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A novel approach to modelling transcriptional heterogeneity
identifies the oncogene candidate CBX2 in invasive breast
carcinoma
Daniel G. Piqué1,2, Cristina Montagna2, John M. Greally2 and Jessica C. Mar1,3,4

BACKGROUND: Oncogenes promote the development of therapeutic targets against subsets of cancers. Only several hundred
oncogenes have been identified, primarily via mutation-based approaches, in the human genome. Transcriptional overexpression is
a less-explored mechanism through which oncogenes can arise.
METHODS: Here, a new statistical approach, termed oncomix, which captures transcriptional heterogeneity in tumour and adjacent
normal (i.e., tumour-free) mRNA expression profiles, was developed to identify oncogene candidates that were overexpressed in a
subset of breast tumours.
RESULTS: Intronic DNA methylation was strongly associated with the overexpression of chromobox 2 (CBX2), an oncogene
candidate that was identified using our method but not through prior analytical approaches. CBX2 overexpression in breast
tumours was associated with the upregulation of genes involved in cell cycle progression and with poorer 5-year survival. The
predicted function of CBX2 was confirmed in vitro, providing the first experimental evidence that CBX2 promotes breast cancer cell
growth.
CONCLUSIONS: Oncomix is a novel approach that captures transcriptional heterogeneity between tumour and adjacent normal
tissue, and that has the potential to uncover therapeutic targets that benefit subsets of cancer patients. CBX2 is an oncogene
candidate that should be further explored as a potential drug target for aggressive types of breast cancer.
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BACKGROUND
Oncogenesis is driven by a complex and intricately controlled
programme of gene expression where oncogenes are the
expressed genes that promote tumour development. The first set
of oncogenes were discovered in retroviruses that incorporated
human growth factors, such as src, into their viral genome.1–3 The
identification of amplified or mutated oncogenes in the tumours
of certain cancer patients has led to the development of effective
molecular therapeutic strategies that extend the life of these
patients. For example, trastuzumab, an anti-HER2 antibody,
extends the overall lifespan for approximately 20% of breast
cancer patients whose often-aggressive tumours overexpress
ERBB2, the gene that encodes the HER2 protein.4 However,
HER2-targeted therapies often result in treatment resistance and
thus additional therapeutic targets are required to adequately
treat HER2+ breast cancer, among other subtypes.
Variability in the response of patients to current therapeutic

strategies represents a major bottleneck to reducing cancer
mortality rates globally. Understanding how tumour heterogene-
ity impacts the transcriptional regulatory programmes that control
oncogenesis is the key to addressing this issue and is currently
what drives most programmes in personalised medicine. The

availability of genome-wide gene expression data from matched
tumour and adjacent normal tissue of large patient populations
provides a valuable resource for developing new approaches for
identifying oncogenes that are likely to have pivotal roles in
important clinical outcomes such as chemoresistance. For
example, previous studies have identified survival-related biomar-
kers in ovarian cancer based on bimodal gene expression profiles
detected in large datasets of tumours.5 These studies recognise
the limitations of the unimodal assumption made by many
statistical tests and have taken advantage of the inherent
heterogeneity in gene expression profiles to discover new
subtypes.
Examples of methods that exploit heterogeneity between

tumour and adjacent normal tissue include Cancer Outlier Profile
Analysis (COPA)6 and mCOPA7 which are both used to detect gene
fusions and tumour outliers. However, these approaches have two
major limitations. First, most applications of mixture modelling for
gene expression, with one exception8 have been developed using
data derived from microarrays, which have a limited range of
expression values, particularly for highly expressed genes, and
unlike RNA-sequencing (RNA-seq), are limited for quantifying
transcript levels at high resolution.9 Second, tools developed for
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outlier detection from paired tumour-normal mRNA samples, such
as COPA6,10 and Profile Analysis using Clustering and Kurtosis
(PACK),11 are sensitive to the proportion of samples that are
distinguished as ‘outliers’8 and, in the case of COPA, require
setting a tuning parameter. In addition, existing methods for
outlier detection are designed to screen out individual tumour
samples rather than identify genes that reflect new patient
subgroupings.
In this study, we developed a statistical approach termed

oncomix to identify oncogene candidates (OCs) in RNA-seq data.
This approach detects OCs based on the presence of low
expression in normal tissue and overexpression in a subset of
patient tumours. Our approach capitalises on the heterogeneity
present in matched tumour and normal gene expression data to
identify OCs and then segregate patients into interpretable
subgroups based on their expression of the OC. Oncomix is an
unsupervised method where the size of the patient subgrouping
is learned entirely from the data.
To demonstrate the utility of oncomix, we applied this approach

to RNA-seq data from the breast cancer cohort of The Cancer
Genome Atlas (TCGA) and identified a set of five OCs (CBX2, NELL2,
EPYC, SLC24A2, and LAG3). To understand why these OCs were
overexpressed in certain tumours, we developed predictive
models using multiple molecular, genetic, and clinical variables
from TCGA that highlighted potential regulators of OC over-
expression. Novel computational and experimental evidence
suggest that chromobox 2 (CBX2), one of the OCs that we
identified, is associated with poorer clinical outcomes and
functions as a regulator of breast tumour cell growth. In this
study, we demonstrate the value of modelling transcriptional
heterogeneity using matched tumour and normal tissue to
identify new OCs. Our results indicate that CBX2 may serve as a
driver of breast cancer and represent a novel therapeutic target
in aggressive subtypes of breast cancer, such as HER2+ and
basal-like.

METHODS
RNA data sources and sample selection
Fragments per kilobase of transcript per million mapped reads
(FPKM) level 3 mRNA-sequencing data from invasive breast
carcinoma and adjacent normal controls was downloaded from
the Genomic Data Commons web server in November 2018
(version 0.13) using the GenomicDataCommons and TCGAbiolinks
R packages using standard GDC pipelines (https://docs.gdc.cancer.
gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/).
The level 3 mRNA-sequencing data contains the calculated
expression level of a gene for each sample. The FPKM output
mapped to 56,716 ensembl gene ids and was converted to
transcripts per million (TPM) and subsequently log2(TPM+ 1)
transformed to shrink the numeric range of the data. Genes that
contain > 20% zero values were excluded, as genes with many
zero values can result in the failure of mixture model algorithms to
converge on a set of parameters. A total of 110 female patients
from TCGA with RNA-seq data from both tumour and adjacent
normal tissue were selected for further study. mRNA-sequencing
data from endometrial, lung and prostate adenocarcinoma
(Supplementary Figures 10-13) were downloaded and processed
using the same tools and criteria.

Benchmarking oncomix against limma and mCOPA
Differential expression between tumour and adjacent normal
samples was performed using limma, an established method for
performing a two-sample t-test in conjunction with empirical
Bayes estimation.12 A total of 16,156 genes that had > 20% non-
zero values for both tumour and adjacent normal samples were
used and ranked using the t-statistic and resulting p-value. A
ranking of 1 indicates the gene with the smallest p-value.

Expression data for 16,156 genes from 220 paired tumour-
adjacent normal samples was used as input into mCOPA. mCOPA
requires the manual specification of percentiles and was run three
times using the 70th, 80th, and 90th percentile. The 80th
percentile results were displayed in Supplementary Figure 3, with
the rationale that these would be most consistent with our
requirement that at least 20% of samples appear in either the high
or the low expression group.

Differential expression and pathway overrepresentation analysis
Differentially expressed genes between two groups (e.g., tumours that
do vs. do not overexpress CBX2) were identified using limma.12 The
threshold used for differential expression was a Benjamini–Hochberg
adjusted q-value of 0.0001 and a log2(fold change) > 1 or <− 1. POA
was performed using 910 gene sets from three well-defined, manually
curated pathway databases – Hallmark,13 KEGG14 and Reactome.15

Geneset databases were downloaded from MSigDB as GMT files in
March 2017.16 For each OC, POA was performed separately for
significantly upregulated and downregulated genes using Fisher’s
exact test to facilitate interpretability and a stringent cut-off
(Benjamini-Hochberg adjusted q< 1 × 10−20 and OR95% CI > 20) was
used to select highly enriched gene sets.

Multiple logistic regression, variable selection and coefficient
shrinkage using the elastic net
Multiple logistic regression was performed for each OC with binary
response variables (normal or overexpressed OC mRNA levels in
breast tumours) and complementary clinical, molecular and
pathological datasets were used as covariates (see Supplementary
Figure 4 for datasets and processing information). The output
from the logistic regression model provides a weight, in the form
of a β- coefficient, which estimates the influence for each
predictor on the response variable, which in this case is the
overexpression of the OC. How strong of an influence the
predictor has on the response is estimated by the model, as well
as the direction of this influence. To prevent model overfitting, the
size of the model coefficients, whose effect was assumed to be
additive, were regularised using the elastic net penalty and leave-
one-out cross validation17 (see Supplementary Figure 5). The
elastic net is a regularisation term that shrinks and selects model
coefficients to prevent overfitting of data, particularly in settings
when there are many predictor variables, and helps account for
potential collinearities between covariates.17

The code for the implementation of this method is available in
Supplementary File 2.
To validate the utility of the logistic regression models, each

model was used to predict the probability of each patient
overexpressing the OC in the dataset given her individual features.
An area under the curve (AUC) value was generated for each of the
five models that predicted overexpression of each OC (Fig. 1a, top
panel). AUC values > 0.8 suggest an excellent fit, whereas values
between 0.7 and 0.8 suggest a good fit.18 Models for two out of the
five OCs, including the model for CBX2, had an AUC > 0.8.

CBX2 siRNA knockdown experiments and analysis of cellular
growth rate
MCF7 cells were obtained from ATCC (#HTB-22). Cells were grown
in Dulbecco’s modified Eagle’s medium supplemented with 5%
fetal bovine serum and 0.01 mg/ml human recombinant insulin
(Sigma) and incubated in 5% CO2/37 °C. For silencing of CBX2, the
siRNA SMARTpool (L-008357 -Dharmacon, Lafayette USA) was
used. On-target CBX2 oligonucleotides were used for gene-specific
downregulation and the same MCF7 cells transfected with the
Non-Targeting (Scramble) siRNA Control Pools were used as a
reference control for all experiments. SiRNA pools were resus-
pended according to the manufacturer’s protocol in RNase-free
1 × siRNA Buffer at a final concentration of 20 mM. Cells were
transfected using DharmaFECT-4 Transfection Reagent according

A novel approach to modelling transcriptional heterogeneity identifies. . .
DG Piqué et al.

747

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/


to the manufacturer’s instructions. After transfection, cells grew for
48 h before the analysis of specific endpoints.
For the growth curve analysis, MCF7 cells silenced with the

siCBX2 SMARTpool and scramble controls were plated at ~17,000
cells/cm2 in 24-well plates, incubated at 37 °C for 48 h and the cell
number counted in duplicate every 24 h for 5 days. All
experiments were repeated three times in independent biological
triplicates. MCF7 were routinely analysed to ensure lack of
mycoplasma contamination by 4′,6-diamidino-2-phenylindole
staining. A three-way between-subjects ANOVA without interac-
tion terms was conducted to test the null hypothesis that siRNA
has no effect on cellular growth rate. The independent variables,
all categorical, were the siRNA, the biological replicate and the day
post transfection. The MCF7 cell line was authenticated using the
GenePrint 24 system (Catalogue number B1870, Promega) and
analysed using the GeneMarker 1.75 software (SoftGenetics). Cell
line genotypes showed 100% identity to MCF7 cell lines (results
available upon request).

RNA isolation and cDNA synthesis to evaluate CBX2 levels
MCF7 siCBX2 and siScramble were established as described above
and plated in 6-well plates at ~17,000 cells/cm2 for 48 h. Cells were
then analysed at 72–120–168 h post transfection. The cells were
then lysed directly on the plate with Qiazol lysis reagent (Qiagen,
Valencia, CA) and placed at − 80 °C until all samples were ready
for RNA extraction. Total RNA was isolated using the miRNeasy kit
(Qiagen, Valencia, CA). cDNA was reverse-transcribed from 5 μg of
total RNA using random primers and SuperScript II Reverse
Transcriptase (Invitrogen). CBX2 and GAPDH primers were
designed with Primer3 software (sequences listed below). Real-
time quantitative reverse transcriptase-PCR was performed using
Applied Biosystems Fast SYBR Green Master Mix and the
StepOnePlus Real-Time PCR System (Life Technologies Corp.,
Carlsbad, CA, USA). Data normalisation and analysis were
performed as previously described (Acosta et al.).19

CBX2fw: 5′-GGCTGGTCCTCCAAACATAA-3′
CBX2rev: 5′-GCACCTCCTTCTCATGTTCC-3′

GAPDHfw: 5′-CCACATCGCTCAGACACCAT-3′
GAPDHrev: 5′-CCAGGCGCCCAATACG-3′

RESULTS
Deriving a new transcription-driven approach to discover OCs that
are specific for subgroups of breast cancer patients
An OC can be defined as a gene that is highly expressed in a
subset of tumour samples and has uniformly low expression in
adjacent normal tissue. Our primary objective was to test whether
such genes could be found in a cancer patient dataset. RNA-seq
data from 110 breast cancer patients was selected from TCGA as
this was the subset with both tumour and adjacent normal pairs
sequenced for Caucasian females (Fig. 2a). It was important for our
study to avoid differences in expression values between adjacent
normal and tumour tissue that might simply result from person-
to-person variation in gene expression between different indivi-
duals. To ensure that the mixture models could be stably fit to the
data, lowly expressed genes were filtered (see Methods, Fig. 2b).
Two-component mixture models were fit to each transcript for
both tumour and adjacent normal samples independently (Fig. 2b).
For each transcript, tumour and normal samples were separately
classified as expressing either low or high levels of gene
expression based on the mixture component with the largest
probability density. This series of filtering steps yielded a set of
3823 genes that were further filtered, as described below, to
identify a set of high-confidence OCs.

Oncomix identified five genes with an oncogene-like pattern of
expression
Our statistical approach, oncomix, detects a distinct bimodal
pattern of gene expression across tumours. To identify OCs that
matched these specific patterns from the total pool of genes, two
metrics were derived from the mixture model parameters. First, a
selectivity index (SI) distinguishes those genes that are over-
expressed in a clearly defined group of patient tumours. A
threshold of SI > 0.99 was set based on the observed distribution
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of the SI values. Examination of the gene expression data from
known oncogenes annotated in the Cancer Gene Census
(Supplementary Figure 1) with an SI > 0.99 highlighted oncogenes,
such as ERBB2, with a known role in breast carcinogenesis. The SI
was used in combination with other mixture model parameters to
calculate the oncomix score, which ranks genes based on their
similarity to a theoretically ideal oncogene (Fig. 3a). The

distribution of expression levels for the five genes with the
highest oncomix score each demonstrate a clear and distinct
subgroup of tumours that overexpress each gene (Fig. 3b). Of
note, oncomix did not detect certain genes that are canonically
known to be activated via overexpression (e.g., MYC, CCND1,
FGFR1, FGFR2),20 in part because of their high levels of expression
in adjacent normal tissue (mean log2(TPM)= 6.796) relative to the
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expression of the top 5 OCs detected in normal tissue (mean
log2(TPM)= 1.227). Therefore, oncomix is an approach for ranking
genes that are overexpressed in subsets of tumours and forms a
basis for identifying OCs.
As oncomix is based on ranking genes rather than hypothesis

testing, deriving exact power calculations are challenging to apply.
A simulation study was performed to estimate the power
associated with the oncomix procedure that was applied to the
110 tumour-adjacent normal pairs using the thresholds adopted in
this study. At a Type 1 (ɑ) level of 1.91 × 10−6 (Student’s one-sided
t-test), the power is estimated to be 0.723 (based on 1000 simula-
tions, see Supplementary Methods and Supplementary Figure 2)
A literature search of the 5 OCs discovered by oncomix revealed

that oncogene-like features have previously been linked to three
of these genes (Supplementary Table 1). CBX2 and neural EGFL-
like 2 (NELL2) have been shown to promote invasion, metastasis,
or cell division in a variety of in vivo and in vitro models of cancer.
For example, the gene CBX2 was recently shown to be highly
expressed in both androgen-independent, late-stage prostate
cancers (PrCa) and distant PrCa metastases.21 CBX2 is a member of
the polycomb repressive complex (PRC) and expression of this
gene and its protein product is negatively associated with breast
cancer survival22,23 In addition, NELL2 encodes a neural cell growth
factor whose expression is positively regulated by oestrogen, and
that promotes invasion of breast cancer cells.24,25 The sympathetic
nervous system has also been shown to promote breast cancer
metastasis from primary tumours.26 LAG3 encodes a molecule
expressed on the surface of lymphocytes and its expression is
associated with favourable outcomes in breast cancer.27 Further-
more, the five OCs identified by oncomix represent a unique set of
genes that are not reliably detectable by existing approaches,
such as limma12 and mCOPA,7 which rank genes based on
expression profiles between tumour and adjacent normal samples
(Supplementary Table 1 and Supplementary Figure 3). None of the
five OCs identified overlapped with genes found in AIMS,
oncotypeDx or mammaprint.28–30 These results lend support to
the premise for our method, which models population-level
patterns of gene expression in subgroups of patients to identify
unique OCs.

Tumours that overexpress CBX2 manifest transcriptome-wide
changes in the expression of cancer-relevant pathways
Oncogenes are often members of molecular signalling pathways
and can drive changes in cellular processes, such as cell
proliferation, which promote carcinogenesis. Therefore, we sought
to determine whether tumours that overexpressed an OC
harboured carcinogenesis-related transcriptional changes relative
to tumours that did not overexpress a given OC. For each OC,
patients were classified into two groups based on whether their
tumour overexpressed the OC or not. The overexpression of two
of the OCs, EPYC and NELL2, were associated with minor changes
in the cancer transcriptome ( ≤ 5 differentially expressed tran-
scripts, Supplementary Table 2). Among the remaining three OCs,
there were ≥ 90 differentially expressed transcripts.
To characterise the genes that were differentially expressed in

tumours that overexpressed each OC, a pathway overrepresenta-
tion analysis (POA) was performed using a stringent threshold (see
Methods). For all five OCs, no gene sets were enriched when
examining only the genes downregulated in tumours that
overexpress the OC. Significantly enriched gene sets were present
for upregulated genes among the OCs CBX2 and SLC24A2
(Supplementary Table 3). Pathways that were overrepresented in
tumours that overexpress CBX2 include cell cycle checkpoint
regulation. These results are consistent with previous results that
showed differential expression of genes within cell cycle-related
pathways following small interfering RNA (siRNA)-mediated CBX2
silencing in PrCa cells.21 CBX2 overexpression was associated with
the upregulation of genes such as KIF2C (log2(fold change)= 1.57;

q= 9.00 × 10−7), a member of the kinesin family of proteins that
are important for mediating microtubule dynamics during
mitosis31 (Supplementary Table 4). The KIF2C gene has been
demonstrated to be regulated by EZH2, the catalytic subunit of
the PRC2, in the context of melanoma, which supports our
findings of a link between the CBX2, a member of the PRC1
complex, and KIF2C expression.32 These analyses demonstrate that
two out of the five genes identified to be overexpressed in a
subset of patient tumours may alter the breast cancer transcrip-
tome in a biologically plausible manner.

Prediction of OC overexpression reveals that molecular features
are more influential than clinicopathologic features
We next sought to identify the biological and clinical features that
could contribute to the overexpression of the five identified OCs in
a subset of breast tumours (Fig. 1a). The predictor variables used
in the regularized multiple logistic regression model represented
four broad categories: DNA methylation, expression and copy
number, clinicopathologic and technical variables (see Supple-
mentary Figure 4 for datasets and processing information and
Supplementary Figure 5 for a model-fitting schematic). For two
out of the five OCs, including CBX2, intronic methylation was the
most predictive covariate. Furthermore, the distribution of CpG β-
values for the single most influential covariate in the CBX2 model,
a CpG site located within the second intron of the CBX2 gene
(Supplementary Figure 6), showed a clear reduction in DNA
methylation (P-value < 1 × 10−8, Wilcoxon rank-sum test) in breast
tumours that overexpress CBX2 (Fig. 1b). This intronic CpG site
overlaps with the binding site for an oncogenic transcription
factor, JunD, which promotes cancer cell proliferation.33 In
addition, the molecular subtype, as inferred using Absolute
Intrinsic Molecular Subtyping (AIMS) method,30 was strongly
associated with OC overexpression (two-way analysis of variance
(ANOVA), F(1, 107), AIMS: P-value= 8.9 × 10−4, intronic CpG
methyl: P-value= 1.4 × 10−9) (Supplementary Figure 7). No
statistically significant associations were found between oncogene
driver mutations and OC overexpression (Supplementary Figure 8).
Relative to the molecular variables, clinicopathologic character-
istics, such as cell subtype composition, patient age and the
presence of metastases, were weakly associated with OC over-
expression, indicated by the lighter colours and absent within-cell
numbers in Fig. 1a. These analyses demonstrate that OC
overexpression is strongly associated with molecular covariates,
particularly DNA CpG methylation.

CBX2 is overexpressed in aggressive breast carcinomas and is
associated with poor survival
Post hoc visualisation from the logistic regression model from
Fig. 3a revealed a positive relationship between the aggressive-
ness of the AIMS breast tumour subtype and the proportion of
patients who expressed CBX2 within each subtype (Supplemen-
tary Figure 7).30 Expression of CBX2 is not part of the mRNA
expression-based AIMS classification scheme, which highlights the
potential utility of CBX2 in the identification and molecular
subtyping of aggressive breast tumours. This is the first report
using RNA-seq data to show that CBX2 is enriched in basal-like and
HER2+ tumours and our result is supported by a previous study
that also found increased CBX2 expression in basal-like breast
tumours in a microarray mRNA breast cancer dataset.22,34 CBX2
mRNA expression may therefore serve as a marker of aggressive
breast cancer subtypes, such as basal-like carcinomas, which lack a
reliable molecular marker. Furthermore, CBX2 overexpression was
associated with poorer survival in the entire TCGA breast cancer
cohort of 1084 patients with available survival data (Fig. 4). The
survival analysis was applied to all 1084 cases, instead of the 110
cases with tumour-adjacent normal pairs, because we wanted to
evaluate the clinical impact of CBX2 more broadly in the patient
population. A significant reduction in 5-year survival in tumours
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that overexpressed CBX2 vs. those that did not was observed (q=
0.03, log-rank test). This result is consistent with a report that
found that high levels of CBX2 protein expression in breast
tumours was associated with an increased risk of mortality.23

However, no survival differences were detected between patients
with tumours that do versus do not overexpress CBX2 within
each the 5 molecular subtypes (q > 0.05). These results demon-
strate that CBX2 overexpression is associated with survival
outcomes that exist across, but not within, the intrinsic molecular
subtypes.

CBX2 is expressed at low levels in most adult female tissues
To maximise efficacy and minimise side effects, an ideal drug
target needs to be highly expressed in and specific to cancerous
tissue, while also expressed at low levels in most other tissues. To
examine the expression levels of CBX2 in normal adult tissues, data
from the GTEx portal (https://www.gtexportal.org/home/) was
used to examine the expression levels of CBX2 across 53 normal
adult tissues from 8555 individual samples obtained from 544
human donors. CBX2 was highly expressed specifically in adult
testes and expressed at low levels in virtually all other tissues in
both men and women (Supplementary Figure 9). Targeted
inhibition of CBX2may therefore pose a novel therapeutic strategy
with minimal side effects on healthy tissue for women whose
breast tumours overexpress CBX2.

CBX2 siRNA knockdown slows the growth of breast cancer cells
Although prior associative computational studies suggest that
CBX2 is linked to breast cancer,22 no study has experimentally
demonstrated a role for CBX2 in breast carcinogenesis. To
investigate the role of CBX2 in promoting breast cancer growth,
we performed genetic knockdown of CBX2 in MCF7 breast cancer
cells. We observed that adherent MCF7 breast cancer cells grew,
on average, 20% more slowly over the course of 7 days following
CBX2 siRNA knockdown relative to a scrambled siRNA control
(Fig. 5, three-way ANOVA, P-value= 7.0 × 10−7). These results
suggest that CBX2 is involved in regulating the growth of breast
cancer cells and that inhibition of CBX2 function may serve as a
therapeutic strategy to slow the rate of breast cancer cell growth.

DISCUSSION
Human breast tumours have a broad array of drivers that modulate
growth and metastasis. The identification of additional oncogenic

drivers will expand our repertoire of personalised therapeutic targets
for breast cancer. Here we developed a method, termed oncomix,
which identified OC genes with known roles in oncogenesis, and
which unveiled subgroups of patients that overexpress the OC. The
value of this tool is made clear by considering CBX2, the most
promising OC identified, and its implications as a potential drug
target for breast carcinoma.
CBX2 is a gene whose protein product binds to H3K9me3 and

H3K27me3 sites with high affinity in mice and forms part of the
PRC1, a multi-protein complex that modifies histones and preserves
stemness by silencing lineage-specifying regulator genes in
intestinal and embryonic stem cells.35–37 Our results, which are the

N = 1084 breast tumors
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first to demonstrate that CBX2 siRNA knockdown slows breast cancer
cell growth, build upon previous studies that showed that CBX2
siRNA knockdown promotes PrCa cell death.21 CBX2 is consistently
upregulated in castration-resistant PrCa metastases and its expres-
sion correlates with poor patient outcomes in breast and PrCa.21–23

Furthermore, we show that breast tumours that overexpress CBX2
highly express genes that belong to cell cycle-related pathways. This
result is consistent with a prior study, which showed that over 500
differentially expressed genes between CBX2 knockdown and wild-
type PrCa cells were enriched in proliferation-related processes.21

Our finding is also consistent with the established role of many
oncogenes as drivers of transcriptional alterations within signalling
pathways that promote cellular growth.38,39

Multiple lines of evidence lend support to CBX2 as a potential
drug target against aggressive subtypes of breast carcinoma. First,
CBX2 is expressed at low levels in most healthy adult female tissues
and targeted CBX2 inhibition may therefore spare non-tumour
tissue and result in fewer side effects. Second, tumours that
overexpress CBX2 are mostly classified as HER2+ or basal-like, an
aggressive subtype against which there are no specific chemother-
apeutic interventions and are associated with poor overall 5-year
survival. Third, CBX2 inhibition via genetic knockdown impedes the
growth of breast cancer cells, which suggests that CBX2 may have
an important role regulating breast cancer growth. Fourth, CBX2
contains a chromodomain that can be pharmacologically targeted
and the crystal structure of CBX2 was recently solved in complex
with a PRC1-specific chromodomain inhibitor, Unc3866.40 In sum,
the results from previous and the current study suggest that CBX2 is
a potential therapeutic drug target in breast cancer.
The identification of a strong association between DNA

methylation—a reversible transcriptional regulatory process—
and CBX2 overexpression suggests that CBX2 expression may be
reversibly regulated to drive important tumour behaviour, such as
the switch between cell division and metastasis. Prior work
suggests a role for CBX2 overexpression in driving PrCa metastasis
that was reversible upon siRNA inhibition of CBX2.21 Metastatic
cancer cells undergo reversible changes during the complex
processes of extravasation, infiltration, seeding and proliferation
within distant sites, and members of the polycomb complex, such
as EZH2, have been associated with metastasis and invasion.41,42

This apparent plasticity is likely to be governed by epigenetic
processes, as opposed to DNA sequence mutations. This is
because molecular and cellular plasticity is required to navigate
between the dichotomous processes of cell migration, which
occurs as tumour cells metastasize to distant tissues, and cell
division, which resumes as metastatic tumour cells seed a new site
(as reviewed by Tam and Weinberg43). The previously published
observation that the CBX2 locus is rarely mutated in human
cancers supports the role of CBX2 in such processes.22 In addition,
regulation of CBX2 expression by DNA CpG methylation may be
important for regulating cell division and metastasis, a process
that occurs in aggressive breast tumour subtypes (e.g., Basal-like
and HER2+) and one that requires dynamic reversibility between
cell cycling and cell migration during the epithelial to mesench-
ymal transition.43 Future studies will investigate the cause-and-
effect relationship between expression and DNA methylation at
the CBX2 locus and its role in promoting breast carcinogenesis.
When comparing the genes identified by oncomix vs. the other

two methods, mCOPA and limma, it was clear that the underlying
assumptions made by regarding distributions of the data drive the
ranking of the genes. The top five candidates identified by mCOPA
and limma highlight how these methods are built to identify
genes with specific distributions that deviate from the profile
detected by oncomix (Supplementary Figure 3). Specifically, limma
highly ranks genes where the separation between tumour and
normal sample means is maximal. mCOPA is designed for the
analysis of microarray experiments, is more appropriate for
identifying individual outliers and does not select for genes with

visible subsets of patients that overexpress a gene. Oncomix is the
only method tested that identifies genes with tumour samples
that are grouped into two visible clusters (Fig. 3b) and with low
expression in adjacent normal tissue. Of note, other available
methods are used to detect genes with bimodal expression but do
not allow for comparisons between tumour and normal samples.
For example, SIBER (systematic identification of bimodally
expressed genes using RNA-seq data)8 was developed for single
populations of similar samples (e.g., tumour or adjacent normal
samples only). Therefore, oncomix is unique in its ability to
leverage bimodal changes occurring between tumour and
adjacent normal samples to identify OCs.
In summary, we have identified an OC, CBX2, based on a model

that captures subgroups of tumours that overexpress mRNA
relative to normal tissue. Computational and experimental
evidence point to the role of CBX2 as a regulator of breast cancer
cell growth. Our computational method, oncomix, is a flexible
approach for modelling population-level gene expression data to
identify OCs. Conceptually, oncomix may also be adapted to
capture tumour suppressor candidates. Although breast cancer, a
well-studied form of cancer, was used as a proof-of-concept
example for our method, oncomix can detect OCs in additional
types of cancer (Supplementary Figures 10–12).
CBX2 may serve as a potential therapeutic strategy against

aggressive breast cancers, due to its low expression in healthy
female tissues, available pharmacologic inhibitors and association
with poor survival. Future experimental studies are required to
address how DNA methylation within the CBX2 locus is associated
with oncogenic processes such as cell division within both bulk
tumour tissue as well as single tumour cells. The role of CBX2 in
other solid cancers should also be investigated, as a similar
overexpression profile for CBX2 is observed in endometrial and
lung adenocarcinoma (Supplementary Figure 13). Our novel
approach to identifying OCs through oncomix will be particularly
useful for identifying regulators of previously unknown tumour
subgroups within cancer datasets that include expression levels
from hundreds or thousands of patient tumours and their
adjacent normal tissue.
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