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Abstract: Rotavirus is the major cause of severe gastroenteritis in children aged <5 years. Introduc-
tion of the G1P[8] Rotarix® rotavirus vaccine in Malawi in 2012 has reduced rotavirus-associated
hospitalisations and diarrhoeal mortality. However, the impact of rotavirus vaccine on the severity
of gastroenteritis presented in children requiring hospitalisation remains unknown. We conducted
a hospital-based surveillance study to assess the impact of Rotarix® vaccination on the severity of
gastroenteritis presented by Malawian children. Stool samples were collected from children aged
<5 years who required hospitalisation with acute gastroenteritis from December 2011 to October
2019. Gastroenteritis severity was determined using Ruuska and Vesikari scores. Rotavirus was
detected using enzyme immunoassay. Rotavirus genotypes were determined using nested RT-PCR.
Associations between Rotarix® vaccination and gastroenteritis severity were investigated using
adjusted linear regression. In total, 3159 children were enrolled. After adjusting for mid-upper
arm circumference (MUAC), age, gender and receipt of other vaccines, all-cause gastroenteritis
severity scores were 2.21 units lower (p < 0.001) among Rotarix®-vaccinated (n = 2224) compared
to Rotarix®-unvaccinated children (n = 935). The reduction in severity score was observed against
every rotavirus genotype, although the magnitude was smaller among those infected with G12P[6]
compared to the remaining genotypes (p = 0.011). Each one-year increment in age was associated
with a decrease of 0.43 severity score (p < 0.001). Our findings provide additional evidence on the
impact of Rotarix® in Malawi, lending further support to Malawi’s Rotarix® programme.

Keywords: rotavirus; genotypes; Malawi; gastroenteritis; severity scores

1. Introduction

Rotavirus is a leading cause of acute gastroenteritis among children worldwide. De-
spite the introduction of rotavirus vaccines in many countries, rotavirus is still associated
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with an estimated 128,500 deaths annually. Over 90% of these cases occur in low- and
middle-income countries (LMICs) in sub-Saharan Africa and South-East and South Asian
countries [1,2].

Rotavirus has a segmented double-stranded ribonucleic acid (dsRNA) genome, sur-
rounded by a triple-layered capsid. Most human infections are associated with group A
rotaviruses [3], which can further be classified using a dual classification system into G and
P types, according to their neutralising antibody response or nucleotide differences in the
genes encoding their outer glycoprotein VP7 and protease-sensitive VP4, respectively [2].
At least 41 G types and 57 P types have been reported (https://rega.kuleuven.be/cev/
viralmetagenomics/virus-classification, accessed on 12 December 2021). Of these, geno-
types G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8] are the most frequent causes of
rotavirus disease in humans worldwide [4,5].

Malawi introduced the G1P[8] Rotarix® rotavirus vaccine into its national Expanded
Programme on Immunisation (EPI) schedule on 28 October 2012, with doses administered
at 6 and 10 weeks of age. Rotarix® vaccination coverage reached 99–100% by 2016 [6],
and this was associated with a decline in rotavirus-associated hospitalisations [7] and a
reduction in gastroenteritis-related mortality [8]. However, the impact of Rotarix® vaccina-
tion on the severity of gastroenteritis presented in vaccinated and unvaccinated (indirect)
children has not yet been assessed. We conducted an analysis of the severity of gastroen-
teritis by comparing Ruuska and Vesikari disease severity scores [9] in children presenting
with rotavirus and non-rotavirus laboratory confirmed gastroenteritis before and after
Rotarix® introduction, and between vaccinated and non-vaccinated children post-Rotarix®

introduction.

2. Materials and Methods
2.1. Study Population

Children under the age of five years who presented with acute gastroenteritis (defined
as the passage of at least three looser-than-normal stools in a 24 h period for less than seven
days duration) whose mothers/legal guardians consented to participate in this study were
enrolled at both inpatient and outpatient departments, Queen Elizabeth Central hospital
(QECH), Blantyre, which is the main referral hospital for the southern region of Malawi.
To assess the impact of Rotarix® vaccination on the severity of gastroenteritis, data were
examined from children requiring hospitalisation with gastroenteritis before (December
2011 to October 2012) and after (November 2012 to October 2019) Rotarix® introduction.
These populations were used to (i) assess the impact of Rotarix® on the severity of all-cause
gastroenteritis; and (ii) determine whether gastroenteritis severity differed by rotavirus
genotype in Rotarix®-vaccinated and Rotarix®-unvaccinated children.

2.2. Clinical and Demographic Variables

Gastroenteritis severity was determined using the Ruuska and Vesikari scoring sys-
tem [9]. The assessment was based on the following parameters: duration and maximum
number of episodes of diarrhoea as well as vomiting, fever, and dehydration. Scores of
0–5 was considered as mild, 6–10 as moderate, 11–15 as severe and ≥16 as very severe. To
assess the impact of Rotarix® by age, infants were categorised into four age groups (<6,
6–11, 12–23 and 24–59 months).

2.3. Rotavirus Detection and Genotyping

A 10–20% stool suspension in diluent buffer was prepared for each specimen and used
to screen for the presence of group A rotavirus using a commercially available enzyme
immunoassay (Rotaclone®, Meridian Bioscience, Cincinnati, OH, USA). Rotavirus dsRNA
was extracted from all rotavirus-positive stool samples using the Viral RNA Mini-Kit
(Qiagen, Hilden, Germany). The dsRNA was reverse transcribed to complementary DNA
(cDNA) using random primers (Invitrogen, Paisley, UK) and reverse transcriptase enzyme
(Superscript III MMLV-RT, Invitrogen, Paisley, UK) [10]. The cDNA was used to assign G
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genotype (G1, G2, G3, G4, G8, G9, G10, G11 and G12) and P genotype (P[4], P[6], P[8], P[9],
P[10], P[11] and P[14]) using a multiplex heminested RT-PCR as described previously [5].

2.4. Statistical Analysis

All statistical analyses were performed in the R environment for statistical computing,
version 4.0.2 [11] and GraphPad Prism version 8. Vesikari score distributions were com-
pared between pre-Rotarix®-unvaccinated children, post-Rotarix®-unvaccinated children
and post-Rotarix®-vaccinated children as well as between genotypes using non-parametric
Kruskal–Wallis tests. Wilcoxon rank-sum tests were used to compare Vesikari scores be-
tween two groups. A linear regression model was used to estimate the change in Vesikari
score that could be associated with receipt of Rotarix® and Rotarix® vaccine period. This
model was adjusted for the mid-upper arm circumference (MUAC), age, gender and re-
ceipt of the Bacillus Calmette–Guérin vaccine (BCG), the Pneumococcal Conjugate Vaccine
(PCV), the Oral Polio Vaccine (OPV) and the Pentavalent (diphtheria, pertussis, tetanus, and
hepatitis B and Haemophilus influenzae type b) EPI vaccines. This model was inspected for
multicollinearity using generalised variable inflation factors (GVIFs) as implemented in the
R package car [12]. No substantial multicollinearity was detected (all squared GVIFs < 5).
Both unadjusted and adjusted linear regression analysis were used to estimate Vesikari
scores by considering G genotypes separately, P genotypes separately and combined G and
P genotypes (Supplementary Data S1). Residuals were computed for the purpose of model
diagnostics: homoscedasticity and normality of residuals, linearity of the relationship
between the independent and dependent variables.

3. Results

3.1. Reduction in Gastroenteritis Severity following Vaccination with Rotarix®

The characteristics of the study participants included in this analysis are summarised
in Table 1. In total, 3159 children were enrolled, of which 401 (12.7%) were enrolled before
Rotarix® introduction, whereas 2758 (87.3%) were enrolled after Rotarix® introduction. A
total of 80.6% (2224/2758) of children enrolled in the post-Rotarix® period were vaccinated.
Thus, across the entire study period, 70.4% (2224/3159) of the children were vaccinated
with Rotarix®. The median age of unvaccinated children was higher (15.9 (IQR: 9.1–19.9))
than that of vaccinated children (10.4 (IQR: 7.7–14.4)) during the post-vaccine period,
p < 0.001.

Table 1. Characteristics of children who presented with gastroenteritis at the Queen Elizabeth Central Hospital in Blantyre,
Malawi from December 2011 to October 2019.

All-Cause Gastroenteritis Rotavirus-Positive Gastroenteritis Rotavirus-Negative Gastroenteritis

Pre-
Rotarix®

Introduc-
tion

Period

Post-Rotarix®

Introduction
Period

Pre-
Rotarix®

Introduc-
tion

Period

Post-Rotarix®

Introduction
Period

Pre-
Rotarix®

Introduc-
tion

Period

Post-Rotarix®

Introduction
Period

Variable Rotarix®-
Vaccinated

Rotarix®-
Unvaccinated

Rotarix®-
Vaccinated

Rotarix®-
Unvaccinated

Rotarix®-
Vaccinated

Rotarix®-
Unvaccinated

Total
participants;

n (%)
401 (12.7%) 2224

(70.4%) 534 (16.9%) 176 (17.5%) 652 (64.9%) 177 (17.6%) 225 (10.4%) 1572
(73.0%) 357 (16.6%)

Sex; n (%)
Male 218 (54.4%) 1354

(60.9%) 301 (56.4%) 95 (54.0%) 401 (61.5%) 97 (54.8%) 123 (54.7%) 953 (60.6%) 204 (57.1%)

Female 183 (45.6%) 870 (39.1%) 233 (43.6%) 81 (46.0%) 251 (38.5%) 80 (45.2%) 102 (45.3%) 619 (39.4%) 153 (42.9%)
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Table 1. Cont.

All-Cause Gastroenteritis Rotavirus-Positive Gastroenteritis Rotavirus-Negative Gastroenteritis

Pre-
Rotarix®

Introduc-
tion

Period

Post-Rotarix®

Introduction
Period

Pre-
Rotarix®

Introduc-
tion

Period

Post-Rotarix®

Introduction
Period

Pre-
Rotarix®

Introduc-
tion

Period

Post-Rotarix®

Introduction
Period

Variable Rotarix®-
Vaccinated

Rotarix®-
Unvaccinated

Rotarix®-
Vaccinated

Rotarix®-
Unvaccinated

Rotarix®-
Vaccinated

Rotarix®-
Unvaccinated

Year of
surveillance;

n (%)

2011–
2012 401 (100%) 0 (0%) 0 (0%) 176 (100%) NA NA 225 (100%) 0 (0%) 0 (0%)

2012–
2013 NA 162 (29.2%) 393 (70.8%) NA 54 (27.3%) 144 (72.7%) NA 108 (30.3%) 249 (69.7%)

2013–
2014 NA 450 (82.4%) 96 (17.6%) NA 108 (85.0%) 19 (15.0%) NA 342 (81.6%) 77 (18.4%)

2014–
2015 NA 513 (94.6%) 29 (5.4%) NA 126 (94.0%) 8 (6.0%) NA 387 (94.9%) 21 (5.1%)

2015–
2016 NA 364 (96.6%) 13 (3.4%) NA 116 (95.1%) 6 (4.9%) NA 248 (97.3%) 7 (2.7%)

2016–
2017 NA 313 (96.9%) 10 (3.1%) NA 106 (96.4%) 4 (3.6%) NA 207 (97.2%) 6 (2.8%)

2017–
2018 NA 213 (99.5%) 1 (0.5%) NA 69 (100%) 0 (0%) NA 144 (99.3%) 1 (0.7%)

2018–
2019 NA 200 (99.5%) 1 (0.5%) NA 69 (100%) 0 (0%) NA 131 (99.2%) 1 (0.8%)

Vesikari
score; median

(IQR)

13.0
(12.0–15.0)

11.0
(9.0–13.0)

13.0
(11.0–15.0)

13.0
(12.0–15.0)

11.0
(9.0–14.0)

14.0
(13.0–15.0)

13.0
(12.0–15.0)

11.0
(9.0–13.0)

13.0
(11.0–15.0)

MUAC (cm);
median (IQR)

13.0
(12.0–14.0)

13.1
(12.5–14.0)

13.5
(12.50–14.0)

13.0
(12.0–14.0)

13.2
(12.5–14.0)

13.4
(12.5–14.0)

13.0
(11.6–14.0)

13.1
(12.4–14.0)

13.5
(12.5–14.3)

Weight (kg);
median (IQR)

7.6
(6.4–9.0)

7.9
(6.9–9.0)

8.0
(6.8–9.7)

7.5
(6.4–8.5)

7.9
(7.0–9.0)

8.0
(6.8–9.2)

7.8
(6.5–9.3)

7.9
(6.80–9.0)

8.0
(6.8–9.9)

Age
(months);

median (IQR)

9.5
(6.9–13.4)

10.4
(7.7–14.4)

15.9
(9.1–19.9)

8.1
(5.8–11.1)

10.3
(7.9–13.8)

12.1
(8.3–15.7)

10.6
(7.7–15.5)

10.4
(7.7–14.7)

14.6
(9.5–22.0)

BCG-
Vaccinated;

n (%)

Yes 381 (95.0%) 2199
(98.9%) 519 (97.2%) 165 (93.8%) 645 (98.9%) 171 (96.6%) 216 (96.0%) 1554

(98.9%) 348 (97.5%)

No 20 (5%) 25 (1.1%) 15 (2.8%) 11 (6.3%) 7 (1.1%) 6 (3.4%) 9 (1.1%) 18 (1.1%) 9 (2.5%)

Pentavalent-
vaccinated;

n (%)

Yes 392 (97.8%) 2219
(99.8%) 507 (94.9%) 171 (97.2%) 651 (99.8%) 165 (93.4%) 221 (99.7%) 1568

(99.7%) 342 (95.8%)

No 9 (2.2%) 5 (0.2%) 27 (5.1%) 5 (2.8% 1 (0.2%) 12 (6.8%) 4 (0.4%) 4 (0.3%) 15 (4.2%)

MUAC; mid-upper arm circumference. BCG; Bacillus Calmette–Guérin (BCG) vaccine. Pentavalent vaccine containing five antigens
(diphtheria, pertussis, tetanus, and hepatitis B and Haemophilus influenzae type b). NA = not applicable. Vesikari scores = Ruuska and
Vesikari scores.

Rotarix®-vaccinated children presented with less severe gastroenteritis compared
with Rotarix®-unvaccinated children during the post-vaccine period (unadjusted Kruskal–
Wallis test, p < 0.001). There was no difference in the severity of all-cause gastroenteritis
between Rotarix®-unvaccinated children before and after Rotarix® introduction (unad-
justed Wilcoxon rank-sum test, p = 0.260) (Figure 1a). When Rotarix®-vaccinated children
were stratified into rotavirus-positive and rotavirus-negative cases, a decrease in severity
score was observed in Rotarix®-vaccinated children for both groups (Figure 1b,c). Reduc-
tions in all-cause gastroenteritis severity three years or later following Rotarix® introduction
were observed in all age groups (Figure 2, Figure S1 and Table S1).
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was highly statistically significant (p = 6.61 × 10−78, 1.25 × 10−39, 6.10 × 10−40) for (A–C), respectively; Kruskal–Wallis test). 
The p-value for observing the data under the null hypothesis of no different distribution between groups was 0.260 using 
a Wilcoxon rank-sum test when only comparing the pre-Rotarix with the post-Rotarix®-unvaccinated group (for all gas-
troenteritis cases). Vesikari scores = Ruuska and Vesikari scores. 
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tion in all-cause gastroenteritis severity and vaccination with Rotarix® when pre-Rotarix®-
unvaccinated gastroenteritis cases requiring hospitalisation were used as a reference 
group. There was an average estimated reduction of 2.35 (95% confidence interval (CI) 
2.03, 2.67; p < 0.001) in severity scores among Rotarix®-vaccinated children and no reduc-
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there was some evidence of a linear association between age and gastroenteritis severity 
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decline in severity was observed in all age groups between 2014 and 2015, at least three 
years after Rotarix® introduction (Figure S1). Severity scores increased in all cases from 
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Figure 1. Ruuska and Vesikari severity scores among children hospitalised with gastroenteritis at QECH in Blantyre,
Malawi before (December 2011 to October 2012) and after (November 2012 to October 2019) introduction of Rotarix®.
(A) Severity scores in all-cause gastroenteritis cases. (B) Severity scores in rotavirus-positive cases. (C) Severity scores in
rotavirus-negative cases. Testing the null hypothesis that the severity scores have the same distribution in all three groups
was highly statistically significant (p = 6.61 × 10−78, 1.25 × 10−39, 6.10 × 10−40) for (A–C), respectively; Kruskal–Wallis
test). The p-value for observing the data under the null hypothesis of no different distribution between groups was 0.260
using a Wilcoxon rank-sum test when only comparing the pre-Rotarix with the post-Rotarix®-unvaccinated group (for all
gastroenteritis cases). Vesikari scores = Ruuska and Vesikari scores.

Unadjusted regression analysis confirmed a linear relationship between the reduction
in all-cause gastroenteritis severity and vaccination with Rotarix® when pre-Rotarix®-
unvaccinated gastroenteritis cases requiring hospitalisation were used as a reference group.
There was an average estimated reduction of 2.35 (95% confidence interval (CI) 2.03, 2.67;
p < 0.001) in severity scores among Rotarix®-vaccinated children and no reduction among
Rotarix®-unvaccinated children during the post-vaccine period (0.22; 95% CI −0.16, 0.61;
p = 0.260). Adjusting for the MUAC, age, gender, and EPI vaccination status in the linear
regression did not substantially change the estimated reduction in severity scores among
Rotarix®-vaccinated (2.21; 95% CI: 1.85, 2.56; p < 0.001) and Rotarix®-unvaccinated children
(0.05; 95% CI −0.46, 0.36; p = 0.820] (Table S2). Unlike the other covariates, there was some
evidence of a linear association between age and gastroenteritis severity when children
enrolled before Rotarix® introduction and without a Rotarix® vaccination history were
used as a reference group: every increment of 1 year in the age was associated with a
decrease of 0.43 (95% CI 0.26, 0.60; p < 0.001) in Ruuska and Vesikari scores (Table S2).
Except for <6-month-old rotavirus-positive children where severity started to decline from
the 2013–2014 calendar year, at least a year post-Rotarix® introduction, substantial decline
in severity was observed in all age groups between 2014 and 2015, at least three years after
Rotarix® introduction (Figure S1). Severity scores increased in all cases from 2017 to 2019
(Figure S1).
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25; Rotarix®-unvaccinated, n = 69, 156, 112 and 16 in less than 6-, 6–11-, 12–23- and 24–59-month-old 
children, respectively). (C) Severity scores in rotavirus-negative cases (Rotarix®-vaccinated, n = 187, 
773, 498 and 110; Rotarix®-unvaccinated, n = 52, 225, 198 and 101 in less than 6-, 6–11-, 12–23- and 
24–59-month-old children, respectively). 

Figure 2. Comparison of Ruuska and Vesikari severity scores among children requiring hospitalisa-
tion with gastroenteritis at QECH in Blantyre, Malawi from December 2011 to October 2019 stratified
by Rotarix® vaccination status between different age groups (Kruskal–Wallis test). (A) Severity
scores in all-cause gastroenteritis cases (Rotarix®-vaccinated, n = 248, 1128, 712 and 136; Rotarix®-
unvaccinated, n = 121, 386, 311 and 117 in less than 6-, 6–11-, 12–23- and 24–59-month-old children,
respectively). (B) Severity scores in rotavirus-positive cases (Rotarix®-vaccinated, n = 61, 353, 213, 25;
Rotarix®-unvaccinated, n = 69, 156, 112 and 16 in less than 6-, 6–11-, 12–23- and 24–59-month-old
children, respectively). (C) Severity scores in rotavirus-negative cases (Rotarix®-vaccinated, n = 187,
773, 498 and 110; Rotarix®-unvaccinated, n = 52, 225, 198 and 101 in less than 6-, 6–11-, 12–23- and
24–59-month-old children, respectively).
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3.2. Relationship between Rotavirus Genotype, Gastroenteritis Severity and Vaccination
with Rotarix®

The most frequently detected rotavirus genotypes were G1P[8], G2P[4], G2P[6],
G12P[6] and G12P[8] [5], which comprised 66.57% (636/1050) of all genotypes (Table S3). In
Rotarix®-unvaccinated children, regardless of the genotype, most gastroenteritis episodes
were classified as severe (66.67%, 424/636) and severity scores did not differ by genotype
(unadjusted Kruskal–Wallis test, p = 0.544). In Rotarix®-vaccinated children, a decrease in
severity was observed for infections with all rotavirus genotypes compared to Rotarix®-
unvaccinated children, with most vaccinated children having moderate disease. This
decrease in severity was less pronounced in cases infected with G12P[6] and G12P[8]
genotypes; and Rotarix®-vaccinated children infected with G12P[6] strains had a 2.58 unit
(95% CI 0.60, 4.56; p = 0.011) higher severity score when compared with the remaining
strains after adjusting for age (Figure 3 and Supplementary Table S4). Stratifying severity
scores by G and P genotypes separately suggested that this effect might be associated
with the G12 genotype (Figure S2). There were no differences in severity scores between
pre-Rotarix® and post-Rotarix®-unvaccinated groups in G and P genotypes, but a clear
difference within the post-Rotarix®-vaccinated group (Figure S2). The decrease in severity
among post-Rotarix®-vaccinated children was more pronounced for genotypes G1 and G2
compared to G12 (unadjusted Kruskal–Wallis test, p < 0.001). Adjusting for age did not
affect the regression outcomes (data not shown).
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Elizabeth Central Hospital in Blantyre, Malawi presenting with gastroenteritis stratified by frequently detected combined G
and P rotavirus genotypes. Vesikari scores = Ruuska and Vesikari scores.

4. Discussion

Introduction of Rotarix® rotavirus vaccine into Malawi’s childhood immunisation
schedule was associated with a significant reduction in the severity of all-cause gastroen-
teritis presented by children requiring hospitalisation under the age of five years at QECH
in Blantyre. Irrespective of the rotavirus genotype, Rotarix®-vaccinated children presented
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with less severe rotavirus disease compared to Rotarix®-unvaccinated children. The reduc-
tion in gastroenteritis severity was less pronounced in vaccinated children infected with
G12 rotaviruses compared to other common genotypes such as G1 and G2 that circulated
in Blantyre before and after introduction of Rotarix® vaccine in Malawi.

Rotarix® was developed to prevent children from developing severe gastroenteritis
following infection with rotaviruses post-vaccination and not necessarily to prevent them
from getting infected with rotaviruses [13,14]. Thus, our study demonstrates the expected,
but to date unmeasured, direct impact of Rotarix® vaccine in reducing the severity of
disease in children with acute rotavirus gastroenteritis in a low-income setting. Rotarix®

is administered at 6th and 10th week of age in Malawi, hence children older than 2.5
months were ineligible to receive Rotarix® when it was introduced in October 2012. Thus,
the median age for the Rotarix®-unvaccinated children enrolled into our active diarrhoea
surveillance platform at QECH was significantly higher compared to Rotarix®-vaccinated
children. Although rotavirus-associated severe diarrhoea cases are more common in
younger children [1,15], we observed that Rotarix®-unvaccinated children, who were
much older, presented with more severe diarrhoea compared to Rotarix®-vaccinated ones
who were younger in Malawi. The majority of the older Rotarix®-unvaccinated children
presented with rotavirus-negative diarrhoea, supporting what is known that rotavirus
infection in common in younger children [1,15,16].

Age-associated reductions in the probability for primary, secondary, and subsequent
rotavirus infections to cause rotavirus gastroenteritis have been demonstrated previ-
ously [17]. Human studies on factors underlying age-related determinants of risks to
rotavirus gastroenteritis are not available but studies in animal models suggest that im-
mune maturation, postnatal intestinal development, and establishment of the gut mi-
crobial communities are some of the factors that contributes to age-dependent risk for
infection to cause rotavirus gastroenteritis [18–21]. These observations could explain the
reduction in the severity of gastroenteritis in children >23 months regardless of their
Rotarix®-vaccination status observed in our study which is consistent with findings from
elsewhere [17,22,23]. In contrast, the severity scores were similar between different age
groups of either Rotavirus®-vaccinated or Rotavirus®-unvaccinated children <23 months
that we analysed but were significantly different between Rotavirus®-vaccinated and
Rotavirus®-unvaccinated children in all age strata—this difference in severity could be
attributed to rotavirus vaccination.

We also identified unexpected off-target vaccine benefit as Rotarix® recipients pre-
sented with less severe gastroenteritis regardless of the presence or absence of rotavirus.
This is consistent with previous findings in Malawi and other settings where introduction
of Rotarix® was associated with a reduction in all-cause diarrhoea mortality [8,24–27]. Non-
specific vaccine effects were previously observed in infants vaccinated with BCG [28,29],
measles [30] and other live attenuated vaccines such as the trivalent oral polio vaccine
(OPV) [26,31]. T cell-mediated cross-reactivity and trained innate immunity are among
the mechanisms that may explain the off-target vaccine benefit [32,33]. Vaccination with
BCG elevates innate immune markers, such as IFN-γ, tumour necrosis factor α, interleukin
1βeta (IL-1β) and IL-6 cytokines [34,35]. Oral live attenuated rotavirus vaccines could
potentially employ similar mechanisms as they have been shown to induce innate immune
responses [36] and effectively replicate in the gut of vaccinated children, [37–39] which
could trigger cross-reactive CD8+ T-cell responses. In addition, it is possible that avert-
ing rotavirus diarrhoea or experiencing less severe gastroenteritis in Rotarix®-vaccinated
children [40,41] promotes a healthier gut compared to their Rotarix®-unvaccinated coun-
terparts. The impaired gut integrity and physiology that follows severe rotavirus infection,
may render them more susceptible to infections by other enteropathogens. This may po-
tentially contribute, in part, to the indirect effects of rotavirus vaccine previously reported
as herd protection which is thought to be caused by decreased force of infection due to
increased prevention of a disease targeted by a specific vaccine [24,25,42–44].
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Rotarix® vaccination was associated with a reduction in rotavirus gastroenteritis
severity regardless of the infecting rotavirus genotype. Although Rotarix® effectiveness
was previously documented to be lower against genotype G2-associated gastroenteritis
compared with disease associated with genotype G1 [5,45,46], the reduction in severity
in cases associated with G1 and G2 genotypes was similar among Rotarix®-vaccinated
children in the current study. However, the decline in gastroenteritis severity was less
pronounced among cases associated with the G12 genotype. While the reasons for this
observation are unknown, a relatively lower Rotarix® effectiveness has been reported
against some heterotypic rotavirus strains, including G12s in this population [45]. Fu-
ture genomic and immunological studies are warranted to investigate how neutralising
antibodies induced by a G1P[8] Rotarix® vaccine would effectively binds to antigenic
regions of various heterotypic rotavirus strains owing to the vast amount of amino acid
differences that have been observed between rotaviruses bearing different VP4 and VP7
genotypes [2,47,48]. Intriguingly, from 2017, rotavirus and non-rotavirus gastroenteritis
severity scores increased in all age groups, although they remained lower than among
those in unvaccinated children (Figure S1). Such a trend may be explained by potential
changes in the criteria for hospitalisation of children presenting with gastroenteritis at
QECH or changes in health seeking behaviour and or access of the communities around
Blantyre post-2017. Further investigations are warranted to understand the significance
and causes of this trend.

We could not test the trend in reduction of severity between vaccinated and un-
vaccinated infants because the number of unvaccinated infants decreased during each
consecutive year due to increase in Rotarix® vaccine coverage. In addition, our analysis was
limited by the availability of gastroenteritis cases from only one surveillance year prior to
Rotarix® introduction. A further limitation is that all children required hospitalisation, and
hence had at least moderately severe gastroenteritis. Future studies should also examine
the benefits of rotavirus vaccination in children with less severe gastroenteritis treated as
outpatients at surrounding health care facilities. Finally, the observed non-specific reduc-
tion in all-cause gastroenteritis could not be attributed to individual diarrhoea pathogens
as the stool specimens were not routinely screened for enteric pathogens beyond rotavirus.

5. Conclusions

Our study provides evidence of a reduction in gastroenteritis severity among hospi-
talised children who had been vaccinated with Rotarix® vaccine seven years following its
introduction in Malawi’s immunization programme. Rotavirus vaccination reduced the
severity of rotavirus gastroenteritis caused by both homotypic and heterotypic rotavirus
strains. Furthermore, rotavirus vaccination decreased non-rotavirus gastroenteritis severity,
suggesting important off-target vaccine effects. Overall, these data demonstrate previ-
ously unmeasured direct and indirect benefits of rotavirus vaccines in Malawian children,
providing further support for their continued programmatic use.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13122491/s1, Supplementary Data S1. Unadjusted and adjusted linear regression models
used to estimate the change in Vesikari score; Figure S1. Trends in gastroenteritis severity among
all children who presented with gastroenteritis at Queen Elizabeth Central Hospital in Blantyre,
Malawi during the pre- (December 2011 to October 2012) and post-Rotarix® (November 2012 to
October 2019) periods amongst different age groups; Figure S2. Severity scores in hospitalised
children with rotavirus confirmed gastroenteritis at Queen Elizabeth Central Hospital, Blantyre,
Malawi; Table S1. Gastroenteritis severity based on Ruuska and Vesikari scores among children
presenting with gastroenteritis at the Queen Elizabeth Central Hospital in Blantyre, Malawi between
the pre- (December 2011–October 2012) and post-vaccine (November 2012–October 2019) introduction
periods; Table S2. Unadjusted and adjusted linear regression model for the estimated reduction in
severity scores among hospitalised children at Queen Elizabeth Central Hospital in Blantyre, Malawi
after Rotarix® introduction; Table S3. Frequently detected rotavirus strains and their gastroenteritis
severity scores in children presenting with gastroenteritis at Queen Elizabeth Central Hospital,
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Blantyre, Malawi during the pre- and post-Rotarix® period (December 2011 to October 2019); Table
S4. Linear regression model for estimated reduction in severity scores and genotype (G and P),
adjusted for age, MUAC and EPI vaccination status.
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