MDGPS and compared it 
to the TNM stage.

Materials and methods
Sample selection and data processing
We downloaded DNA methylation (111 LSCC sam-
ples and 12 normal samples), RNA-sequencing profiles 
(117 LSCC samples and 16 normal samples) and clini-
cal information data (Additional file  1: Material S1) of 
LSCC patients from TCGA (https​://gdc.cance​r.gov/), 
which recorded before February 14, 2020. Excluding the 
unavailability of DNA methylation or gene transcriptome 

affirmed that the MDGPS was still a significant statistical prognostic model in subsets of patients with different clinical 
variables. Multivariate Cox regression analysis indicated the efficacy of MDGPS appears independent of other clin-
icopathological characteristics. In terms of predictive capacity and clinical usefulness, the MDGPS was superior to 
traditional TNM stage. Additionally, the MDGPS was confirmed in external LSCC cohorts from GEO. CMap matched the 
9 most significant small molecules as promising therapeutic drugs to reverse the LSCC gene expression. Finally, CISH 
analysis in 30 LSCC tissues and paired adjacent normal tissues revealed that MAGEB2 has significantly higher expres-
sion of LSCC compared to adjacent non-neoplastic tissues; LINC01354, CCDC8, PHYHD1, and ZNF732 have signifi-
cantly lower expression of LSCC compared to adjacent non-neoplastic tissues, which were in line with bioinformatics 
analysis results.

Conclusion:  A MDGPS, with five DNA MDGs, was identified and validated in LSCC patients by combining transcrip-
tome and methylation datasets analysis. Compared TNM stage alone, it generates more accurate estimations of 
the recurrence prediction and maybe offer novel research directions and prospects for individualized treatment of 
patients with LSCC.

Keywords:  Laryngeal squamous cell carcinoma, DNA methylation-driven genes, Epigenetics, Prediction, Recurrence-
free survival
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datasets or RFS time < 1  month, as a result, a total of 
81 LSCC patients were enrolled in this analysis. The 
GSE27020 microarray dataset (https​://www.ncbi.nlm.
nih.gov/geo/query​/acc.cgi?acc=GSE27​020) comprises 
109 LSCC specimens with gene expression profiles and 
the associated clinical characteristics (Additional file  2: 
Material S2).GSE25727 microarray dataset (https​://
www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE25​
727) includes 56 LSCC specimens with gene expression 
profiles and the corresponding  prognostic information 
(Additional file 3: Material S3). The clinical end point was 
RFS, defined as time from final surgical excision to recur-
rence. Patients not having a recurrence or those patients 
who died without recurrence at last follow-up are consid-
ered as censored observations. All data were normalized 
in the R computing environment using the edgeR pack-
age or Limma package. Methylation data were in form of 
β value, representing the ratio of the methylation probe 
data vs total probe intensities. Then, the average DNA 
methylation value for all CpG sites correlated with a gene 
was calculated and merged into a matrix with the func-
tion of TCGA-Assembler. Data were utilized according 
to the data access policy of TCGA and GEO. All analyses 
were conducted in accordance with relevant regulations 
and guidelines.

Another in-house dataset including 30 LSCC tissues 
and paired adjacent normal tissues were collected from 
patients who underwent surgery at Affiliated Cancer 
Hospital & Institute of Guangzhou Medical University 
between January 2016 and December 2019. No recruited 
patients received any preoperative treatment. The adja-
cent non-cancerous tissues were collected > 2  cm from 
the tumor margins on the same or another lobe. All tis-
sue samples were blocked of formalin-fixed paraffin-
embedded material and stored at 2–8 °C with desiccation 
until use for later experiments. The studies involving 
human tissues samples were reviewed and approved by 
the Research Ethics Committee of Affiliated Cancer Hos-
pital & Institute of Guangzhou Medical University, and 
complied with the Declaration of Helsinki. All patients 
were aware of the present study and signed an informed 
consent agreement.

Identification of DNA methylation‑driven genes
The MethylMix R package was employed for analysis that 
integrated DNA methylation data for 117 LSCC sam-
ples and 16 normal samples and paired gene expression 
data for 111 LSCC samples to appraise DNA methyla-
tion events that have a significant impact on the expres-
sion of the corresponding gene, indicating that the gene 
is a DNA methylation-driven gene (MDG). A total of 
three procedures of MethylMix analysis were described 
as previous studies [9].In additional, the differential 

methylation (DM) value where gene with a positive DM 
value of signifies hypermethylation and gene with a nega-
tive DM value signifies hypomethylation can be applied 
in subsequent analysis.

Functional enrichment and pathway analysis 
of methylation‑driven genes
Gene ontology (GO) analysis, including the molecu-
lar function (MF), biological process (BP) and cellular 
component (CC), was performed on identified MDGs 
using the DAVID database (https​://david​.abcc.ncifc​
rf.gov/),which​ provides integrative and systematic anno-
tation tools for uncovering biological meaning of genes. 
And we used GOplot R package to visualize the result. 
Additionally, pathway analysis was carried out for the 
MDGs with ConsensusPathDB (https​://cpdb.molge​
n.mpg.de/), which is a functional molecular interaction 
database, integrating information on gene regulation, 
signal transduction, biochemical metabolism, protein 
interacting, genetic interacting signaling in humans. 
Humancyc, Kegg, Reactome, Wikipathways, Smpdb, and 
Biocarta and Signalink was selected for subsequent anal-
ysis. P < 0.05 was set as the threshold value.

Construction and verification of an MDGPS
First, univariable Cox regression analysis is utilized to 
select RFS-related MDGs with P < 0.05 as the threshold. 
After primary filtering, the RFS-related MDGs were all 
assembled into multivariate Cox regression model, then a 
MDGPS based on these RFS-related MDGs is developed.

The MDGPS risk score was generated through lin-
ear combination of the expression levels of independent 
DNA MDGs using coefficients from multivariate Cox 
regression as the weights. On the basis of the median risk 
score, LSCC patients were classified into two cohorts, 
high-risk cohorts and low-risk cohorts. Survival differ-
ences between high-risk group and low-risk group were 
assessed by Kaplan–Meier survival analysis and then 
compared by the log-rank test. Time-dependent receiver 
operating characteristic (ROC) curves by means of the 
timeROC package were applied to evaluate predictive 
performance. In addition, stratified analysis base on 
various clinical characteristics is conducted to evaluate 
the discrimination ability of MDGPS. Importantly, the 
GSE27020 and GSE25727 from the GEO database were 
applied to validate the predictive value of the MDGPS.

Gene set enrichment analysis
We downloaded GSEA software from the GSEA website 
(https​://softw​are.broad​insti​tute.org/gsea/index​.jsp). 81 
LSCC patients were categorized into high-risk cohorts 
and low-risk cohorts, which was served as the pheno-
types. Gene sets related to biosignaling on MSigDB 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27020
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(https​://softw​are.broad​insti​tute.org/gsea/downl​oads.jsp) 
could be found on the GSEA home as reference gene sets. 
Each analysis was repeated 1000 times according to the 
default weighted enrichment statistical method. Statisti-
cally significant pathways were screened based on the 
false discovery rate (FDR) < 0.25, |enriched score|> 0.35, 
and gene size ≥ 35 as the cutoff criteria.

Independence of the MDGPS from clinicopathological 
features
We carried out univariate and multivariate Cox regres-
sion analyses to adjudicate whether the predictive 
ability of the MDGPS may be independent of other clin-
icopathological characteristics (including smoke history, 
alcohol history, age, sex, number of positive lymph nodes 
(LNs), number of LNs, lymph node ratio (LNR), margin 
status, lymphovascular invasion, histologic grade, TNM 
stage, N status, T stage, mutation count, fraction genome 
altered) of LSCC patients in TCGA database.

Additionally, we validate whether the MDGPS remain 
be independent of other clinical features in GSE27020 
database (age, sex, including smoke history, alcohol his-
tory, histologic grade, TNM stage, Radiation therapy).

Comparison of predictive performance and clinical 
usefulness between MDGPS and TNM stage
ROC analysis by means of the survivalROC package was 
carried out to investigate and compare the discrimina-
tion ability of the MDGPS signature with traditional 
TNM staging in TCGA and GSE27020 database. Deci-
sion curve analysis (DCA) by means of the stdca.R was 
employed to evaluate the clinical usefulness and net 
benefit of the MDGPS, and compared to TNM stage in 
TCGA and GSE27020 database [10].

Joint survival analysis and methylated loci associated 
with RFS
To further investigate the impact of RFS-related MDGs 
on LSCC patient, we carried out joint survival analy-
sis combined methylation and gene expression to iden-
tify hub genes associated with prognosis in patients 
with LSCC by the survival R package. In additional, we 
performed the comparative studies between single fac-
tor (methylation or gene expression only) and dual fac-
tors (methylation + gene expression) in prediction of 
RFS. Finally, we retrieved relevant loci for RFS-related 
MDGs from downloaded LSCC methylation data. We 
merged the value of corresponding methylated sites into 
one matrix and conducted univariate Cox analysis to 
select potential prognosis methylated loci. P < 0.05 was 
regarded as statistically significant.

Identification of candidate small molecules agents
The CMap database (https​://www.broad​insti​tute.org/
cmap/), which collects more than 7,000 gene expres-
sion profile changes induced by various small molecular 
drugs, was adopted to investigate candidate small mol-
ecules agents for LSCC treatment. 5 RFS-related MDGs 
were divided into down-regulated (vs normal samples 
based on gene expression level) and up-regulated (vs 
normal samples based on gene expression level) groups, 
which were uploaded into CMap database to screen 
related active small molecules agents. Then, the enrich-
ment scores were calculated, which signify similarity 
rang from − 1 to 1. A negative connectivity score (closer 
to − 1) indicated higher similarity between the genes, 
which represents potential therapeutic value, whereas a 
positive connectivity score (closer to + 1) demonstrate 
the matched small molecule can induce the state of LSCC 
cells. The candidate small molecules agents (P < 0.01, 
N > 4, and Enrichment < 0) for anti-LSCC were selected.

Chromogenic in situ hybridization (CISH)
To validate LINC01354, CCDC8, PHYHD1, MAGEB2 
and ZNF732 expression in LSCC, digoxigenin (DIG)-
labeled CISH was performed on 30 pairs of tumor and 
para-carcinoma tissues. The samples were fixed using 4% 
paraformaldehyde (DEPC, Servicebio) for 2–12  h. Par-
affin sections were prepared to perform the hybridiza-
tions. Then, the sections were placed in boiling water for 
15 min and cooled at room temperature. The specimens 
were incubated at 37 °C for 30 min in 20 µg/ml Protein-
ase K (Servicebio) and then rinsed three times in PBS 
(Servicebio). Prehybridization was conducted at 37 °C for 
1 h in hybridization buffer (Servicebio). Then, the prehy-
bridization buffer was replaced with fresh hybridization 
buffer containing 8  ng/ml of the corresponding probe, 
and the specimens were incubated at 37  °C overnight. 
The washed specimens were incubated at room temper-
ature in blocking serum containing BSA for 30 min and 
then incubated at 37  °C for 40  min with anti-DIG/AP 
antibody (Jackson).

Staining score given by the two independent investiga-
tors were averaged for further comparative evaluation of 
LINC01354, CCDC8, PHYHD1, MAGEB2 and ZNF732 
expression. Tumor cell proportion was scored as follows: 
0 (no positive tumor cells); 1 (< 10% positive tumor cells); 
2 (10–35% positive tumor cells); 3 (35–70% positive 
tumor cells) and 4 (> 70% positive tumor cells). Staining 
intensity was graded according to the following criteria: 0 
(no staining); 1 (weak staining, light yellow); 2 (moderate 
staining, yellow brown) and 3 (strong staining, brown). 
Staining score was calculated as the product of stain-
ing intensity score and the proportion of positive tumor 

https://software.broadinstitute.org/gsea/downloads.jsp
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https://www.broadinstitute.org/cmap/
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cells. Based on this method of assessment, LINC01354, 
CCDC8, PHYHD1, MAGEB2 and ZNF732 expression 
in LSCC tissues and paired adjacent normal tissues was 
evaluated by the staining score, with scores of 0, 1, 2, 3, 4, 
6, 8, 9 or 12. Score was compared by paired t-test in dif-
ferent two groups.

Statistical analysis
R software (R version 3.5.2) and SPSS statistics 22.0 were 
utilized to conduct the statistical analysis. A two sided 
P < 0.05 would be recognized as statistically significant 
except for where a certain P value has been given. Addi-
tionally, we set a table, including the objective, method 
and Package name, for using different R packages for 
analysis (Additional file 4: Table S1).

Results
Identification of MDGs, functional enrichment 
and pathway analyses
Based on three matrices and steps of MethylMix, in 
total, 88 genes, 77 hypermethylated genes and 11 hypo-
methylated genes, were defined as the epigenetic driv-
ers with Cor <  − 0.3, |logFC|> 0and P < 0.05(Additional 
file  5: Material S4). The GO term enrichment analy-
sis for MDGs shows the top 6 clusters of enriched sets 
with significant differences (P < 0.05) (Additional file  6: 
Figure S1).As to molecular function (MF), MDGs were 
mainly involved in nucleic acid binding, metal ion bind-
ing, and transcription factor activity, sequence-specific 
DNA binding. For biological processes (BP), MDGs were 
mainly enriched in regulation of transcription, DNA-
templated and transcription, DNA-templated. As to cel-
lular component (CC), MDGs were mainly involved in 
(CC) intracellular. The results of pathway enrichment 
analysis indicated that MDGs were most involved in gene 
expression (transcription), RNA polymerase II transcrip-
tion and generic transcription pathway (Additional file 7: 
Figure S2).

Construction and verification of an MDGPS
Utilizing the univariate Cox regression analysis, we 
identify 5 genes, namely LINC01354, ZNF732, CCDC8, 
PHYHD1 and MAGEB2, associated with RFS with 
P < 0.05 from 88 MDGs (Additional file  5: Material S4). 
The methylation degree distributions of the 5 RFS-related 
MDGs are displayed in Additional file  8: Figure S3 by 
methylation β mixed model. Additional file 9: Figure S4 
visualized methylation degrees of LINC01354, ZNF732, 
CCDC8, PHYHD1 and MAGEB2 were negatively corre-
lated with respective expressions in LSCC. An MDGPS 
was constructed based on 5 RFS-related MDGs, which 
were all embedded into multivariate Cox regression 
model. The MDGPS risk score was computed as follows: 

risk score = (− 0.3206 expression level of LINC01354) + ( 
− 0.2638 expression level of ZNF732) + ( − 0.2291 
expression level of CCDC8) + ( − 0.0102 expression level 
of PHYHD1) + (0.0167 expression level of MAGEB2). A 
median cut-off risk score was employed to classify LSCC 
patients into a high-risk cohorts (n = 40) and a low-risk 
cohorts (n = 41) in TCGA database (Fig. 1a). Intuitively, 
Fig. 1b the number of recurrence was significantly lower 
in the low-risk cohorts compared with high-risk cohorts. 
The Kaplan–Meier analysis indicated that in low risk 
cohorts LSCC patients were more inclined to higher 
RFS time than patients in high risk cohorts (P < 0.001) 
(Fig.  1c). Time-dependent receiver operating character-
istic (ROC) curves showed that MDGPS had a superior 
prediction capacity, with AUC of 0.738 (5 year RFS) and 
AUC of 0.74 (3  year RFS) (Fig.  3d).In additional, strati-
fication analysis were carried out in subsets of patients 
with different clinical variables (lymphovascular invasion 
vs no lymphovascular invasion, positive margin status vs 
negative margin status, G1-G2 vs G3-G4, I-II stage vs III-
IV stage, N0 vs N1–N3, T1–T2 vs T3–T4) for MDGPS. 
In lymphovascular invasion or no lymphovascular inva-
sion, negative margin status, G1–G2 or G3–G4, III-IV 
stage, N0 or N1–N3, T3–T4 subgroup, the MDGPS was 
still a statistically and clinically prognostic model (Addi-
tional file  10: Figure S5 and Additional file 11: S6). But, 
in positive margin status, I–II stage and T1–T2 sub-
group did not reach significant statistic. Noteworthily, 
external GEO cohorts (GSE27020 and GSE25727 data-
base) were utilized to verify the predictive performance 
of the MDGPS. As was displayed in Figs.  2, 3, patients 
with low risk score were more prone to survival and 
had higher RFS time than patients with high-risk score, 
which consistent with the results of the TCGA dataset. 
Furthermore, the AUC of MDGPS (AUC of 5 year RFS: 
0.753 and AUC 3  year RFS: 0.779 in GSE27020 dataset, 
AUC of 5 year RFS: 0.736 and AUC 3 year RFS: 0.793 in 
GSE25727 dataset) confirmed that the predictive accu-
racy of the prognostic model was satisfactory.

Gene set enrichment analysis
To investigate potential biological pathways for 5 RFS-
related MDGs, we carried out the GSEA, and reveal 
a total of 48 items were significantly enriched with 
FDR < 0.25. The level of risk score for MDGPS was con-
sidered as the phenotypes, and the findings uncovered 
that high-risk level of MDGPS may closely correlated 
with several important crosstalk, comprising of calcium 
signaling pathway, ECM receptor interaction, ErbB sign-
aling pathway, mTOR signaling pathway, pathways in 
cancer, MAPK signaling pathway, Notch signaling path-
way, RNA degradation, TGF beta signaling pathway 
(Fig. 4).
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Independence of the MDGPS from clinicopathological 
features
To investigate whether the MDGPS is independent of 
the clinicopathological characteristics in TCGA data-
base, Univariate Cox regression analysis found that 
positive margin status, and high MDGPS risk score 
were associated with shorter RFS 1). Multivariate Cox 
regression analysis continued to verify that MDGPS 
was an independent predictor of unfavorable RFS (HR: 
1.29, 95% CI 1.06–1.60, P = 0.010), after adjustment 
for other risk variables. In additional, external GEO 
cohorts (GSE27020 database) were utilized to validate 
whether the MDGPS is also independent of other clini-
cal features. Univariate and multivariate Cox regression 

analyses were performed, which indicated that the 
MDGPS a significant independent indicator for RFS 
(HR: 1.17, 95% CI 1.09–1.22, P < 0.001) by adjusting 
covariates (Table 2).

Comparison of predictive performance and clinical 
usefulness between MDGPS and TNM stage
To evaluate the predictive ability of MDGPS, we com-
pared MDGPS to AJCC TNM stage model, ROC curve 
analysis was performed in TCGA database. As was dis-
played in Fig. 5a, b, the AUC of MDGPS for predicting 
5- year and 3-year RFS were 0.743 and 0.747, respec-
tively, while that of TNM stage model were 0.642 and 
0.627, respectively. Similar results were also found in 

Fig. 1  Development of MDGPS for prediction of recurrence in LSCC patients in TCGA database. a, b Distribution of MDGPS risk score. c 
Time-independent ROC curves with AUC values to evaluate predictive efficacy of MDGPS risk score. d Kaplan–Meier estimates of patients’ 
recurrence status and time using the median risk score cut-off which divided patients into low-risk and high-risk groups
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the GSE27020 cohorts. The AUC of MDGPS for pre-
dicting 5- year and 3-year RFS were 0.793 and 0.778, 
respectively, and the AUC of the TNM stage model 
were 0.663 and 0.573, respectively (Fig.  5c, d). Finally, 
the clinical usefulness of the MDGPS was measured by 
the DCA, an abstract statistical concept, which pro-
vided visualized information on the clinical value of a 
model. DCA graphically revealed that the MDGPS at 
diverse cutoff times (5- year and 3-year RFS) was supe-
rior to the traditional TNM staging based on the conti-
nuity of potential death threshold (x-axis) and the net 
benefit of risk stratification using the model (y-axis) in 
TCGA cohorts and GSE27020 cohorts (Fig. 6).

Joint survival analysis and methylated loci associated 
with RFS
Joint survival analysis, that is, the methylation and gene 
expression matched evaluation, was additionally con-
ducted to exploit the prognostic value of LINC01354, 
ZNF732, CCDC8, PHYHD1 and MAGEB2. The hyper-
methylation and low-expression of LINC01354, CCDC8 
and PHYHD1 exhibited a markedly correlation with 
the poor prognosis of patients with LSCC (Fig.  7a–c); 
The hypomethylation and high-expression of MAGEB2 
exhibited a conspicuous association with the unfavora-
ble prognosis of patients with LSCC (Fig.  9d). Never-
theless, the combination of methylation and expression 

Fig. 2  Development of MDGPS for prediction of recurrence in LSCC patients in GSE27020 dataset. a, b Distribution of MDGPS risk score. c 
Time-independent ROC curves with AUC values to evaluate predictive efficacy of MDGPS risk score. d Kaplan–Meier estimates of patients’ 
recurrence status and time using the median risk score cut-off which divided patients into low-risk and high-risk groups
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of ZNF732 did not have a significant effect on progno-
sis of LSCC patients (Additional file  12: Figure S7). As 
were shown in Fig. 8a, b, combination of methylation and 
gene expression data (AUC of 5-year = 0.797 and AUC of 
3-year = 0.783) showed a superior prediction RFS abil-
ity in comparison to using methylation data only (AUC 
of 5-year = 0.697 and AUC of 3-year = 0.714) or gene 
expression data (AUC of 5-year = 0.747 and AUC of 
3-year = 0.743). A total of 50 methylation sites (6 methyl-
ated sites in LINC01354, 15 methylated sites in ZNF732, 
10 methylated sites in CCDC8, 9 methylated sites in 
PHYHD1, and 10 methylated sites in MAGEB2) were 
screened out and the univariate Cox regression analy-
sis uncovered that 16 key methylation loci (5 specific 

methylation sites in LINC01354, 5 specific methylation 
sites in CCDC8, specific methylation sites in PHYHD1 
and 1 specific methylation sites in MAGEB2) were sig-
nificantly associated with LSCC prognosis (Additional 
file 13: Table S2).

Identification of related active small molecules
A total of 3587 small molecules drugs were matched by 
CMap database (Additional file 14: Material S5). Table 3 
displayed the 9 significant small molecules agents corre-
sponding to gene expression changes of LSCC after strict 
selection. Among these small molecules agents, thiocol-
chicoside (enrichment score =  − 0.85), gibberellic acid 
(enrichment score =  − 0.714) and ciclacillin (enrichment 

Fig. 3  Development of MDGPS for prediction of recurrence in LSCC patients in GSE25727 dataset. a, b Distribution of MDGPS risk score. c 
Time-independent ROC curves with AUC values to evaluate predictive efficacy of MDGPS risk score. d Kaplan–Meier estimates of patients’ 
recurrence status and time using the median risk score cut-off which divided patients into low-risk and high-risk groups
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Fig. 4  Gene set enrichment analysis for identification of the underlying pathways using risk score as the phenotype (a, b)

Table 1  Univariable and multivariable Cox regression analysis for prediction of RFS in TCGA database

HR hazard ratio, CI confidence intervals, RFS recurrence-free survival, NA not available

These variables were eliminated in the multivariate cox regression model, so the HR and P values were not available. *P < 0.05

Factors Subgroup Univariable analysis Multivariable analysis

HR(95% CI) P HR(95% CI) P

Age 0.96 (0.92–1.00) 0.094 NA NA

Sex Female 1

Male 0.85 (0.26–2.85) 0.795 NA NA

Smoking history No 1

Yes 1.47(0.69–3.10) 0.319 NA NA

Alcohol history No 1

Yes 1.21 (0.51–2.90) 0.668 NA NA

Number of Lymph nodes 0.99 (0.97–1.00) 0.305 NA NA

Number of positive LNs 1.00 (0.94–1.05) 0.878 NA NA

Lymph node ratio 2.02 (0.37–10.95) 0.417 NA NA

Margin status Negative 1 1

Positive 6.24(2.53–16.28) 0.000* 3.45(1.05–11.35) 0.042*

Lymphovascular No 1

invasion Yes 2.00(0.71–5.66) 0.192 NA NA

Tumor grade G1–G2 1

G3–G4 0.97(0.43–2.20) 0.942 NA NA

Clinical T T1–T2 1

T3–T4 0.96(0.29–3.23) 0.949 NA NA

Clinical N N0 1

N1–N3 1.86(0.84–4.12) 0.123 NA NA

Clinical stage I–II 1

III–IV 0.53(0.007–4.02) 0.540 NA NA

Mutation count 0.99(0.98–1.01) 0.185 NA NA

Fraction Genome altered 0.73(0.07–7.43) 0.788 NA NA

MDGPS 1.43(1.23–1.67) 0.000* 1.29 (1.06–1.60) 0.010*
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score =  − 0.866) were related to a highly significant nega-
tive fraction and possess potential to reverse the tumor 
status of LSCC.

Chromogenic in situ hybridization (CISH)
The expression of LINC01354, CCDC8, PHYHD1, 
MAGEB2 and ZNF732 in 30 paraffin-embedded tissue 
samples of LSCC and adjacent non-neoplastic tissues 
was semiquantitatively examined by CISH (Fig. 9). Stain-
ing score analysis revealed that MAGEB2 has signifi-
cantly higher expression of LSCC compared to adjacent 
non-neoplastic tissues (Fig.  10d); LINC01354, CCDC8, 
PHYHD1, and ZNF732 have significantly lower expres-
sion of LSCC compared to adjacent non-neoplastic 
tissues (Fig. 10a, c, e), which were in line with bioinfor-
matics analysis results.

Discussion
Integrating TCGA LSCC RNA-seq datasets with DNA 
methylation datasets by MethylMix tools, we identified 
88 DNA MDGs. On the basis of these DNA MDGs, we 
developed a RFS-related MDGPS, which could accurately 
categorized patients into high-risk status and low-risk 
status. Stratification analysis verified that the MDGPS 
remained a significant statistical prognostic model in 
subsets of patients with different clinical variables. Mul-
tivariate Cox regression analysis uncovered the efficacy 
of MDGPS appears independent of other clinicopatho-
logical characteristics. With respect to predictive capac-
ity and clinical usefulness, the MDGPS was superior to 
traditional TNM stage. Additionally, the MDGPS was 

validated in external LSCC cohorts from GEO. Finally, 
CMap matched the 9 most significant small molecules 
as promising therapeutic drugs to reverse the LSCC gene 
expression.

Increasing number of researches recognizes that epi-
genetic changes such as the hypermethylation of tumor 
suppressor genes and hypomethylation of oncogenes 
in the diagnosis, progression and prognosis of LSCC 
played a critical role [11–13]. By quantitative methyla-
tion-specific polymerase chain reaction (qMSP) assays in 
96 LSCC patients, Shen et  al. [11] revealed that LZTS2 
promoter hypermethylation is linked to risk, progres-
sion, and prognosis of LSCC, which can serve as diagnos-
tic and prognostic biomarker for LSCC. Wang et al. [12] 
uncovered that in laryngeal cancer cells demethylated 
SP1 sites in CG-rich region of miR-23a-27a-24–2 cluster 
promoter upregulate the cluster expression, resulting in 
early apoptosis inhibition and proliferation promotion 
probably via targeting the related targets such as PLK2 
and APAF-1.On the basis of 77 LSCC patients, Liu et al. 
[13] found that hypermethylation percentage RUNX3 
was associated with lymph node metastasis,TNM classi-
fication of malignant tumors stage, poor OS rate as well 
as suppression of RUNX3 expression. Similarly, in  vitro 
reduced methylation and increased expression of RUNX3 
genes was confirmed and following 5-azacytidine treat-
ment, decreased cell migration was observed. RUNX3 
promoter region may be a potential therapeutic spot for 
LSCC.

These studies indicated the potential clinical implica-
tions of DNA methylation in offering new biomarker for 

Table 2  Univariable and multivariable Cox regression analysis for prediction of RFS in GSE27020 dataset

HR hazard ratio, CI confidence intervals, RFS recurrence-free survival, NA not available

These variables were eliminated in the multivariate cox regression model, so the HR and P values were not available.*P < 0.05

Factors Subgroup Univariable analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P

Age 1.02(0.99–1.06) 0.193 NA NA

Sex Female 1

Male 21.94(0.34–32.16) 0.377 NA NA

Smoking history No 1

Yes 20.53(0.06–28.44) 0.679 NA NA

Alcohol history No 1

Yes 1.17 (0.58–2.33) 0.664 NA NA

Tumor grade G1–G2 1

G3–G4 0.90(0.64–1.26) 0.998 NA NA

Clinical stage I–II 1

III-IV 1.00(0.61–1.65) 0.525 NA NA

Radiation therapy Yes NA NA

No 2.22(0.98–4.99) 0.055 NA NA

MDGPS 1.15(1.09–1.22) 0.000* 1.17(1.09–1.24) 0.000*



Page 11 of 19Cui et al. Cancer Cell Int          (2020) 20:472 	

valuable molecular targeted therapy and establish predic-
tive models to optimize therapeutic strategies in LSCC 
patients. However, most of studies define overall survival 
(OS) as primary outcome, not for RFS. Because OS is 
more likely to be affected by comorbidity and post-recur-
rence treatment, RFS could more truly reflect the bio-
logic behavior for LSCC patients [14–16]. Besides, almost 
all of researches focused on the methylation status of one 
gene with limited statistical power in predictive values. 
Considering the heterogeneity of LSCC, entire molecu-
lar signatures derived from high-content genome screens 
seem to offer better prognostic value.

To our knowledge, this is the first study carried out a 
genome-wide integrated analysis of methylation and the 

transcriptome from TCGA database to create an MDGPS 
for LSCC patients to optimize therapeutic strategies and 
seek novel biomarker as potential molecular targeted 
therapy. When applying high-throughput methodol-
ogy with 450,000 probes, it is necessary to distinguish 
the epigenetic changes (“driver”) that act as effectors of 
the malignant phenotype from alterations of “passen-
ger” without any biologic function [17]. Hence, a model-
based tool (MethylMix) is an attractive investigative tool 
to integrate DNA methylation with RNA expression 
to identify MDGs in LSCC, which focuses on identify-
ing cis-regulatory effects of DNA methylation on gene 
expression. Consequently, we identified a cohort of 88 
MDGs in LSCC. The functional analysis indicated MDGs 

Fig. 5  A and B: ROC curves compare the prognostic accuracy of the MDGPS with TNM staging in predicting 3-year (a) and 5-year (b) recurrence 
probability in the TCGA dataset. C and D: ROC curves compare the prognostic accuracy of the MDGPS with TNM staging in predicting 3-year (c) and 
5-year (d) recurrence probability in the GSE27020 dataset
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were mainly attached oneself to gene expression (tran-
scription), RNA polymerase II transcription, transcrip-
tion factor activity, sequence-specific DNA binding and 
so on. It was a hint that DNA methylation is involved in 
the dysregulation of genes with distinct functions and is 
functionally linked to outcomes in LSCC patients.

On the basis of univariate and multivariate Cox regres-
sion analyses, we selected five MDGs (LINC01354, 
ZNF732, CCDC8, PHYHD1 and MAGEB2) to develop 
a RFS-related MDGPS. It could effectively classified 
patients into high-risk group with shorter RFS and low-
risk group with longer RFS in TCGA and GEO database. 
Remarkably, according to stratified analysis, the MDGPS 
was a statistically and clinically prognostic model in lym-
phovascular invasion or no lymphovascular invasion, 

negative margin status, G1–G2 or G3–G4, III–IV stage, 
N0 or N1-N3, T3-T4 subgroup. But, in positive margin 
status, I-II stage and T1–T2 subgroup did not reach sig-
nificant statistic. Yet, in positive margin status, I-II stage 
and T1–T2 subgroup did not reach significant statis-
tic. One possible explanation that a small sample size of 
T1–T2 or I–II stage or positive margin status subgroup, 
consisting of less than 10 patients in different subgroup, 
are not enough to generate an effect of significant statis-
tics. In addition, univariate and multivariate Cox analy-
sis affirmed that MDGPS was an independent predictor 
of unfavorable RFS, regardless of other clinicopatho-
logic variables in TCGA and GEO data set. To explore 
potential biological pathways for 5 RFS-related MDGs, 
we carried out the GSEA and indicated that 5 MDGs of 

Fig. 6   Decision curve analysis for the MDGPS and TNM staging in predicting 3-year (a) and 5-year (b) recurrence probability in the TCGA dataset. 
Decision curve analysis for the MDGPS and TNM staging in predicting 3-year (c) and 5-year (d) recurrence probability in the GSE27020 dataset
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MDGPS was mainly scattered in cancer-related path-
ways (ErbB signaling pathway, mTOR signaling pathway, 
MAPK signaling pathway, Notch signaling pathway), 
metabolism-related pathways(calcium signaling pathway, 
RNA degradation) and immune-related biological pro-
cesses (T cell receptor signaling pathway). It implied that 
5 MDGs of MDGPS maybe involved in initiation, main-
tenance, development of LSCC and associated with out-
comes in LSCC patients.

At present, the AJCC (American Joint Committee on 
Cancer) TNM (tumor-node -metastasis) stage system 
[18], on the basis of anatomical information, is often 
utilized when talking about decision making about 
treatment for LSCC patients. Nevertheless, LSCC is 

composed of heterogeneous histologic subtypes with a 
wide range of clinical course variations. Consequently, 
a significant proportion of patients with inaccurate 
stage maybe receive over-treatment or inadequate treat-
ment. For example, over-stage might subject a patient 
to needless adjunctive chemoradiotherapy; conversely, 
under-stage is likely to result in recurrence or even death 
after surgery. In our research, via ROC curve analysis, 
MDGPS shown more precise predictive ability com-
pared with TNM stage model in TCGA and GEO data-
base, which could effectively  identify high-risk patients 
prone to adjunctive chemoradiotherapy and low-risk 
to avoid needless adjuvant therapy. Interestingly, DCA 
results indicated that LSCC recurrence-related treatment 

Fig. 7  Kaplan–Meier survival curves for the joint survival analysis. a The combination of gene LINC01354 methylation and expression. b The 
combination of gene CCDC8 methylation and expression. c The combination of gene PHYHD1 methylation and expression. d The combination of 
gene MAGEB2 methylation and expression
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decision based on the MDGPS resulted in more net ben-
efit than treatment decision based on TNM stage, or 
treating either all patients or none in TCGA and GEO 
database. To sum up, the current MDGPS would be clini-
cally useful for the clinicians in tailoring recurrence-asso-
ciated treatment decision.

One prominent finding in our study was that combin-
ing methylation and RNA expression data with survival 
analysis, we identified 4 MDGs (LINC01354, CCDC8, 
PHYHD1 and MAGEB2), which maybe serve as poten-
tial biomarkers or drug targets for early diagnosis and 
prognostic assessment. LINC01354, a long non-coding 
RNAs (lncRNAs), play critical roles in tumor progres-
sion. Li et al. [19] revealed that high level of LINC01354 
expression is closely related to distant metastasis, lymph 
node metastasis, tumor size, and TNM stage in colorectal 
cancer. Functional analysis uncovered that LINC01354 
promoted colorectal cancer cell migration, proliferation, 

and epithelial-mesenchymal transition. Mechanistically, 
LINC01354 stabilized CTNNB1 via interacting with 
hnRNP-D, thereby leading to activation of Wnt/β-catenin 
signaling pathway. It was recently reported that dysregu-
lation of LINC01354 in thyroid cancer is associated with 
genomic alterations [20]. CCDC8 (coiled-coil domain 
containing 8) encodes a helical domain containing pro-
tein, which is one of three proteins mutated in 3 M syn-
drome patients [21]. Findings by Li et al. [22] confirmed 
that epigenetic dysregulation of CCDC8 may result in 
metastasis to the brain as well as other distant organs 
in breast tumors. During tumor evolution, CCDC8 dys-
regulation early occurs, which has the potential to be 
utilized as a prognostic marker in addition to being a 
potential therapeutic target. PHYHD1 (phytanoyl-CoA 
dioxygenase domain containing 1), which is a putative 
orthologue of Xenopus phytanoyl-CoA dioxygenase-like 
(XPhyHlike) [23]. Nevertheless, information regarding 

Fig. 8  ROC curves compare the prognostic accuracy of the methylation + gene expression with methylation or gene expression only in predicting 
3-year (a) and 5-year (b) recurrence probability

Table 3  List of the 9 most significant small molecule drugs that can reverse the tumoral status of LSCC

CMap name Mean N Enrichment P Specificity Percent 
non-null

Thiocolchicoside − 0.85 4 − 0.837 0.00123 0 100

Gibberellic acid − 0.714 4 − 0.804 0.00284 0.0107 100

Ciclacillin − 0.866 4 − 0.786 0.00422 0.0056 100

Cetirizine − 0.705 4 − 0.781 0.00465 0.0242 100

Medrysone − 0.7 6 − 0.764 0.00032 0.0108 100

Lomefloxacin − 0.655 6 − 0.726 0.00085 0 83

Pramocaine − 0.708 5 − 0.711 0.00435 0 80

Metamizole sodium − 0.695 6 − 0.657 0.00455 0.0684 83

Tolbutamide − 0.566 7 − 0.598 0.00643 0 71
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Fig. 9  LINC01354 (a), CCDC8 (b), PHYHD1 (c), MAGEB2 (d) and ZNF732 (e) expression in LSCC tumor specimens and paired adjacent non-tumor 
tissues was detected by CISH. Scale bars of 100 × magnification, 200 μm
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Fig. 10  CISH staining score analysis showed that LINC01354, CCDC8, PHYHD1, and ZNF732 are downregulated in LSCC compared to expression 
in adjacent normal mucosa tissues (a–c, e); MAGEB2 is upregulated in LSCC compared to expression in adjacent normal mucosa tissues (d); 
***P < 0.001
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the role of PHYHD1 in cancer is lacking. MAGEB2, as 
a member of  the MAGEB family, which belongs to the 
cancer testicular antigens, is located in the last exon on 
chromosome X. The MAGEB2 gene has been reported 
to be overexpression in several types of tumors, such as 
lung cancer [24] and malignant peripheral nerve sheath 
tumors [25], which has been implicated in carcinogen-
esis and considered as a potential cancer biomarker [26]. 
Pattini et  al. [27] indicated that MAGEB2 is activated 
by promoter demethylation in head and neck squamous 
cell carcinoma (HNSCC), which has growth promoting 
effects on a minimally transformed oral keratinocyte cell 
line. Thus, further characterization of molecules such as 
LINC01354, CCDC8, PHYHD1 and MAGEB2 will pro-
vide new perspective for  the development and progress 
of LSCC, and aided to find potential therapeutic targets 
for LSCC patients.

Another finding in our study was that we identify a set 
of potential small molecule drugs that reverse abnormal 
gene expression of LSCC, analyzing the MDGs in CMap 
database. Small molecule drugs with a highly signifi-
cant negative enrichment value possessed the potential 
to alter the gene expression of LSCC, and thus inhibit-
ing the progression of tumors. Thiocolchicoside, a semi-
synthetic colchicine derived from plant honeysuckle, is a 
muscle relaxant and utilized to treat orthopedic disorders 
and rheumatologic on account of its anti-inflammatory 
and analgesic mechanisms. Reuter et al. [28] demonstrate 
that thiocolchicoside exert an effect on anticancer via 
the NF-κB pathway resulting in inhibition of cyclooxy-
genase-2 promoter activity and NF-κB reporter activ-
ity. However, efficacy and safety of those small molecule 
drugs on LSCC are still not investigated. Hence, it is 
urgently demanded to verify the effect of these candidate 
small molecule drugs on treating LSCC in the further 
experiments.

Despite the remarkable sense, it is inevitable that limi-
tations also existed in our study. First, we merely extract 
retrospectively target data (TCGA and GEO datasets) 
through biological algorithm approaches absence of fresh 
clinical samples to screen and verify our results. So, the 
application of our model remains needed to validate in 
external and multicenter prospective cohorts with large 
sample sizes. Second, the 5 MDGs should be further 
studied and verified to investigate its specific regulatory 
function and mechanisms in LSCC. Third, the molecular 
profiling of the tumors as presented here is that it might 
be inclined to intra-tumor heterogeneity, not display 
spatial pattern of biomarker expression (including focal 
sub-clones) across the tumor specimen. Therefore, the 
future direction of methylation and expression profiling 
in tumor risk stratification will require a single cell based 
approach.

Conclusion
A MDGPS, with five DNA MDGs, was identified and val-
idated in LSCC patients by integrating multidimensional 
genomic data. Compared TNM stage alone, it generates 
more accurate estimations of the survival probability and 
maybe help the development of personalized and precise 
medicine LSCC field.
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