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Abstract

Background: To determine level, variability and functional annotation of gene expression of the human
retinal pigment epithelium (RPE), the key tissue involved in retinal diseases like age-related macular
degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy human donor eyes
(aged 6378 years) were laser dissected and used for 22k microarray studies (Agilent technologies). Data
were analyzed with Rosetta Resolver, the web tool DAVID and Ingenuity software.

Results: In total, we identified 19,746 array entries with significant expression in the RPE. Gene
expression was analyzed according to expression levels, interindividual variability and functionality. A
group of highly (n = 2,194) expressed RPE genes showed an overrepresentation of genes of the oxidative
phosphorylation, ATP synthesis and ribosome pathways. In the group of moderately expressed genes (n
= 8,776) genes of the phosphatidylinositol signaling system and aminosugars metabolism were
overrepresented. As expected, the top 10 percent (n = 2,194) of genes with the highest interindividual
differences in expression showed functional overrepresentation of the complement cascade, essential in
inflammation in age-related macular degeneration, and other signaling pathways. Surprisingly, this same
category also includes the genes involved in Bruch's membrane (BM) composition. Among the top 10
percent of genes with low interindividual differences, there was an overrepresentation of genes involved
in local glycosaminoglycan turnover.

Conclusion: Our study expands current knowledge of the RPE transcriptome by assigning new genes,
and adding data about expression level and interindividual variation. Functional annotation suggests that
the RPE has high levels of protein synthesis, strong energy demands, and is exposed to high levels of
oxidative stress and a variable degree of inflammation. Our data sheds new light on the molecular
composition of BM, adjacent to the RPE, and is useful for candidate retinal disease gene identification or
gene dose-dependent therapeutic studies.
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Background

The retinal pigment epithelium (RPE) is a multifunctional
neural-crest derived cell layer, flanked by the photorecep-
tor cells on the apical side and the Bruch's membrane
(BM)/choroid complex on the basolateral side. Among
others, the RPE supplies the photoreceptors with nutri-
ents, regulates the ion balance in the subretinal space and
recycles retinal from the photoreceptor cells, which is nec-
essary for the continuation of the visual cycle.[1] It also
phagocytoses and degrades photoreceptor outer segments
and absorbs light that is projected onto the retina.[1]
Finally, the RPE secretes a number of growth factors that
maintain the structure and cellular differentiation of the
adjacent tissues.[1]

The importance of the RPE in vision is illustrated by the
major involvement of this monolayer of cells in geneti-
cally determined retinal diseases like age related macular
degeneration (AMD) and retinitis pigmentosa (RP).[2]
Since the great majority of genes implicated in AMD or RP
are expressed in either the RPE or the photoreceptors, the
identification of additional genes highly expressed in the
RPE may provide valuable clues in the search for new
genes involved in retinal disease. [2-6]

Obviously, the functional properties of RPE cells are
determined by the genes they express and the proteins
they encode. Although the RPE cell is one of the best stud-
ied neural cell types, [3-12] large scale assignment of
expressed genes to the RPE has been largely dependent on
RNA based studies. Assignment of proteins to the RPE has
been hampered by its autofluorescence and melanin con-
tent. Large-scale RPE related expression studies were per-
formed using cDNA arrays, serial analysis of gene
expression (SAGE), expressed sequence tag (EST) analysis,
and multiple RT-PCRs. The number of eyes used in these
studies ranged from one to fifteen, and the number of
genes under investigation from 29 to 30,000. [8-12]
While these studies provided valuable information, they
were limited in either the number of genes or the number
of eyes under investigation, or they lacked specificity due
to the tissue sampling method used. Moreover, most or all
of these studies focused on the mean gene expression pro-
file of all samples together, rather than documenting
potential interindividual differences. [8-12] A robust and
specific dataset on RPE expression levels from a substan-
tial number of individuals is lacking and a great deal
remains unknown with regard to the interindividual
expression differences.

A number of biological processes and cellular functions of
genes expressed in the RPE were described in three of the
above mentioned studies.[8,10,12] All three identified
protein metabolism and signal transduction as an impor-
tant functional class of genes expressed by the
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RPE.[8,10,12] Similarly, cell structure,[8,10] cell prolifer-
ation,[8,10] gene transcription[10,11] and energy metab-
olism were described in two out of three studies. Finally,
individual studies also identified overrepresentation of
membrane proteins,[10] transport or channel pro-
teins,[10] heat shock proteins[10] and vitamin A metabo-
lism.[11] In a recent microarray study we compared RPE
gene expression in the macula with the retinal periphery
and demonstrated, among other things, consistent differ-
ential expression of extracellular matrix genes correspond-
ing with proteins in BM.[13]

The aim of the current study is to describe the gene expres-
sion levels and the interindividual variation in gene
expression of native human macular RPE cells in a system-
atic fashion. In addition, we annotate the functions and
biological pathways associated with RPE expressed (dis-
ease) genes.

To our knowledge this is the first study to present data on
(interindividual differences in) human macular RPE gene
expression and interindividual differences on a large scale
of 22,000 genes, resulting in a further detailed description
of the RPE transcriptome.

Results

RNA from six selected human macular RPE samples was
hybridized to six custom made 22 k microarrays enriched
for neural transcripts. We functionally annotated and ana-
lyzed the data using Rosetta Resolver, the web tool DAVID
and Ingenuity software, with regard to gene expression
level and variability as well as functional annotation. Fur-
thermore, we specifically looked at the expression levels
and variability of retinal disease genes.

Analysis of gene expression levels (1,.)

The mean expression intensities (u;,,) ranged from 73 to
690,113 (arbitrary units), (see Additional file 1: Expres-
sion level and interindividual variation in all genes on the
custom microarray). The distribution of w;,,  across percen-
tile bins of 10 percent of all genes is shown in Figure 1. We
used the 90th, 50th and 10t percentile of the p;,, to catego-
rize our data into groups with high (> 90t), moderate
(50th-90th), low (10th-50th) and very low (< 10th) expres-
sion. We focused our analysis on the biologically most rel-
evant gene groups with high, moderate and low gene
expression levels. These categories yielded 2,194 genes
with high RPE expression, 8,776 genes with moderate
expression and 8,776 genes with low expression. The
results of the overrepresentation analysis are presented
below, and in Table 1. The overrepresentation analysis of
all expressed genes,irrespective of their gene expression
level (Table 1), did not yield additional functional catego-
ries apart from ECM-receptor interaction, and is not pre-
sented separately.
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Table I: Overrepresented Kegg pathways in macular RPE expressed genes with high, moderate and low expression levels and high or
low levels of interindividual variability (coefficient of variation, CV).

expression level

all expression levels

high (> 90th perc)

moderate (50th—90th perc)

low (10th—50th perc)

all CV  ecm-receptor interaction (E) oxidative phosphorylation phosphatidylinositol signaling neuroactive ligand receptor
(B,E) system (B,E) interaction (B,E)
ribosome (B,E) aminosugars metabolism (E) long-term depression (E)
ATP synthesis (B,E) o-glycan biosynthesis (E)
calcium signaling pathway (E)
CV  high CV type | diabetes mellitus (B,E) antigen processing and focal adhesion (E) type | diabetes mellitus (E)
focal adhesion (B,E) presentation (B,E) cytokine-cytokine receptor
cytokine-cytokine receptor complement and coagulation  interaction (E)
interaction (E) cascades (E)
complement and coagulation
cascades (E)
antigen processing and
presentation (E)
ecm-receptor interaction (E)
low CV - glycosaminoglycan - -

degradation (E)

Overrepresented pathways were identified with B: a Benjamini-Hochberg corrected p value < 0.001, or E: an Ease score p value < 0.001. Perc:

percentile, high CV: > 90th percentile, low CV: < 10t percentile.

Genes with high expression levels (uint > 90th percentile, n = 2,194)
We considered the group of highly expressed genes the
most biologically relevant, and, consequently, for this
group bioinformatic analysis was more extensive than for
other categories. In addition to a Kegg pathway analysis,
we also performed an Ingenuity analysis of the overlap
between our highly expressed genes and those identified
in the literature. Kegg pathway analysis revealed oxidative
phosphorylation, ribosome and ATP synthesis as signifi-
cantly overrepresented pathways (Benjamini-Hochberg p
value < 0.001) (Table 1). There was an overlap of 1,407
genes between the highly expressed genes of the RPE tran-
scriptome and the genes identified in retina/RPE genes
identified in at least two studies in the literature.| 14] Inge-
nuity analysis of the overlapping genes revealed oxidative
phosphorylation as the most significant pathway
involved. Comparison of our highly expressed genes to
those expressed only in RPE studies (n = 17),[14] showed
a clustering of genes in the cell-cell signaling and interac-
tion network (Figure 2).

The thirty most highly expressed RPE genes from our data
set are presented in Table 2. Most notably, this list con-
tains two glutamate transporters (SLCIA2 [gen-
bank:AF131756] and SLC17A7 [genbank:
NM 020309])[15], one of which is known to be
expressed in the RPE (SLC17A7  [genbank:
NM_020309])[14] and a gene (CST3 |[genbank:
NM_000099]), that was previously suggested to have an
association with AMD,[16,17] with known expression in
the RPE.[18] The top thirty list contained three additional

genes with known expression in the RPE (PTGDS [gen-
bank: NM_000954],[17,19]|TTR [genbank:
NM_000371][14,20] and  HSP90B1 [genbank:
NM_003299])[21] and two genes that play a role in the
protection against oxidative stress (MTIA [genbank:
K01383][22], and TP53 [genbank: NM_000546][23]).
Finally, we identified a number of genes with a relevant
cellular function described in other tissues than the retina,
like CLU [NM_001831] (complement system) and ACN9
[NM_020186] (gluconeogenesis).[24,25]

Genes with moderate expression levels (1, 50—90t percentile)
Upon analyzing this group of 8,776 genes, we found a sta-
tistically significant overrepresentation of the Kegg path-
ways phosphatidylinositol signaling and aminosugars
metabolism (Benjamini-Hochberg p value < 0.001)
(Table 1).

Genes with low expression levels (14, |0—50th percentile)
Among the 8,776 genes with low expression levels there
was a statistically significant overrepresentation of the
neuroactive ligand-receptor interaction (Benjamini-
Hochberg p value 0.001), long-term depression, O-glycan
biosynthesis and calcium signaling pathways (Ease score
p value < 0.001) (Table 1).

Analysis of gene expression variability (CV)

We analyzed the interindividual variability in gene expres-
sion (CV) among the 19,746 genes with expression levels
in the RPE higher than the 10t percentile, (see Additional
file 1: Expression level and interindividual variation in all
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Distribution of the mean intensity (1;,.) of all genes
across percentile bins of 10 percent. Each bin contains
2,194 genes. Note that the mean expression level associated
with the 100t percentile bin is not displayed fully in this
graph due to the height of the expression exceeding the
scope of the graph.

genes on the custom microarray). Aside from the overrep-
resented cluster ECM-receptor interaction (Ease score p
value < 0.001)(Table 1), this yielded little extra informa-
tion compared to the CV assignment in subcategories of
high, moderate and low expression levels (Table 1 and
below), and is not presented in detail here. The thirty
genes with the highest interindividual variation in expres-
sion levels in our dataset are presented in Table 3.

Genes with high interindividual variability (CV > 90% percentile)
Among the 390 genes with both a high CV and high p;,,
there was an overrepresentation of genes involved in anti-
gen processing as well as the complement and coagula-
tion cascades. The 824 genes with a high CV and moderate
Wi sShowed an overrepresentation of genes involved in
focal adhesion and cytokine-cytokine receptor interac-
tion, and the 762 genes with high CV and low p;,,, showed
an overrepresentation of genes involved in type I diabetes
mellitus. The latter group contains mainly major histo-
compatibility complex genes and interleukin 1 [genbank:
NM_000575].

Genes with low interindividual variability (CV < |0t percentile)

Table 4 shows the thirty genes with the most stable expres-
sion in macular RPE. Among the expressed genes (L, >
10th percentile) with stable RPE gene expression (CV <
10th percentile, n = 1,972) there were no genes overrepre-
sented in Kegg pathways. One hundred and ninety four of
these 1,972 genes had high expression levels, 1,064 had
moderate expression levels and 714 had low expression
levels. Using the DAVID software, a significant overrepre-
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sentation of genes in the glycosaminoglycan degradation
pathway was found in the group of 194 genes with stable
expression and high expression levels (Ease score p value
<0.001) (Table 1).

Gene expression analysis of known retinal disease genes
Known macular disease genes

We then investigated both the expression levels and inter-
individual expression differences of 14 macular disease
genes in our RPE gene expression dataset (Table 5).[26] In
terms of expression levels, 63 percent of the macular dis-
ease genes were found in the top 10 percent of genes with
high macular RPE expression levels. In terms of variabil-
ity, 50 percent of the macular disease genes were found in
the top 10 percent of genes with highly variable macular
RPE expression levels. In addition, none of the macular
degeneration genes were found in the 10 percent of genes
with stable macular RPE expression.

A number of genes currently known or suggested to be
associated with AMD, showed high (C3 [genbank:
NM_000064], CFB [genbank: NM_001710], CFH [gen-
bank: NM_000186], HTRA1 [genbank: NM_002775], and
CST3 [genbank: NM_000099]) or moderate (FBLN5 [gen-
bank: NM_006329]) expression levels in the RPE. With
the exception of HTRA1 [genbank: NM_002775], all these
genes also showed high interindividual variation.

Known peripheral retinal disease genes

Finally, we analyzed the gene expression levels and inter-
individual differences in expression of 93 genes known to
be involved in diseases of the peripheral retina[26] in our
macular RPE expression dataset (Table 6).

Of this group, 32 percent were found in the 10 percent of
genes with high expression levels in the macular RPE.
Eleven percent of the known peripheral disease genes
were found in the 10 percent of genes with high interindi-
vidual variation in expression in the macular RPE.

Discussion

This study presents the first comprehensive analysis of the
macular RPE transcriptome, with a focus on interindivid-
ual differences in RPE gene expression levels. We based
our analyses on microarray data from six healthy human
donor eyes. In addition, we performed a Kegg pathway
analysis on genes with high, moderate and low expression
levels and on genes with high and low interindividual var-
iation in expression.

Only five genes from our top 30 most highly expressed
RPE genes were previously known to be expressed in the
human RPE in  wivo:  SLC17A7 [genbank:
NM_020309][14], CST3 [genbank: NM_000099])[18],
PTGDS |[genbank: NM_000954][17], TTIR |[genbank:
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Figure 2

Ingenuity analysis of the cross section of genes previously identified in RPE studies[|4]with genes highly
expressed in the RPE transcriptome. The resulting network shows a connectivity chart illustrating biological functions
comprising genes, proteins and ligands related to cell-cell signaling and cell-cell interaction. This network contains |3 of the 16
genes entered into the analysis. Filled objects represent the genes entered, empty objects are genes introduced by the ingenu-
ity software creating a connection between the entered genes.

NM_000371][14]and HSP90B1 [genbank:
NM_003299])[21] illustrating the lack of knowledge on
the RPE transcriptome.

Strengths and limitations of the study design

A recent statistical review suggested that a microarray
study investigating a single tissue type, requires 6 biologi-
cal replicate samples to draw statistically significant con-
clusions.[27] Consequently, we used the RPE gene
expression from 6 different individuals. Previous RPE
gene expression studies were based on less than six eyes,
with the exception of a single cDNA microarray study lim-
ited to 4,325 genes that was based on 15 individuals. [8-
12]

Our study design has a number of strong points and lim-
itations, previously described in detail.[13] In summary,
the strength of our study design comes from our strict
selection criteria for the donor eyes (see Figure 3), the use
of a laser dissection microscope for high cellular specifi-
city and minimal tissue manipulation, large scale analysis
using a 22 k microarray and a common reference design
for comparison of all samples. Overall, our study was
designed to minimize gene expression differences due to
sampling methodology (see Figure 3) and technical
causes, avoiding unnecessary mechanical handling of the
freshly frozen tissue, the use of laser dissection micros-
copy to isolate homogeneous cell samples, stringent con-
trol of RNA quality and amplification procedures.[9,11-
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Table 2: The thirty most highly expressed genes in macular RPE identified in six different human donors, sorted by intensity in
descending order.

gene symbol Genbank ID  mean intensity i, perc CV perc gene name relevant function
KIAA0241 AA205569 99 98 KIAA0241
AlI003379 AIl003379 99 98 Transcribed locus
ACN9 NM_020186 99 98 ACN9 homolog gluconeogenesis [25]
MTIA BGI91659 99 98 Metallothionein 1A protection against reactive oxygen
species[22]
SLCI7A7 NM_020309 99 98 Solute carrier family 17 (sodium- glutamate transporter, expressed in
dependent inorganic phosphate RPE[14,15]
cotransporter), member 7
TP53 NM 000546 99 98 Tumor protein p53 protection against reactive oxygen
species[23]
ELF2 NM_006874 99 98 E74-like factor 2
(ets domain transcription factor)
Al272368 Al272368 99 95 cDNA clone
AA807363  AAB07363 99 79 cDNA clone
SERPINBS NM 002639 99 98 Serpin peptidase inhibitor, clade B,
member 5
MCM7 NM_005916 99 97 minichromosome maintenance deficient
7
SLCIA2 NM_004171 99 96 Solute carrier family | member 2 glutamate transporter[|]
HBB NM 000518 99 99 Hemoglobin, beta
PTGDS NM 000954 99 94 Prostaglandin D2 synthase 21 kDa released from RPE during rod
phagocytosis [17,19]
T26536 T26536 99 75 cDNA clone
EEFIAI NM_001402 99 80 Eukaryotic translation elongation factor
| alpha |
TTR NM 000371 99 80 Transthyretin maintains normal levels of retinol and
(prealbumin, amyloidosis type I) retinol binding proteins in plasma
[14,20]
BE260168 BE260168 99 90 cDNA clone
CST3 NM_000099 99 92 Cystatin C associated with AMD[16,18]
ZNF503 NM_032772 99 95 Zinc finger protein 503
BGI90000 BG190000 99 94 cDNA clone
BE262306 BE262306 99 80 cDNA clone
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Table 2: The thirty most highly expressed genes in macular RPE identified in six different human donors, sorted by intensity in

descending order. (Continued)

HSP90B I NM_003299 99 94 Heat shock protein 90 kDa beta [21]
(Grp94), member |

GNGTI NM_021955 99 90 Guanine nucleotide binding protein (G
protein), gamma transducing activity
polypeptide |

RPL3 NM_000967 99 20 Ribosomal protein L3

RPL41 NM 021104 99 23 Ribosomal protein L41

Al857840 Al857840 99 77 cDNA clone

PCSK7 NM 004716 99 90 Proprotein convertase subtilisin/kexin
type 7

AL521537 AL521537 99 75 cDNA clone

CLu NM 001831 99 42 Clusterin member of complement system [24]

Among these genes we identified five genes with known expression in the RPE (SLCI7A7[14], CST3[18], TTR[14], HSP90BI[21] and PTGDS[17]).
The SLCI7A7 gene is a glutamate transporter, like the SLCIA2 gene which is also in the top 30 highly expressed genes. The CST3 gene was
previously suggested to have an association with AMD[16,17]. The list also contains two genes with a role in the protection against oxidative stress
(MT1A[22], TP53[23]). The GNGTI gene, expressed in photoreceptors[30], suggests the inevitable presence of photoreceptor contamination. Perc:

percentile.

13] Initially, we performed dye swap experiments as tech-
nical replicates for three of our samples in order to ascer-
tain the potential variability induced by dye bias. We
observed a high correlation between the data from our
analysis including and excluding the dye swap experiment
(data not shown). At the same time, Dobbin (2003),
Simon (2003) and others, used a similar study design as
we did, and concluded that in a common reference design
it is not necessary to perform dye swaps if the common
reference is consistently labeled with the same dye.
[28,29] Potential gene-specific dye bias will affect all
experimental samples equally, and therefore does not
confound the comparisons.[27] Consequently, we
decided to perform the remaining three experiments with-
out a dye swap.

One of the methodological limitations of our study was
the limited number of eyes that met our selection criteria.
The availability of a larger number of eyes would render
more robust results with regard to interindividual varia-
tion. Nonetheless, our data give a good first impression of
variability in gene expression levels in the RPE. An addi-
tional limitation is that a small amount of photoreceptor
contamination was inevitably present in our RPE sample,
see also table 2.[8,13,30] Furthermore, we cannot distin-
guish possible transient from permanent gene expression
level differences. Our study is also limited by the fact that
the measurement of gene expression of individual genes
by microarray is inevitably influenced by a number of fac-
tors, like oligo design and the continuous updates of the
human genome sequence. To correct for this last limita-

tion, we focused our analysis on groups of genes with a
wide range of expression levels, rather than on individual
gene expression levels. Finally, our cut off criteria for high
and low expression levels and interindividual differences
are arbitrary. While this may indeed have consequences
for individual genes, the impact on our functional analy-
sis, which is based on large numbers of genes, will be min-
imal.

Despite these limitations, our data, combined with data
from other retinal gene expression studies (which use a
range of techniques, like SAGE and RT-PCR, that bear
their own limitations),[13,31] contributes significantly to
the currently expanding knowledge of the RPE transcrip-
tome.

Functional assessment of native gene expression in the
macular RPE

The notion that the identity of a cell type is determined by
the genes it expresses, prompted us to analyze the native
macular RPE transcriptome. In the following section we
describe the overrepresented functional groups that we
identified in the RPE.

Highly expressed RPE genes and oxidative stress

Both functional annotation with DAVID and Ingenuity
analysis independently indicate a statistically significant
overrepresentation of genes associated with oxidative
phosphorylation and ATP synthesis in our dataset. This is
in line with the fact that the RPE has a high metabolic
activity and energy demand. The down side of this high
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Table 3: The top thirty genes with the highest interindividual variation in expression levels (CV) between six healthy human donors,
sorted descending by coefficient of variation (CV).

gene symbol  Genbank ID  mean intensity p, perc  CV perc gene name

HSD17B2 NM_002153 95 99 Hydroxysteroid (17-beta) dehydrogenase 2

MYOC NM_000261 99 99 Myocilin, trabecular meshwork inducible glucocorticoid response
OGN NM 014057 92 99 Osteoglycin (osteoinductive factor, mimecan)

SFRP4 NM 003014 93 99 Secreted frizzled-related protein 4

AOC2 NM_009590 9l 99 Amine oxidase, copper containing 2 (retina-specific)
DIO3 NM 001362 85 99 Deiodinase, iodothyronine, type llI

SLC2A5 NM 003039 62 99 Solute carrier family 2 (facilitated glucose/fructose transporter), member 5
XIST AKO025198 99 99 X (inactive)-specific transcript

TFPI2 NM_006528 99 99 Tissue factor pathway inhibitor 2

CYR61 NM 001554 98 99 Cysteine-rich, angiogenic inducer, 61

FGFBP2 NM 031950 84 99 Ksp37 protein

FBP2 NM 003837 64 99 Fructose-|,6-bisphosphatase 2

EGFL6 NM 015507 74 99 EGF-like-domain, multiple 6

IL8 NM_000584 66 99 Interleukin 8

MFAP4 L38486 99 99 Microfibrillar-associated protein 4

ccL2 NM_002982 90 99 Chemokine (C-C motif) ligand 2

ZICI NM 003412 67 99 Zinc family member | (odd-paired homolog, Drosophila)
COL9AI NM 001851 88 99 Collagen, type IX, alpha |

CCL26 NM_006072 79 99 Chemokine (C-C motif) ligand 26

PITX2 NM_ 000325 89 99 Paired-like homeodomain transcription factor 2
ALDHIAI NM_000689 78 99 Aldehyde dehydrogenase | family, member Al

HBGI NM_000559 75 99 Hemoglobin, gamma A

S100A6 NM 014624 99 99 S100 calcium binding protein A6

IL6 NM 000600 77 99 Interleukin 6 (interferon, beta 2)

HBG2 NM 000184 71 99 Hemoglobin, gamma G

Cl3orf33 NM 032849 93 99 Chromosome |3 open reading frame 33

RBM3 NM 006743 96 99 RNA binding motif (RNPI, RRM) protein 3
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Table 3: The top thirty genes with the highest interindividual variation in expression levels (CV) between six healthy human donors,

sorted descending by coefficient of variation (CV). (Continued)

CFB NM 001710 94 99 Complement factor B
EGRI NM 001964 99 99 Early growth response |
PTX3 NM 002852 97 99 Pentraxin-related gene, rapidly induced by IL-| beta

Note that although XIST, EGFL6 and RBM3 are x-chromosomal transcripts, their high interindividual variation could not be explained by the gender

of the donors (data not shown). Perc: percentile.

activity is that the RPE has to deal with large amounts of
oxidative stress. The oxidative stress in the RPE is further
augmented by the light projected onto the retina com-
bined with the rich oxygen supply and lipid peroxidation
in phagocytosed rod outer segments.[1,32] Given the high
level of oxidative stress, the expression of genes contribut-
ing to the defense of the RPE cell against oxidative stress is
essential for cell survival. Our data confirm this notion,
which is highlighted by the expression of the MTI1A [gen-
bank: K01383] gene, a metallothionein, and the TP53
[genbank: NM_000546] gene in the top 30 most highly
expressed RPE genes. Metallothioneins are thought to
play a role in protection against oxidative stress; addition
of TP53 [genbank: NM_000546] to human cell lines leads
to a 50 percent decrease in reactive oxygen species.[22,23]

RPE and the immune system

Our data show an overrepresentation of genes with highly var-
iable expression in a number of pathways related to the
immune system. We identified the following four pathways,
the complement and coagulation cascades (high expression
levels), the antigen processing and presentation pathway
(high expression levels) and the cytokine-cytokine receptor
interaction pathway (moderate expression levels). Both the
antigen processing and presentation pathway and the type 1
diabetes mellitus pathway contain MHC genes responsible for
antigen presentation. Cytokine production is highly sensitive
to inflammation in the RPE.[33] The cytokine-cytokine recep-
tor pathway contains a number of chemokines, small secreted
proteins involved in the chemotaxic attraction of monocytes
and neutrophils. The highly variable expression of genes
involved in the immune system is most likely explained by
both genetic differences and a variable degree of subclinical
inflammation (local or systemic) among our donors.

RPE genes and the extracellular matrix (Bruch's membrane)

The close interaction of the RPE with Bruch's membrane
(BM) is exemplified by the overrepresentation of genes in
two pathways. The first pathway contains genes involved
in extracellular matrix (ECM) receptor interaction.[13]
The ECM receptor interaction pathway, part of the focal
adhesion pathway, contains collagens type I, 1II and IV,
thrombospondin, laminin beta 1 [genbank: NM_002291],
fibronectin 1 [genbank: NM_002291], reelin [genbank:
NM_005045], and cd44 antigen [genbank: NM_000610].
Collagen type IV, laminin and fibronectin are all main com-

ponents of basement membranes, such as BM. Surpris-
ingly, the genes in this group showed highly variable
expression, which may indicate that the molecular com-
position of BM is different among individuals. Alterna-
tively, it has been described that with age, the solubility of
collagens in BM decreases significantly.[34] Thus, the high
variability in expression levels of collagen genes between
our samples can perhaps be explained by differences in
the physiological donor age.

A second pathway that connects RPE expressed genes to
BM is the glycosaminoglycan (GAG) degradation path-
way. There was an overrepresentation of genes with stable
and high expression in this pathway. GAG synthesis has
been shown in cultured RPE and GAG's are secreted into
the extracellular matrix and BM.[35] Interestingly, GAG's
are rapidly turned over in the RPE, and the composition
of GAG in BM changes with age. [35-37] Our data suggest
there is a strict regulation of GAG turnover in the RPE,
even in donors of different ages.

Additional RPE gene functions

In addition to the involvement of the RPE genes in oxida-
tive stress, BM and the immune system, analysis of our
data revealed the following two functional categories: pro-
tein synthesis and glutamate transport.

A high level of protein synthesis is essential for the RPE to
maintain its multiple functions.[1] This is exemplified by
the overrepresentation of genes with high expression in
the ribosomal protein activity pathway.

Glutamate transport is an important process in the RPE.
The top 30 most highly expressed RPE genes contained
two glutamate transporters SLC1A2 [genbank: AF131756]
and SLC17A7 [genbank: AF131756]. The latter transporter
was already known to be expressed in the human RPE in
vivo.[14,38] Glutamate is an important neurotransmitter
that is released from the photoreceptors both in a light
influenced fashion, and upon apoptosis. Since high con-
centrations of glutamate are neurotoxic, re-uptake and
transport of glutamate are essential for the normal retinal
homeostasis.[38]

Finally, in the overlap between previous RPE studies[14]
and genes with high expression in our RPE transcriptome,
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Table 4: The thirty genes with the least interindividual variation in macular RPE gene expression levels among six healthy human

donors, sorted ascending by coefficient of variation (CV).

gene symbol Genbank ID mean intensity L, perc gene name

EXOC3 BCO00I511 85 Exocyst complex component 3

PDXK AI571369 74 Pyridoxal (pyridoxine, vitamin B6) kinase

ACY| NM_000666 63 Aminoacylase |

SSI18LI AB014593 70 Synovial sarcoma translocation gene on chromosome |8-like |
FOSLI NM_005438 86 FOS-like antigen |

FPRL2 NM_002030 56 Formyl peptide receptor-like 2

CPSF4 NM 006693 62 Cleavage and polyadenylation specific factor 4, 30 kDa
FAMI10B AKO023658 40 Chromosome 8 open reading frame 72

RAB20 AWB861333 20 Transcribed locus

CHD2 AW896069 15 Chromodomain helicase DNA binding protein 2
BI001591 BI001591 20 Transcribed locus

FATEI NM_033085 37 Fetal and adult testis expressed |

CLEC4E NM 014358 44 C-type lectin domain family 4, member E

PARN NM_ 002582 75 Poly(A)-specific ribonuclease (deadenylation nuclease)
KIAA0586 NM_ 014749 59 KIAA0586

TMEMI56 NM_024943 4] Transmembrane protein 156

CSNK2A1 NM_001895 59 Casein kinase 2, alpha | polypeptide

CGl-96 NM 015703 35 CGI-96 protein

LOC442100 BM127012 26 Transcribed locus

MYST3 NM_006766 93 MYST histone acetyltransferase (monocytic leukemia) 3
ZMYND8 AF144233 33 Protein kinase C binding protein |

C20orfl | AKO025775 88 Chromosome 20 open reading frame | |

GAK NM_005255 89 Cyclin G associated kinase

SOBP NM 018013 67 hypothetical protein FLJ10159

ZNF665 NM 024733 16 Zinc finger protein 665

BG742052 BG742052 57 cDNA clone

OR2A7 AF327904 57 Olfactory receptor, family 2, subfamily A, member 7
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Table 4: The thirty genes with the least interindividual variation in macular RPE gene expression levels among six healthy human

donors, sorted ascending by coefficient of variation (CV). (Continued)

PRKCE NM_005400 18 <l Protein kinase C, epsilon
RNF14 AB022663 88 <l Ring finger protein 14
SELENBPI NM_003944 93 < Selenium binding protein |

Perc: percentile.

we identified the cell-cell signaling and interaction net-
work. This network contains several genes involved in sig-
nal transduction, like SLC7A2 [genbank: AL512749] and
NCK2 [genbank: BC007195] further emphasizing the
important role of the RPE in interaction with other cell
types.[39,40]

Comparison with literature

Comparison of our most highly expressed RPE genes to
the literature revealed a distinct overlap. Schulz and cow-
orkers recently combined different analyses of the retina/
RPE/choroid transcriptome, and described 13,000 ret-
ina/RPE genes found in at least two studies.[14] Out of

Table 5: Expression levels and interindividual differences of currently known macular disease genes with RPE expression[26].

gene symbol Genbank accession

mean intensity .. (perc) CV (perc)

high interindividual variation (CV > 10th perc)

CFB NM_001710 10,382 (94) 215 (99)
o] NM_000064 9,910 (94) 145 (98)
FBLNS NM_006329 2,823 (76) 136 (98)
PRPH2 NM_000322 32,204 (98) 86 (93)
GUCAIB NM_002098 2,329 (72) 83 (93)
CST3 NM_000099 338 (26) 79 92)
CFH NM_000186 8,508 (92) 77 o)
TIMP3 NM_000362 7,209 o) 73 (90)

intermediate interindividual variation (CV 10th - 90th perc)

c2 NM_000063 1,689 (65) 71 (90)
BESTI NM_004183 132,611 (99) 58 (84)
HTRAI NM_002775 45,420 (99) 47 (74)
EFEMPI NM_ 004105 20,292 (97) 44 (70)
CIQTNF5 NM_015645 23,226 (98) 40 (64)
TLR4 NM_003266 225 (45) 38 (60)
low interindividual variation (CV < 90th perc)
none - - -

Data are grouped by coefficient of variation (CV) in descending order into three groups, high CV (> 90t percentile, CV > 72), intermediate (CV
10th — 90th percentile) and low CV (< 10t percentile, CV < 19). Perc: percentile.
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Table 6: Expression levels and interindividual differences of currently known peripheral disease genes with RPE expression[26].

gene symbol

Genbank accession

mean intensity (1,.) (percentile)

CV (percentile)

high interindividual variation (CV > 90th percentile)

COL9AI NM 001851 5,628 (88) 225 (100)
RBP4 NM_006744 20,291 (97) 196 (100)
COL2A| NM 001844 527 37) 122 97)
GNAT| NM_000172 100,271 (100) 80 (92)
RDH5 NM_002905 6,716 (90) 78 (92)
RLBPI NM_000326 43,011 (99) 74 o)
intermediate interindividual variation (CV 10th — 90th percentile)
PRCD AK054729 46,964 (99) 66 (88)
GUCY2D NM_000180 2,672 (75) 64 (87)
NPHP3 Al200954 3,266 79) 63 (86)
IMPDH | NM_000883 12,177 (95) 63 (86)
LRAT NM_004744 15,935 (96) 62 (86)
LRP5 NM_002335 519 37) 62 (86)
RD3 AV721413 11,010 (95) 6l (86)
RGR NM 002921 39,454 (99) 57 (83)
TULPI NM_003322 6,284 (89) 57 (83)
AHII AL136797 7,168 on 56 (82)
SEMA4A NM_022367 2,824 (76) 54 (80)
TEADI AL133574 4,473 (84) 51 (78)
PANK2 NM_024960 273 (20) 48 (75)
PEX7 NM_ 000288 1,734 (65) 48 (75)
OAT NM_ 000274 3,762 8 45 71)
CDH3 NM_001793 9,589 93) 45 71)
BBSI10 NM_024685 1,556 (63) 45 71)
PRPF8 NM_006445 6,510 (90) 40 (64)
TIMMB8A NM_004085 913 (50) 39 (63)
FZD4 NM_012193 7,964 92) 39 (62)
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Table 6: Expression levels and interindividual differences of currently known peripheral disease genes with RPE expression[26].

OPA3 NM 025136 20,540 97) 39 (62)
COLIIAI NM_001854 9l (50) 38 6l)
PGK1 NM_000291 12,114 (95) 37 (59)
CYP4V2 AK022114 5411 87) 37 (58)
JAGI NM_000214 1,394 (60) 35 (53)
MYO7A NM_000260 6,691 (90) 34 (53)
BBS2 NM 031885 4,446 (84) 34 (51)
PAX2 NM_ 003990 2,946 (77) 33 (50)
BBSI NM_024649 3,750 @8n 32 (46)
NYX NM_ 022567 372 (28) 32 (45)
ABCCé NM 001171 1,555 (63) 28 (35)
MERTK NM_006343 4,763 (85) 28 (35)
ARL6 BI914103 1,023 (53) 28 (34)
MFRP NM 031433 13,200 (96) 27 (33)
PXMP3 NM_000318 5,341 87) 25 (25)
ALMS| AB002326 962 (51) 23 (20)
MKKS NM_ 018848 2,056 (69) 22 (16)
NDP NM_000266 1,335 (59) 20 (14)
PHYH NM_006214 3,293 (79) 20 (12)
WEFS| NM_ 006005 4,935 (86) 19 (10)
low interindividual variation (CV < 10th percentile)
PRPF3 1| NM_ 015629 3,187 (78) 17 (06)
PEX| NM_000466 3,008 (77) 15 (04)
PRPF3 NM_004698 7,057 (2] 14 03)
TRIM32 NM 012210 2,277 71 13 02)
CLN3 NM_000086 2,330 (72) 8 0)

Data are grouped by coefficient of variation (CV) in descending order into three groups, high CV (> 90t percentile, CV > 72), an intermediate
group (CV 10t — 90th percentile) and CV low (< 10t percentile, CV < 19).
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Figure 3

Flow diagram of criteria used for the selection of
donor eyes. Donor eyes were required to meet all selec-
tion criteria before inclusion in the study. X indicates exclu-
sion from the study. Donors were all between 60 and 80
years old in order to exclude the presence of undetected
monogenic disorders. The presence of any known eye dis-
ease or malignancy was used as an exclusion criterion since
both can alter (RPE) gene expression levels. Post mortem
times were required to be less than 30 hours to reduce the
effects of RNA degradation. Ocular abnormalities on visual
or histological inspection served as exclusion criteria, specifi-
cally any signs of early AMD, defined by us as the presence of
more than | druse per 10 histological sections. Poor mor-
phology of the retina was also an exclusion criterion.

these 13,000, we currently assign 7,231 genes to be
expressed by the RPE, 1,407 of which are highly
expressed. (see Additional file 2: overlap between highly
expressed RPE genes and retina/RPE genes in at least two
studies) In addition, the same review|[14] suggested that
246 genes were expressed only in RPE studies. We assign
137 of these 246 genes to the RPE as well; 17 out of these
137 genes have high expression levels in our RPE tran-
scriptome analysis. (see Additional file 3: overlap
between highly expressed RPE genes and genes found
only in RPE studies)
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Finally, of the genes previously described to be specifically
expressed either in the retina or the RPE in individual
studies,[14] 39 genes are also present in our RPE transcrip-
tome analysis. Twenty two of these 39 genes had high
expression levels. (see Additional file 4: overlap between
highly expressed RPE genes and retina/RPE genes in single
studies)

While data on interindividual variation in RPE gene
expression are lacking, functional properties of RPE genes
have been investigated previously.

The combined functional annotation from three studies
resemble our functional annotation in the following
areas: gene regulation, transcription, protein metabolism,
cell proliferation, survival and signaling, energy metabo-
lism, cytoskeleton and inflammation.[8,10,11] The cur-
rent study adds the following more specific functional
categories, oxidative phosphorylation, ATP synthesis,
ribosome, phosphatidylinositol signaling and aminosug-
ars metabolism. Among the highly expressed RPE genes
we identified an overrepresentation of the complement
cascade and genes involved in the composition of BM.

Gene expression analysis of known retinal disease genes

In our macular RPE sample we observed that 63 percent of
genes involved in macular disorders according to the litera-
ture,[26] had high expression levels. In contrast, only 32
percent of the peripheral retinal disease genes[26] were
highly expressed in our sample. These figures may be
biased, since the search for candidate genes has been
focused on cell-specific highly expressed genes in the first
place. The figures probably reflect the fact that RPE gene
expression differences exist between the retinal macula and
the periphery.[13] However, our data probably also imply
that the mean expression level of a gene in the RPE is
informative in the search for new candidate disease genes.

With respect to the variability in gene expression, we
found that the interindividual differences of currently
known macular retinal disease genes were somewhat
higher than the overall pattern of variation seen in the
entire array. Whether or not this finding is coincidental
remains to be elucidated.

Conclusion

In conclusion, we present comprehensive data on (inter-
individual differences of the) gene expression profile of
the RPE based on 22,000 genes from six different healthy
human donors. This is the first study to describe the inter-
individual variability in gene expression levels from a
microarray analysis of the RPE transcriptome.
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Figure 4

Study design. A. Experimental setup. Six RPE samples from
6 different donors were hybridized to six microarrays along
with the common reference sample. B. Data analysis. The
common reference was used to normalize the RPE expres-
sion data from the six arrays which enabled comparison of
the six individuals.

There was no correlation between the height of gene
expression (L;,,) and the interindividual variability (CV)
(data not shown). We noted a more than hundred fold
difference in CV between genes with stable expression and
genes with variable expression levels.

Our data show that the RPE most likely has high levels of
protein synthesis, a high energy demand and is subject to
high levels of oxidative stress as well as a variable degree
of inflammation. Finally, our data show high interindi-
vidual variability in expression of ECM genes and indicate
a high and constant level of glycosaminoglycan (GAG)
turnover, two functions related to BM.

http://www.biomedcentral.com/1471-2164/10/164

The fact that large interindividual differences exist in the
expression of a number of known retinal disease genes has
not only functional implications, but is also relevant for
new candidate disease gene identification and the devel-
opment of dose-dependent (gene) therapeutic strategies.

Methods

Human donor eyes

This study was performed in agreement with the declara-
tion of Helsinki on the use of human material for
research. Material used in this study was provided to us by
the Corneabank Amsterdam. In order to minimize genetic
heterogeneity, we selected six eyes from a total of 200
human donor eyes using strict selection criteria, (see Fig-
ure 3). In summary, donors were excluded when their age
was not between 60 and 80 years, when they had an eye
disease or any form of malignancy and when the time
between death and enucleation of the eye was more than
30 hours. Furthermore, eyes were excluded when they
showed any abnormalities upon visual or histological
examination: more specifically, when more than one
druse was seen in 10 histological sections, or when retinal
morphology was poor. All donors were Caucasian, five
were male, one was female. The donors died of cardiovas-
cular or cerebrovascular causes or of chronic obstructive
pulmonary disease. Donors did not have a known oph-
thalmic disorder or malignancy. Globes were enucleated
between 14 and 27 hours post mortem and frozen several
hours later according to a standard protocol. Donors were
aged 63 to 78 years at the time of death. We chose old
donors in order to minimize the likelihood of the pres-
ence of yet undiagnosed monogenic eye diseases. This
does not rule out the presence of the most common reti-
nal disease in the old eye, age related macular degenera-
tion (AMD). Therefore the donor retinas were thoroughly
screened for early signs of AMD by histological examina-
tion (the presence of more than 1 druse in 10 sections).
Visual examination and histological examination, includ-
ing periodic acid Schiff (PAS) staining, indicated no reti-
nal pathology in any of the donor eyes.

RPE cell sampling

Globes were snap-frozen and stored at -80°C until use.
A macular fragment of 16 mm?2 with the fovea in its
center was cut from each of the retinas, as described pre-
viously.[13] In summary, for each eye, 10 cryosections, 8
pum thick, spaced no more than 220 pum apart were
stained with periodic-acid Schiff and microscopically
examined for abnormalities, such as drusen indicative of
early-AMD.

Twenty um sections from the macular areas were used for
the isolation of RPE cells. These sections were dehydrated
with ethanol and air-dried before microdissection with a
Laser Microdissection System (PALM, Bernried, Germany)

Page 15 of 18

(page number not for citation purposes)



BMC Genomics 2009, 10:164

using a pulsed laser. A total of up to 10,000 RPE cells per
eye were microdissected and stored at -80° Celsius.

RNA isolation and (single) amplification

Total RNA was isolated and the mRNA component was
amplified essentially as described previously.[13] Next,
the amplified RNA (aRNA) samples were quantified with
a nanodrop (Isogen Life Science B.V., The Netherlands)
and the quality was checked on a BioAnalyzer (Agilent
Technologies, Amstelveen, The Netherlands). Subse-
quently, aRNA samples were labeled with either a Cy3 or
a Cy5 fluorescent probe.

Microarray handling

A common reference design was applied in our microar-
ray hybridizations using the common reference sample
described in the study of van Soest et al (2007).[13] In
summary, the common reference sample consists of aBRNA
from a pool of RPE/choroid isolated from 10 donor eyes
(mean age 60 years). aRNA from all six donors and the
common reference sample was labeled. Subsequently,
labeled aRNA from the donors was hybridized against the
common reference sample to six 22 k custom arrays. Ini-
tially, a dye swap experiment was performed for three of
the six donor samples in order to assess potential variabil-
ity introduced by dye-bias for methodological reasons
(see discussion). Dye swaps were disregarded in the final
analysis. Arrays were enriched for sequences expressed in
RPE, neural retina and brain (Agilent Technologies,
Amstelveen, The Netherlands), (see Additional file 1:
Expression level and interindividual variation in all genes
on the custom microarray). Hybridization, washing and
scanning were performed as described previously.[13]

Data analysis

Scanned images were processed with Feature Extraction
software (v 8.5 Agilent). Data from all six hybridizations
was analyzed with Rosetta Resolver software (Rosetta Inp-
harmatics). The signal of each of the six RPE samples was
normalized using the common reference sample. This
enabled a direct comparison of the six RPE samples (Fig-
ure 4). We used six biological replicates in order to draw
significant conclusions.[27] For each gene we calculated
the mean signal intensity (p;,,) and standard deviation
(o) of the six biological replicates. While a limited
number of genes is present on the array more than once,
for the analyses of large groups of genes we regarded the
number of entries on the array equal to the number of
genes. Genes were grouped according to their mean inten-
sity (W,,). We defined p;,, above the 90t percentile as high
expression, ;,, between the 90t and 50t percentile as
moderate expression and p,, between the 50t and the
10th percentile as low expression. We considered the genes
in these three groups to have potential biological signifi-
cance. Genes with a p,,, below the 10t percentile were

http://www.biomedcentral.com/1471-2164/10/164

considered to have very low expression with a doubtful
biological significance.

In order to describe the interindividual differences in gene
expression levels between all six eyes systematically, we
calculated the coefficient of variation (CV), defined as the
standard deviation divided by the mean (o/u;,,), for each
gene. We considered genes with a CV above the 90t per-
centile to have "high" interindividual variation in expres-
sion and genes with a CV below the 10t percentile to have
"low" interindividual variation, or stable expression.
Obviously, the categories for intensity and variability of
expression were chosen somewhat arbitrarily, but they
were essential to facilitate systematic analysis and to min-
imize the number of false positive results.

A functional analysis of Kegg pathways (Kyoto Encyclope-
dia of Genes and Genomes) was performed on genes with
high, moderate and low expression levels and on genes
with high and low interindividual variation using the
DAVID online software.[41] Cut off criteria used were a p-
value of less than 0.001 using either a Benjamini-Hoch-
berg correction or an Ease score, which is a modified
Fisher's exact test[41,42].

We compared our RPE transcriptome to a compilation of the
mammalian retina/RPE transcriptome, which is based on
multiple independent gene expression studies of combina-
tions of the neural retina/RPE/choroid in the literature[14].
Overlap between the two datasets was analyzed using Inge-
nuity Pathways Analysis (Ingenuity® Systems) resulting in a
connectivity network describing the underlying biology of
RPE cells at the genomic and proteomic level[43].
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