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Mesenchymal stem cells (MSCs) have potent immunomodulatory functions.

Animal studies and clinical trials have demonstrated that MSCs can inhibit

immune/inflammatory response in tissues and have good therapeutic

e�ects on a variety of immune-related diseases. However, MSCs currently

used for treatment are a mixed, undefined, and heterogeneous cell

population, resulting in inconsistent clinical treatment e�ects. MSCs have

dual pro-inflammatory/anti-inflammatory regulatory functions in di�erent

environments. In di�erent microenvironments, the immunomodulatory

function of MSCs has plasticity; therefore, MSCs can transform into

pro-inflammatory MSC1 or anti-inflammatory MSC2 phenotypes. There is

an urgent need to elucidate the molecular mechanism that induces the

phenotypic transition ofMSCs to pro-inflammatory or anti-inflammatoryMSCs

and to develop technical strategies that can induce the transformation of MSCs

to the anti-inflammatoryMSC2 phenotype to provide a theoretical basis for the

future clinical use of MSCs in the treatment of immune-related nephropathy. In

this paper, we summarize the relevant strategies and mechanisms for inducing

the transformation of MSCs into the anti-inflammatory MSC2 phenotype and

enhancing the immunosuppressive function of MSCs.
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Overview of mesenchymal stem cells

Stem cells can be divided into three main categories: ESC (embryonic stem cells),

iPSC (induced pluripotent stem cells) andMSC. ESC represents the inner cell mass of the

blastocyst and possesses a pluripotent differentiation capacity. However, undifferentiated

ESC can form teratomas and malignant teratocarcinoma in vivo, which is of high risk

for direct clinical treatment. Moreover, ESC has the ability to form all three layers,

so its use may raise clinical ethical issues. In the process of cell subculture, the iPSC

could transfer more passages than ESC. The passage ability of iPSC was higher than

ESC. However, clinical application of iPSC also has the risk of causing teratomas and
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malignant teratocarcinoma. Compared with ESC and iPSC,

MSCs are easier to isolate and preserve, have a lower risk of

clinical tumorigenesis, and do not raise ethical issues (1).

MSCs have immunomodulatory properties and tissue

regeneration capabilities (2, 3). MSCs are present in various

tissues, including bone marrow, adipose tissue, amniotic

membrane and amniotic fluid, placenta and fetal tissue,

umbilical cord tissue, endometrium, blood and synovial

fluid. Because MSCs have the potential to differentiate into

osteoblasts, chondrocytes, adipocytes and other mesoderms

and have immunoregulatory functions, they have great

application prospects in regenerative medicine research

and the treatment of immune diseases (4, 5). However,

MSCs can exhibit different morphological and physiological

characteristics in different culture environments, and the

currently prepared MSCs are heterogeneous mixed cell

populations (3, 6). The International Society for Cellular

Therapy has provided the minimum necessary criteria for

a cell to be defined as an MSC: CD105, CD73, and CD90

positive and CD45, CD34, CD14 or CD11b, CD79a or CD19

and HLA-DR negative, with the ability to differentiate into

osteoblasts, adipocytes and chondrocytes in vitro (7, 8).

Therefore, the definition of the pro-inflammatory and anti-

inflammatory subpopulations of MSCs still needs to be explored

in depth.

Immunomodulatory e�ects of MSCs

In recent years, many preclinical and clinical studies

have conducted extensive investigations on the therapeutic

potential and safety of MSCs in terms of immune regulation

and the regenerative repair of diseases (9–12). The anti-

inflammatory and immunomodulatory functions of MSCs

have potent therapeutic effects on immunity/inflammation

and autoimmune diseases (11, 12). MSCs have a wide range

of immunomodulatory capabilities and can affect adaptive

and innate immune responses. Therefore, MSCs are also

considered a type of effective immune regulatory cell and

are one of the best candidate cells for the treatment of

inflammatory and autoimmune diseases. Recent studies have

also shown that MSCs can interact with components in the

body’s immune microenvironment such as Toll-like receptors

(TLRs) and cytokines. Through these interactions, MSCs can

exhibit anti-inflammatory or pro-inflammatory effects (13–

15). This dual immunomodulatory property of MSCs may

be the reason for the differences between the results of

preclinical and clinical studies and the significant difference

in the therapeutic effects of MSCs among different studies.

Therefore, the immunomodulatory properties of MSCs need

to be studied in depth in order to optimize MSC-based

treatment regimens.

Immunophenotyping of MSCs

Similar to macrophages, which can polarize into pro-

inflammatory M1 or anti-inflammatory M2 phenotypes, MSCs

can exhibit two phenotypes, pro-inflammatory MSC1 or anti-

inflammatory MSC2, as a result of different inflammatory

environments (16, 17). The pro-inflammatory MSC1 phenotype

seems to help establish an appropriate early inflammatory

response, while the anti-inflammatory MSC2 phenotype helps

to inhibit the inflammatory response. MSC1 can secrete more

pro-inflammatory cytokines, such as interleukin 6 (IL-6) and

IL-8, to promote the activation of T cells, and MSC2 can

secrete more anti-inflammatory cytokines, such as indoleamine-

2,3-dioxygenase (IDO), IL-10, and prostaglandin E2 (PGE2),

to inhibit the activation of T cells. Elucidating the molecular

mechanisms that regulate the phenotypic transition of MSC1

and MSC2 and adopting specific methods and strategies to

enhance the immunosuppressive ability of MSCs will have

important significance for the future clinical application of

MSCs in the treatment of immune/inflammatory diseases.

Although MSCs were first reported to be derived from

bone marrow, a number of studies have reported similar cell

types in a wide range of tissues, e.g., umbilical cord blood,

placenta, adipose tissue, amniotic fluid, dental tissue, skin, hair

follicles and tonsils. At present, most of MSCs used are bone

marrow (BM-MSCs), umbilical cord (UC-MSCs), umbilical

cord blood (CB-MSCs), placenta (P-MSCs) and adipose tissue

(A-MSCs). Studies have found that MSCs from different sources

do have different functions and characteristics, and therefore

different therapeutic effects. P-MSCs showed a slight increase

in growth, BM- and A-MSCs possess the highest capacity for

self-renewal and differentiation potential in multiple lineages,

whereas P-MSCs have the least functionality as stem cells of

those which were tested. UC-MSCs were shown to express

superior clonogenicity, migration, and paracrine capacities in

vitro, as well as less senescence when compared with BM-MSCs.

At present, UC-MSCs, BM-MSCs and A-MSCs are mainly used

in inducing MSC2 (18).

Strategies to induce the production
of MSCs with di�erent phenotypes

Studies have found that the activation of TLRs, the

inflammatory cytokine microenvironment and the activation

of glycolysis in the metabolic reprogramming play important

roles in the immunosuppressive functional transformation

of MSCs (Figure 1). MSCs can be activated by pathogen-

associated molecular patterns (PAMPs). PAMPs activate MSCs

by binding to pattern recognition receptors (PRRs) on MSCs

(19, 20). MSCs express multiple TLRs; furthermore, their

ability to migrate, invade, and secrete immunomodulatory
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FIGURE 1

The induction strategies, related signaling pathways and applications of MSC2. IDO, indoleamine 2,3-dioxygenase; PGE2, prostaglandin E2; HO,

heme oxygenase-1; SLE, systemic lupus erythematosus; IRI, ischemia reperfusion injury; Thy1.1, Thy-1.1 nephritis.

factors is also strongly influenced by specific TLR agonists.

The activation of different types of TLRs can drive the

transformation of MSCs into the MSC1 or MSC2 phenotype.

Pro-inflammatory cytokines such as IFN-γ, TNF, and IL-1β

can enhance the immunosuppressive function of MSCs (21).

A pro-inflammatory environment, e.g., the presence of INF-γ

and IL-6, can induce MSCs to transform into anti-inflammatory

MSC2 and secrete the anti-inflammatory factor PGE2 (22).

Studies have also confirmed that the metabolic changes in

MSCs are related to their immunomodulatory functions (23).

The metabolic transformation of MSCs to aerobic glycolysis

can significantly regulate the immunomodulatory properties of

MSCs by regulating the production of IDO, thereby enhancing

T cell inhibition and anti-inflammatory effects (24).

In this paper, we will focus on the role of TLR activation,

inflammatory cytokines, and metabolic reprogramming, as

well as the correlation among them, in enhancing the

immunosuppressive function of MSCs to identify optimal

strategies and methods to promote the transformation of MSCs

into MSC2 (Figure 1, Table 1).

TLR activation

The TLR family includes TLR1-10 (39). Most of the risk

signals that trigger TLRs are released after tissue damage.

Exogenous risk signals are usually released after microbial

infection. The most common signals are endotoxin or

lipopolysaccharide (LPS); endogenous risk signals are mainly

intracellular components, such as heat shock proteins (HSP) or

RNA, that are released into the circulation from abnormal or

injured cells. Under normal circumstances, these risk signals

can activate TLRs on immune cells to initiate inflammatory

responses (40). Studies have shown that TLR2 activation may

be involved in the differentiation, migration and proliferation

of MSCs and that TLR3 and TLR4 may be involved in the

remodeling of MSC immunoregulation (41).

MSCs can express a variety of TLRs (such as TLR3 and

TLR4), and their migration, invasion, and secretion of immune

regulatory factors are all affected by specific TLR agonists

(42). MSCs can polarize into two different phenotypes via

TLR downstream signaling pathways. Two different phenotypes

of MSCs have been defined based on TLR activation: MSC1

(pro-inflammatory phenotype) and MSC2 (anti-inflammatory

phenotype) (41). TLR3 activation can enhance the secretion of

most anti-inflammatory cytokines, such as IDO, IL-10, PGE2,

and IL-4, and can inhibit the activation of T cells; that is, TLR3

is associated with the MSC2 phenotype. TLR4 activation leads to

the secretion of more pro-inflammatory cytokines, such as IL-

6 and IL-8, which can promote the activation of T cells. TLR4

is associated with the MSC1 phenotype (31). It was found that

treatment of MSCs with a TLR4 agonist (LPS) for 1 h promoted

the transformation of MSCs into the MSC1 pro-inflammatory

phenotype and that the treatment of MSCs with a TLR3 agonist
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TABLE 1 The induction strategies of MSC2 and its applications in clinical or pre-clinical studies.

Authors Clinical or pre-

clinical studies

Stimulus Stimulus

duration of

the

Stimulus

dose

Follow

up period

Main goal and outcome

Jang et al. (25) SLE(LN)

(mouse)

metformin 72 h 1× 106

Ad-MSCs

16 weeks 1. Metformin promoted immunoregulatory effect of Ad-

MSCs by enhancing STAT1 expression

2. Metformin-treated Ad-MSCs inhibited CD4− , CD8−

T-cell expansion and Th17/Treg cell ratio

Ishiuchi et al.

(26)

Renal fibrosis

(mouse)

serum-free

medium+

1% O2

24 h 5× 105

BM-MSC

7 or 21 days 1. Hypo-SF-MSCs ameliorated renal fibrosis.

2. Hypo-SF-MSCs attenuated infiltration of

inflammatory cells

3. Hypo-SF-MSCs inhibited TGF-β/Smad signaling

Kanai et al.

(27)

Renal fibrosis

(mouse)

IFN-γ 24 h 5× 105

BM-MSC

7 or 21 days 1. IFN-γ-treated MSCs reduced infiltration of

inflammatory cells cells and ameliorated interstitial

fibrosis

2. IFN-γ-treated MSCs increased secretion of

prostaglandin E2

Bai et al. (28) IRI

(mouse)

IL-17A 48 h 1× 106

BM-MSC

24 or 72 h 1. IL-17A-pretreated MSCs increased the percentages of

Foxp3+ Tregs

2. IL-17A-pretreated MSC therapy lowered serum IL-6

TNF-α, and IFN-γ levels

3. IL-17A upregulated COX-2 expression and increased

PGE2 production

Xu et al. (29) SLE

(mouse)

IL-37 overexpressing

IL-37

1× 106

BM-MSC

7 weeks 1. MSCs-IL37 suppress B Cells, increas CD4+Foxp3+

cells in PBMCs of MRL/lpr mice

2. MSCs-IL37 had elevated production of IL-37 after

transplantation

Deng et al.

(30)

Thy1.1 (rat) Chlorzoxazone

(CZ)

24 h - 3 days 1. CZ-treated MSCs alleviate infiltration of

inflammatory cells

2. CZ-treated MSCs inhibit T cells activation and

proliferation

Waterman

et al. (31)

Painful diabetic

peripheral

neuropathy (rat)

Poly(I:C) 1 h 1× 106

BM-MSC

40 days Mice treated with MSC2 decreased serum

Pro-inflammatory cytokines

Kurte et al.

(32)

Experimental

Autoimmune

Encephalomyelitis

(rat)

LPS 48 h BM-MSC 21 days MSCs-LPS inhibit T cell

proliferation, improve therapeutic effect and

increase Treg

Fuenzalida

et al. (33)

DSS

induced colitis

(mouse)

poly(I:C) 1 h 1× 106

UC-MSCs

11 days UCMSCs pre-conditioned with poly(I:C)

ameliorates DSS-induced coliti

Yu et al. (34) IRI

(mouse)

Cobalt chloride

(CoCl2)

24 h — 72 h CoCl2-treated MSCs have greater migration and longer

retention time; Reduced kidney injury

Contreras-

Lopez et al.

(35)

DTH and GVHD

(mouse)

ATP synthase

(oligomycin)

24 h 1× 106

MSC

7 days MSC glycolytic reprogramming increased their

therapeutic benefit

Contreras-

Lopez et al.

(36)

DTH

(mouse)

HIF1α HIF1α

knock-down

— 24 h HIF1αexpression is critical for the therapeutic potential

of MSC by reducing pro-inflammatory Th1 and Th17

cells

(Continued)
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TABLE 1 Continued

Authors Clinical or pre-

clinical studies

Stimulus Stimulus

duration of

the

Stimulus

dose

Follow

up period

Main goal and outcome

He et al. (37) Clinical rheumatoid

arthritis (RA)

(human)

IFN-γ (hUC-MSCs)

combined

with human

IFN-γ

1× 106

cells/kg

1–48 weeks MSC plus IFN-γ combination can improve clinical

efficacy of MSC-based therapy

Daneshmandi

et al. (38)

Type 1 diabetes

(mouse)

TGF-β TGF-βtransduced

MSCs

5× 105

BM-MSC

5 weeks Engineered TGF-β/MSCs alleviate T1D by regulation of

adverse immune responses

IRI, ischemia reperfusion acute kidney injury; DTH, the Delayed-Type Hypersensitivity; GVHD, the Graph vs. Host Disease.

(poly(I:C)) for 1 h promoted the transformation of MSCs into

the MSC2 anti-inflammatory phenotype (41). In addition, the

duration of LPS treatment can also change the expression of

TLR receptors, thereby affecting the transformation of MSCs

into the pro-inflammatory or anti-inflammatory phenotype

(32). However, the molecular mechanisms underlying how

activations of TLR3 and TLR4 affect the pro-inflammatory and

anti-inflammatory phenotypic transformation of MSCs have not

been elucidated. TLR signaling pathways are strictly regulated

by a variety of mechanisms. For example, TLR4 can activate two

signaling pathways (dependent or independent of MyD88) (43).

The activation of different pathways may have different effects

on the immunosuppressive ability of MSCs. Currently, most

studies have not specifically elucidated which pathway is used

to regulate the polarization of MSCs into the pro-inflammatory

or anti-inflammatory phenotype after TLR3 or TLR4 activation.

Activation of inflammatory cytokines

MSCs without treatment have the weakest

immunosuppressive effect; the anti-inflammatory phenotype of

MSCs must be activated by exposure to a specific environment

(such as an inflammatory microenvironment) (44, 45). The

immunosuppressive effect of MSCs requires the “licensing” of

inflammatory factors. In an inflammatory environment (such as

high concentrations of TNF-α and IFN-γ), MSCs are activated

and inhibit T cell proliferation through the secretion of soluble

factors [including IDO, PGE2, NO, TGF-β, HGF, and heme

oxygenase (HO)], exhibiting an immunosuppressive phenotype

(MSC2) (16). In the absence of an inflammatory environment

(low concentrations of TNF-α and IFN-γ), MSCs may exhibit

a pro-inflammatory phenotype (MSC1) and enhance T cell

responses by secreting chemokines (e.g., MIP-1α and MIP-1β,

RANTES, CXCL9, and CXCL10) to recruit lymphocytes to

sites of inflammation (46, 47). When displaying the MSC1

phenotype, the levels of immunosuppressive mediators such as

IDO and NO are low.

Among the inflammatory cytokines, the pro-inflammatory

cytokine IFN-γ is the most studied factor that initiates the

immunosuppressive capacity of MSCs (44, 48). TNF-α, IL-1α,

IL-1β, IL-10, IL-17, and TGF-β can all have similar functions as

IFN-γ regarding the initiation of the anti-inflammatory function

of MSCs (46, 49–51). Studies have confirmed that inflammatory

cytokines such as IFN-γ can induce the transformation of

MSCs into the MSC2 anti-inflammatory phenotype. In a study

of cytokines and TLRs in the anti-inflammatory phenotype

transformation of MSCs, high concentrations of IL-17A

activated TLR3 and promoted the anti-inflammatory phenotype

transformation of MSCs into MSC2, and low concentrations

of IL-17A activated TLR4 and promoted the pro-inflammatory

phenotype transformation of MSCs into MSC1 (52). Therefore,

the relationship between different pro-inflammatory cytokines

and TLRs still needs to be further studied.

Elucidating the key signaling pathway components involved

in the cytokine regulation of MSC immunophenotypic

transformation will have important significance for the

treatment of immune diseases. A key feature of MSC2 is their

ability to respond to pro-inflammatory cytokines (IFN-γ) and

release IDO, a key immunosuppressive molecule produced

by human MSCs. The major signaling pathways activated by

IFN-γ involve the Janus kinase (JAK) and signal transducer and

activator of transcription (STAT) pathways (53). The response of

MSCs to IFN-γ may involve the activation of different subtypes

of STAT. IFN-γ can also activate phosphoinositide 3-kinase

(PI3K) to induce IDO production by MSCs (54, 55). This

process relies on the interaction between the PI3Kα and STAT1

pathways. STAT1 overexpression or PI3Kα pathway activation

can induce the phenotypic transformation of MSCs into MSC2,

significantly enhance IFN-γ-mediated IDO production, and

enhance the inhibitory effect of MSCs on T cells (56). In

addition to IDO, which is an immunosuppressive molecule in

MSCs, PGE2 is also an immunosuppressive molecule secreted

by MSCs. Bai’s study found that IL-17A upregulated COX-2

expression and increased the production of PGE2, thereby

enhancing the inhibitory effect of MSCs (28).
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In addition to activating related signaling pathways

to enhance their anti-inflammatory function, inflammatory

cytokines can also have a synergistic effect with TLRs.

Changes in metabolic reprogramming

Metabolism can significantly affect the fate of stem cells

(57, 58). Studies have found that metabolic stress and metabolic

reprogramming are involved in the immunomodulatory

function of MSCs. Studies have shown that the changes in

energy metabolism pathways play key roles in regulating the

immunosuppressive activity of MSCs (23). Under normoxic

conditions, MSCs produce ATP through glycolysis and oxidative

phosphorylation (OXPHOS). Under hypoxic conditions, MSCs

mainly produce energy through glycolysis. The metabolism

of undifferentiated MSCs during the proliferation process

mainly relies on glycolysis, and the metabolism of MSCs mainly

relies on mitochondrial OXPHOS during the differentiation

process (59, 60). MSCs are usually in a hypoxic physiological

environment (such as bone marrow) in the body. However,

MSCs need to be cultured and expanded in vitro for clinical

applications, and this process promotes their metabolic

reprogramming to OXPHOS, thereby reducing their

treatment effect (61, 62). In contrast, MSCs cultured in an

inflammatory microenvironment have a tendency to induce the

transition to their glycolytic pathway and can enhance their

immunomodulatory potential (24, 61). Changes in themetabolic

pathways of MSCs caused by different culture and stimulation

conditions have a direct impact on the characteristics of

MSCs (including proliferation, senescence, differentiation,

and immunosuppression). Glycolysis significantly affects

the immunomodulatory properties of MSCs by regulating

IDO activity (63). However, the role of MSC metabolic

reprogramming in the therapeutic properties of MSCs

and the key molecular mechanisms of glycolysis in MSC

immunoregulation still need to be further elucidated.

Inflammation can enhance the immunosuppressive

properties of MSCs and induce their glycolytic reprogramming.

Pro-inflammatory cytokines (especially TNF-α and IFN-γ)

can activate MSCs and trigger the release of MSCs with

immunosuppressive potential (35). By comparing the metabolic

activity of MSCs under basal culture conditions and the

metabolic activities of MSCs incubated with TNF-α and IFN-γ

for 24 h, it was found that pro-inflammatory cytokines activated

MSCs, significantly reduced the basal and maximum oxygen

consumption rate (OCR) and the spare respiratory capacity

(SRC), and increased the extracellular acidification rate (EACR)

in MSC supernatant, i.e., induced a transition to aerobic

glycolysis in MSCs. Studies have also found that the TNF-α- and

IFN-γ-induced glycolysis switches are associated with increased

lactate output and glycolytic enzyme expression. The metabolic

pathways of MSCs also affect the anti-inflammatory function of

MSCs. Oligomycin (inhibition of OXPHOS) or 2DG (inhibition

of glycolysis) can modify the metabolic activity of MSCs by

inducing metabolic switches, thereby regulating the production

of immunosuppressive mediators. After MSCs are treated

with oligomycin, the metabolic mode of MSCs is converted to

glycolysis-based, and the immunosuppressive ability of MSCs

is enhanced. In contrast, 2DG weakens the immunosuppressive

ability of MSCs.

The signaling pathways through which MSCs regulate their

immunosuppressive functions via metabolic reprogramming

include AMPK, HIF1-α, and PPARβ/δ (35, 36, 64). AMPK

plays an important role in cellular metabolism as a cellular

energy sensor and a master controller for the adaptive

response to changes in metabolic demand (65). Studies

have shown that enhancement of the glycolytic pathway

during the transformation of MSCs into MSC2 is related to

the upregulation of AMPK expression. AMPK can enhance

the glycolytic pathway in MSCs and thus enhance the

immunosuppressive activity of MSCs. Studies have found

that oligomycin and pro-inflammatory cytokines increase the

immunosuppressive properties ofMSCs by activating the AMPK

signaling pathway. Activation of oligomycin-treated MSCs by

TNF-α and IFN-γ can further increase the expression level

of PD-L1 and the production of other immunosuppressive

mediators (such as PGE2) to enhance their anti-inflammatory

phenotype. In addition, the activation of MSCs by pro-

inflammatory cytokines can enhance the production of reactive

oxygen species (ROS), induce the expression of HIF1-α, and

change the metabolic mode of MSCs to the glycolytic pathway.

HIF1-α knockdown in MSCs can reduce the expression of

various inflammatory mediators in MSCs.

PPARβ/δ, a member of the PPAR family, is highly expressed

in skeletal muscle and is a key regulator of fatty acid oxidation

and glucose uptake (66). PPARβ/δ knockout or knockdown

promotes the transformation of MSCs into glycolysis and

enhances their ability to inhibit the proliferation of Th1 and

Th17 cells. This finding indicates that PPARβ/δ is a key switch

related to MSC immunomodulatory function. The inhibition of

PPARβ/δ expression can promote the transformation of MSC

metabolic reprogramming into glycolysis, thereby enhancing the

immunosuppressive ability of MSCs (64).

Application of anti-inflammatory
MSC2 in the treatment of
immune-related nephropathy

Inflammation plays a vital role in kidney diseases. Therefore,

improving the ability of MSCs to control the inflammatory

progression of kidney injury tissues is a focus of research

on the application of MSCs in immune-related nephropathy.

Although MSCs currently generate good results related to the

treatment of immune-related nephropathy (such as systemic
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lupus erythematosus nephritis, Thy-1 nephritis, and renal

ischemia–reperfusion, etc.), there are also studies that indicate

that the efficacy of MSCs in the treatment of immune-

related nephropathy is inconsistent. To address the controversy

regarding the therapeutic effects of MSCs, many studies have

found that inducing the transformation of MSCs into anti-

inflammatory MSCs can improve the therapeutic effects.

Changes in the metabolic pattern of MSCs can affect

the changes in their immunosuppressive function. Jang et al.

found that in a systemic lupus erythematosus nephritis model,

metformin enhanced the immunomodulatory potential of

adipose-derived MSCs through STAT1, thereby improving

the progression of lupus nephritis (25). Metformin directly

activated AMPK to promote the expression of a series of energy

metabolism-related genes, i.e., metformin induced glycolysis

by activating AMPK, thereby changing cellular metabolic

reprogramming (67). In addition, Ishiuchi’s study found that

serum-free culture and hypoxic pretreatment synergistically

enhanced the therapeutic effects of MSCs on renal fibrosis and

that hypoxia transformed cellular metabolism into glycolysis.

Therefore, it is speculated that the production of anti-

inflammatory MSCs can be induced by regulating the metabolic

reprogramming of MSCs (26).

Studies have found that many inflammatory factors (such as

IFN-γ, TNF-α, and IL-17A) can induce the production of anti-

inflammatory MSCs. Kanai found that IFN-γ preconditioning

enhanced the anti-fibrosis ability of MSCs in rats with ischemia–

reperfusion injury (IRI) and unilateral ureteral obstruction (27).

Bai found that IL-17A pretreatment of bone marrow MSCs

improved their immunosuppressive ability and increased the

percentage of Treg through the COX-2/PGE2 pathway, thereby

enhancing the efficacy of MSCs in IRI-induced acute kidney

injury (AKI) mice (28). Xu et al. found that IL-37 overexpression

in MSCs improved the immunosuppressive effects of MSCs

in systemic lupus erythematosus (29). In addition, some small

molecule compounds can also induce the production of anti-

inflammatory MSCs. In a study by Deng, a small molecule

compound, chlorzoxazone (CZ), was screened to induce the

formation of an anti-inflammatory MSC2 phenotype in MSCs;

CZ enhanced the immunosuppressive ability of MSCs and more

effectively reduced the inflammatory infiltration of renal tissues

and glomerular fibrin-like necrosis in Thy-1 nephritis, thereby

improving renal function (30) (Table 1).

Mesenchymal stem cells (MSCs) have been used

to treat various immune-related diseases due to their

immunomodulatory function. MSCs can regulate the

progression of immune inflammation by secreting anti-

inflammatory cytokines (such as IDO, PEG2, IL-10, etc.).

However, mesenchymal stem cells currently used for the

treatment is a mixed, undefined, heterogeneous population of

cells, resulting in inconsistent clinical outcomes. MSCs can be

transformed into pro-inflammatoryMSC1 or anti-inflammatory

MSC2 phenotype. In most immune-related diseases, the

enhanced transformation from MSC into MSC2 is required

to better inhibit immune inflammation. In the newly added

(Table 1), we summarize how to promote the transformation

of MSC into the anti-inflammatory phenotype MSC2 and its

application in immune-related diseases. The anti-inflammatory

function of MSC can be increased by cytokines (IFN-γ, TGF-β,

IL-17A), metabolic reprogramming (Metformin, hypoxia) and

TLR3 excitation (Poly(I:C)). The MSCs with the increased anti-

inflammatory function mainly secretes more anti-inflammatory

factors (IDO, PGE2) to inhibit the proliferation of T cells, reduce

the infiltration of inflammatory cell, regulate the differentiation

of T cells to reduce inflammation (such as ratio of Th1 and Th17

decreases, while Treg increases).

At present,MSCs have been widely reported in the treatment

of renal diseases, while MSC2 has rarely been studied in the

treatment of immune-related nephropathy. However, in other

diseases, many studies have confirmed that the therapeutic effect

of MSC2 is stronger than untreated MSC (31, 33–38) (Table 1).

Summary

Studies on the immunomodulatory function of MSCs

mainly focus on three aspects: 1. the association between the

activation of different TLRs in MSCs and the MSC1/MSC2

phenotypes; 2. the effects of inflammation and related pathways

on the anti-inflammatory effects of MSCs; and 3. the role of

MSC metabolic reprogramming in the induction of MSC anti-

inflammatory functions. Recent studies have confirmed that

the above three aspects can all affect the pro-inflammatory

and anti-inflammatory phenotypes of MSCs. However, whether

the three are independent or partially dependent on each

other or whether there is a unified pathway connecting the

three remains to be studied. There may be a synergistic

effect among the three factors; the effect of the combination

may be higher than that of a single factor, and different

combinations of each may be an effective strategy to enhance

the immunosuppressive function of MSCs. Regulation of the

key components of the inflammation-induced MSC2 pathway

and metabolic reprogramming-induced MSC2 pathway, for

example the PI3Kα and STAT1 pathways in the former and

AMPK, HIF1-α, and PPARβ in the latter, can also enhance the

immunosuppressive effect of MSCs.

The controversy regarding the efficacy of clinical stem cell

application is largely due to the inconsistent definition of MSCs.

Currently, the International Society for Cellular Therapy only

provides the minimum criteria for a cell to be defined as

an MSC. Similar to macrophages, MSCs have heterogeneity

and plasticity, i.e., MSC1 (pro-inflammatory) and MSC2 (anti-

inflammatory) phenotypes. Therefore, theminimum criteria can

not accurately define MSCs. Studies on specific surface markers
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or morphological shape of MSC2 have just started, and there

are no universally recognized specific surface markers onMSC2.

To stably enhance the immunosuppressive function of MSCs,

the relationship among the three phenotypes requires further

clarification, and better methods and strategies for defining the

MSC1/MSC2 phenotypes need to be developed.

MSC2s have been used for the treatment of a variety of

immune-related nephropathies and have been shown to be safe

and effective. However, most have only been validated in animal

models; clinical trials are lacking. Therefore, it is necessary

to conduct more in-depth mechanistic studies on enhancing

the immunosuppressive function of MSCs to better define

MSCs and their subpopulations, especially MSC2s. The ultimate

goal is to develop an internationally recognized standard for

the definition of the MSC1/MSC2 phenotypes to facilitate the

clinical application of MSCs.
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