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Abstract. The prognosis for patients with gastric cancer (GC) 
is usually poor, as the majority of patients have reached the 
advanced stages of disease at the point of diagnosis. Therefore, 
revealing the mechanisms of GC is necessary for the identi-
fication of key biomarkers and the development of effective 
targeted therapies. The present study aimed to identify long 
non‑coding RNAs (lncRNAs) prominently expressed in 
patients with GC. The GC dataset (including 384 GC samples) 
was downloaded from The Cancer Genome Atlas database as 
the training set. A number of other GC datasets were obtained 
from the Gene Expression Omnibus database as validation 
sets. Following data processing, lncRNAs were annotated, 
followed by co‑expression module analysis to identify stable 
modules, using the weighted gene co‑expression network anal-
ysis (WGCNA) package. Prognosis‑associated lncRNAs were 
screened using the ‘survival’ package. Following the selection 
of the optimal lncRNA combinations using the ‘penalized’ 
package, risk score systems were constructed and assessed. 
Consensus differentially‑expressed RNAs (DE‑RNAs) were 
screened using the MetaDE package, and an lncRNA‑mRNA 
network was constructed. Additionally, pathway enrichment 
analysis was conducted for the network nodes using gene 
set enrichment analysis (GSEA). A total of seven modules 
(blue, brown, green, grey, red, turquoise and yellow) were 
obtained following WGCNA analysis, among which the green 
and turquoise modules were stable and associated with the 
histological grade of GC. A total of 12 prognosis‑associated 

lncRNAs were identified in the two modules. Combined 
with the optimal lncRNA combinations, risk score systems 
were constructed. The risk score system based on the green 
module [including ITPK1 antisense RNA 1 (ITPK1‑AS1), 
KCNQ1 downstream neighbor (KCNQ1DN), long intergenic 
non‑protein coding RNA 167 (LINC00167), LINC00173 and 
LINC00307] was the more efficient at predicting risk compared 
with those based on the turquoise, or the green + turquoise 
modules. A total of 1,105 consensus DE‑RNAs were identified; 
GSEA revealed that LINC00167, LINC00173 and LINC00307 
had the same association directions with 4 pathways and the 
32 genes involved in those pathways. In conclusion, a risk score 
system based on the green module may be applied to predict 
the survival of patients with GC. Furthermore, ITPK1‑AS1, 
KCNQ1DN, LINC00167, LINC00173 and LINC00307 may 
serve as biomarkers for GC pathogenesis.

Introduction

Gastric cancer (GC) originates from the lining of the stomach, 
and may metastasize to other tissues and organs, including the 
lungs, liver, lymph nodes and bones (1). It is estimated that 
22,220 new cases of GC were diagnosed and 10,990 patients 
succumbed to GC in 2014 (2). GC is more common in males, 
and has a high incidence in East Asia and Eastern Europe (3). 
The most common inducer of GC is Helicobacter pylori infec-
tion, although other risk factors include pickled foods, smoking 
and obesity (4,5). Patients with GC usually have an unfavorable 
prognosis, as the majority reach the advanced stages of disease 
prior to diagnosis (6). Therefore, determining the mechanisms 
of GC is required for the identification of key biomarkers and 
the development of effective targeted therapies.

The human genome project indicates that only 1.2% of 
the mammalian genome encodes proteins (7), and that the 
majority of the genome is transcribed to tens of thousands 
of long non‑coding RNAs (lncRNAs), which are >200 nt in 
length (8). lncRNAs function in various biological processes, 
including cellular development and differentiation (9). It has 
increasingly been suggested that the principal role of lncRNAs 
is the guidance of site specificity for chromatin‑modifying 
complexes in order to effect epigenetic alterations  (10). 
lncRNAs act through a number of mechanisms in the control 
of cancer. For instance, specific lncRNAs are key regulators of 
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the protein signaling pathways underlying carcinogenesis (11). 
Additionally, other lncRNAs function as decoys, sequestering 
biomolecules and preventing cancerous cells from fulfilling 
their cellular roles (12,13). Numerous studies have reported 
the important role of lncRNAs in GC; lncRNA‑H19 is 
upregulated in GC tissues and affects the progression and 
metastasis of GC by promoting isthmin 1 expression and 
inhibiting calneuron 1 expression (14). The downregulated 
expression of lncRNA maternally expressed gene 3 promotes 
cell proliferation and apoptosis, and predicts a poor prognosis 
in GC (15,16). Overexpression of the lncRNA colon cancer 
associated transcript 2 associates with the progression of 
GC and may serve as a promising prognostic marker for the 
disease (17). Antisense ncRNA in the INK4 locus acts as a 
growth regulator in GC by silencing microRNA (miR)‑99a and 
miR‑449a, and may indicate a potential prognostic biomarker 
and therapeutic target in GC  (18,19). BRAF‑activated 
non‑coding RNA overexpression associates positively with 
tumor depth, clinical stage and tumor metastasis, and predicts 
a poor prognosis in patients with GC (20). However, the func-
tions of numerous lncRNAs remain unclear; therefore, it is 
necessary to conduct a comprehensive assessment of the func-
tions of lncRNAs in GC.

Bioinformatics analysis of gene expression profiles has 
been widely applied to investigate the pathogenesis of various 
diseases  (21). In the current study, multiple GC datasets 
were searched and downloaded from open access databases. 
Using comprehensive bioinformatics analyses, certain 
prognosis‑associated lncRNAs were identified. An optimal 
risk score system based on these lncRNAs was constructed to 
evaluate the risk of developing GC, the efficiency of which was 
determined using various independent datasets.

Subjects and methods

Data sources. The mRNA‑sequencing data for GC, sequenced 
on the Illumina HiSeq 2000 RNA Sequencing platform 
(Illumina, Inc., San Diego, CA, USA), were downloaded from 
The Cancer Genome Atlas (TCGA; https://cancergenome.nih.
gov/) database, which included 384 GC samples. Among the 
384 samples, there were 122 samples from deceased patients 
due to GC, 238 samples from surviving patients (mean survival 
time, mean ± standard deviation, 16.17±16.96 months) and 
24 samples without survival information.

From the Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo/) database, three kinds of datasets 
(dataset I‑III) were searched and identified using ‘gastric 
cancer’ as the key words. Dataset I was searched according 
to the following criteria: i) The dataset was a gene expression 
profile; ii) the samples were tumor tissues from patients with 
GC; iii) the dataset was a human expression profile; and iv) the 
total number of samples was ≥100. Thus, GSE15459 (22‑26) 
(including 300 GC samples) and GSE54129 (including 111 
GC samples) sequenced on the Affymetrix‑GPL570 plat-
form (Affymetrix; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) were selected. The criteria for searching GC 
dataset II were as follows: i) The dataset was a gene expres-
sion profile; ii) the samples were tumor tissues from patients 
with GC; iii)  the dataset was a human expression profile; 
iv)  the samples contained survival information; and v)  the 

total number of samples was ≥100. Only GSE62254  (27) 
(including 300 GC samples; Affymetrix‑GPL570 platform; 
Affymetrix; Thermo Fisher Scientific, Inc.,) was selected, 
involving 135 samples from deceased patients due to GC, 
and 148 samples from surviving patients (mean survival 
time, mean ± standard deviation, 50.59±31.42 months), and 
17  samples without survival information. Dataset III was 
selected according to the following criteria: i) The dataset 
was a gene expression profile; ii)  the samples were tumor 
tissues from patients with GC; iii) there were control tissues; 
iv) the dataset was a human expression profile; and v) the total 
number of samples was ≥50. Ultimately, the GSE65801 (28) 
(including 32 GC samples and 32 control samples; Agilent 
GPL14550 platform; Agilent Technologies, Inc., Santa Clara, 
CA, USA), GSE29998 (29) (including 50 GC samples and 
49 control samples; GPL6947 Illumina HumanHT‑12 V3.0 
platform; Illumina, Inc.), GSE33335 (30‑32) (including 25 GC 
samples and 25 control samples; GPL5175 [HuEx‑1_0‑st] plat-
form) and GSE27342 (33,34) (including 80 GC samples and 80 
control samples; GPL5175 [HuEx‑1_0‑st] platform) datasets 
were selected.

Data preprocessing. The data from the aforementioned 
databases were divided into three types based on the testing 
platforms. For the dataset from TCGA, the quantile standardiza-
tion method in the R package preprocessCore (version 1.40.0; 
http://bioconductor.org/packages/release/bioc/html/preprocessCore. 
html) (35) was used for data normalization. For the CIMFast Event 
Language data sequenced on the Affymetrix platform, the R 
package oligo (version 1.41.1; http://www.bioconductor.org/pack-
ages/release/bioc/html/oligo.html) (36) was utilized for format 
conversion, missing data filling, background correction and data 
normalization. For the TXT data sequenced on the Agilent plat-
form, the R package Limma (version 3.34.0; https://bioconductor.
org/packages/release/bioc/html/limma.html) (37) was applied for 
log2 logarithmics and data normalization.

Subsequently, lncRNAs were annotated based on the 
Ref_seq and Transcript_ID provided by the annotation plat-
form, and aligned with human genome sequences (version, 
GRCh38) on a platform using Clustal 2.1 software (http://www.
clustal.org/clustal2/) (38). Subsequently, multiple annotation 
results were merged to identify the lncRNAs and their corre-
sponding expression information (39‑41).

Weighted gene co‑expression network analysis (WGCNA) 
to identify disease‑associated modules. As a bioinformatics 
algorithm for building co‑expression networks, WGCNA 
is used to identify disease‑associated modules and thus 
screen for pathogenic processes and potential therapeutic 
targets (42). In the present study, based on the use of TCGA 
dataset as the training dataset, and GSE15459 and GSE54129 
as the validation datasets, stable modules associated with 
GC were identified using the R package WGCNA (version 
1.61; https://cran.r‑project.org/web/packages/WGCNA/index.
html) (43). Expression correlation between every two of the 
three datasets was calculated, and the adjacent function was 
defined as follows: WGCNA analysis was required to satisfy 
the precondition of scale‑free network distribution, and thus 
the value of the adjacency matrix weighting parameter ‘power’ 
was investigated. Based on the RNA data, the squares of the 
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correlation coefficients between log (k) and log [p (k)] were 
calculated for different ‘power’ values. A higher square value 
indicated that the network was closer to a scale‑free network 
distribution. Following the definition of the adjacent function, 
module partition was conducted (the thresholds for module 
partition were that the module contained ≥150 RNAs and a 
cutHeight of 0.99). Combined with the clinical information 
from TCGA dataset, the correlation between each module and 
the clinical information was analyzed. Functional annotation 
was conducted for each stable module using the userListEn-
richment function in the WGCNA package (43). Additionally, 
differential expression analysis of lncRNAs between tumor 
and control groups was performed for each module, with a 
P‑value and false discovery rate (FDR) of <0.05.

Selection of prognosis‑associated lncRNAs. Based on the 
lncRNAs obtained in the clinical factors‑associated stable 
modules, univariate Cox regression analysis was performed 
using the R package survival (version 2.4; https://cran.r‑project.
org/web/packages/survival/index.html) (44) for the GC samples 
with survival information in the TCGA dataset, to identify 
prognosis‑associated lncRNAs. A log‑rank P‑value of <0.05 
was considered to indicate a statistically significant difference.

Construction and assessment of a risk score system. The 
lncRNAs in the stable modules that correlated significantly 
with notable clinical factors were analyzed separately. 
Using the Cox‑Proportional Hazards (Cox‑PH) model in 
the R package ‘penalized’ (http://bioconductor.org/pack-
ages/penalized/)  (45), the optimal lncRNA combinations 
were selected. The parameter ‘lambda’ was obtained with 

1,000 circulation calculations using a cross‑validation likeli-
hood algorithm (46). Subsequently, the risk score system was 
constructed, combined with the regression coefficient (β) and 
expression level (exprlncRNA) of each lncRNA in the optimal 
lncRNA combination. The risk score of each sample was 
calculated using the following formula:

Risk score = β lncRNA1 x exprlncRNA1 + β lncRNA2 x exprlncRNA2 + ··· + 
βlncRNAn x exprlncRNAn.

The samples in the TCGA dataset were divided into 
high‑risk and low‑risk groups according to the median of 
their risk scores. Kaplan‑Meier survival curves were used to 
evaluate the correlation between the overall survival of the 
samples and the two groups. Using GSE15459 and GSE54129 
as the validation datasets, the robustness of the risk score 
system in predicting sample risk and prognosis was assessed. 
Moreover, the predictive results of the risk score system in the 
training and validation datasets were compared to identify the 
optimal model for subsequent analyses.

Differential expression analysis of notable lncRNAs in 
multiple datasets. Using the MetaDE.ES algorithm in the 
R package MetaDE (version 1.0.5; https://cran.r‑project.
org/web/packages/MetaDE/)  (47,48), consensus differen-
tially expressed RNAs (DE‑RNAs; between GC and control 
samples) were screened from the GSE65801, GSE29998, 
GSE33335 and GSE27342 datasets. τ2=0, Qpval>0.05, P<0.05 
and FDR<0.05 were set as the cut‑off criteria. The focus was 
the differential expression of the notable lncRNAs that were 
screened as disease or prognosis related‑lncRNAs.

Figure 1. The correlation analysis of the datasets. (A) Expression correlations and (B) connection correlations between the RNAs of every two entries of TCGA 
dataset, GSE15459 and GSE54129. Left, middle, and right diagrams represent TCGA‑GSE15459, TCGA‑GSE54129 and GSE15459‑GSE54129, respectively. 
TCGA, The Cancer Genome Atlas; GSE, gene set enrichment.



HU et al:  RISK SCORE SYSTEM FOR GC SURVIVAL PREDICTION 4477

Analysis of lncRNA‑associated pathways. Based on the corre-
lation coefficients between notable lncRNAs and mRNAs that 
were located in the same WGCNA module, the lncRNA‑mRNA 
network was constructed. Subsequently, pathway enrichment 
analysis was conducted for the network nodes using Gene Set 
Enrichment Analysis (GSEA; http://software.broadinstitute.
org/gsea/index.jsp)  (49). A nominal P‑value of <0.05 was 
considered to indicate a statistically significant difference.

Results

Identification of GC‑associated stable modules based on 
WGCNA. Following data preprocessing, a total of 988 lncRNAs 
and 15,127 mRNAs shared by TCGA dataset, GSE15459 and 
GSE54129 were identified. TCGA dataset was taken as the 
training dataset, whilst GSE15459 and GSE54129 were used 
as the validation datasets to screen for GC‑associated RNA 
modules.

To ensure that the RNA expression levels in each dataset 
were comparable, expression consistency analysis was 
performed for the expression values of shared RNAs. As 
outlined in Fig. 1A, the correlation in expression between 
every two of the three datasets was >0.85, and P‑values were 
<1x10‑200, indicating significant positive correlations between 
every two datasets and suggesting that these data sets are 
comparable and suitable for further analysis. Additionally, the 
correlations of connectivity between nodes were >0.5, and the 
P‑values were <1x10‑200, suggesting that connection correla-
tions between the RNAs of every two datasets were positive 
(Fig. 1B).

Following definition of the adjacent function, the power 
value of 6, for which the square value of the correlation coef-
ficient reached 0.9 for the first time, was selected (Fig. 2A). 
Under a power value of 6, the mean connectivity degree of the 
RNAs was 2, which conformed to the small‑world property in 
a scale‑free network (Fig. 2B).

Following construction of the co‑expression network 
(based on TCGA dataset), the stable modules associated with 
disease were screened. A total of seven modules (blue, brown, 
green, grey, red, turquoise and yellow) were obtained (Fig. 3A). 
The differentially expressed lncRNAs between the tumor 
and control groups in the seven modules are listed in Table I. 
Combined with the seven modules and the RNAs involved in 
each module, corresponding module partition was conducted 
in GSE15459 (Fig. 3B) and GSE54129 (Fig. 3C).

For TCGA dataset, the module partition and module corre-
lations are presented in Fig. 4. The results illustrate that the 
RNAs in the same module tended to cluster together, including 
the green or blue nodes, indicating that the RNAs have more 
similar expression levels (Fig. 4A). The green and blue modules 
have the characteristics of independent branches (Fig. 4B).

The stabilities of the seven modules were assessed, and 
the blue, green, red, turquoise and yellow modules were 
deemed stable (preservation Z score >5). The top three 
modules were turquoise, green and yellow, according to 
the preservation Z  score, and these three may be associ-
ated with GC pathogenesis. Functional annotation for each 
stable module revealed that the lncRNAs in the turquoise 
(including 46 lncRNAs), green (including 30 lncRNAs) and 
yellow (including 32 lncRNAs) modules were predominantly 
enriched in cell adhesion, immune response and digestion, 
respectively (Table II).

In addition, based on the clinical information in TCGA 
dataset, the correlation between each module and the clinical 
factors was analyzed. Among the 5 stable modules, the green 
and turquoise modules correlated significantly with histo-
logical grade (Fig. 4C). Therefore, the green and turquoise 
modules were further analyzed.

Selection of prognosis‑associated lncRNAs. Based on 
the 76 lncRNAs in the green and turquoise modules, 12 
prognosis‑associated lncRNAs were identified in TCGA 

Figure 2. Selection diagram of the adjacency matrix weighting parameter ‘power’. (A) The red line is the standard when the square of the correlation coefficient 
reaches 0.9. (B) The mean connectivity of RNAs under different values of ‘power’ (the red line represents the mean connectivity of 2 when the power is 6).
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Figure 3. Module partition trees of datasets. (A) TCGA dataset, (B) GSE15459 and (C) GSE54129. Modules are indicated by different colors. TCGA, The 
Cancer Genome Atlas; GSE, gene set enrichment.

Figure 4. The association analysis of the gene modules and clinical features. (A) Multidimensional extension plot of the RNAs in each module. The horizontal 
and vertical axes separately represent the first and second principal components. (B) Module dendrogram of the seven modules. (C) Correlation heat map 
between each module and clinical factors; the horizontal and vertical axes separately represent clinical factors and modules; the change of color from green 
to red indicates the change of correlation from negative to positive; the numbers in grids represent correlation coefficients, and the numbers in parentheses 
represent significant P‑values. ME, module eigengene; MDS, multidimensional scaling; TNM, Tumor Node Metastasis.
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Table I. Differentially expressed lncRNAs between the tumor 
and control groups in 7 modules.

Group	 Module	 P‑value	 FDR	 logFC

HOTAIR	 Blue	 1.01x10‑55	 1.46x10‑53	 5.2805 
MCF2L‑AS1	 Blue	 2.58x10‑15	 3.74x10‑14	 0.9188 
GAS5	 Brown	 8.85x10‑7	 3.38x10‑6	 0.1977 
CASC2	 Green	 5.41x10‑11	 3.92x10‑10	 0.7532 
CECR3	 Green	 2.06x10‑11	 1.66x10‑10	 2.8280 
CPS1‑IT1	 Green	 1.58x10‑2	 2.48x10‑2	 1.2022 
HCG27	 Green	 2.35x10‑3	 4.49x10‑3	 0.3698 
IGF2‑AS	 Green	 3.12x10‑6	 1.08x10‑5	 2.2240 
INHBA‑AS1	 Green	 1.85x10‑2	 2.86x10‑2	 0.9693 
JAZF1‑AS1	 Green	 6.36x10‑3	 1.12x10‑2	 ‑0.5507 
KCNQ1DN	 Green	 1.59x10‑2	 2.48x10‑2	 1.8214 
LINC00032	 Green	 3.31x10‑3	 6.15x10‑3	 0.8562 
LINC00112	 Green	 1.50x10‑2	 2.42x10‑2	 2.1061 
LINC00115	 Green	 1.66x10‑10	 1.09x10‑9	 0.7638 
LINC00163	 Green	 2.81x10‑2	 4.16x10‑2	 ‑1.2973 
LINC00167	 Green	 7.42x10‑4	 1.58x10‑3	 0.5133 
LINC00242	 Green	 1.84x10‑6	 6.67x10‑6	 0.6465 
LINC00299	 Green	 2.20x10‑16	 3.99x10‑15	 1.8836 
LINC00326	 Green	 1.72x10‑3	 3.47x10‑3	 4.7055 
LINC00330	 Green	 1.28x10‑2	 2.12x10‑2	 ‑1.9390 
LINC00410	 Green	 4.51x10‑7	 1.92x10‑6	 4.2579 
LINC00485	 Green	 2.56x10‑7	 1.12x10‑6	 2.6578 
LINC00486	 Green	 3.22x10‑4	 8.06x10‑4	 1.6764 
LINC00523	 Green	 1.59x10‑3	 3.29x10‑3	 3.1421 
LINC00607	 Green	 5.97x10‑7	 2.40x10‑6	 1.4066 
WDFY3‑AS2	 Green	 6.90x10‑4	 1.54x10‑3	 ‑0.4393 
ADARB2‑AS1	 Grey	 1.52x10‑4	 4.09x10‑4	 2.0305 
TP53TG1	 Grey	 5.11x10‑6	 1.65x10‑5	 ‑0.2026 
TTTY14	 Grey	 4.86x10‑4	 1.12x10‑3	 ‑1.0856 
AGPAT4‑IT1	 Red	 5.75x10‑6	 1.77x10‑5	 0.8612 
BPESC1	 Red	 1.12x10‑3	 2.35x10‑3	 1.7243 
BVES‑AS1	 Red	 1.82x10‑4	 4.71x10‑4	 ‑1.6299 
DGCR5	 Red	 6.81x10‑15	 8.98x10‑14	 1.7023 
DSCR9	 Red	 8.94x10‑14	 1.08x10‑12	 1.1941 
EPB41L4A‑AS1	 Red	 3.87x10‑2	 5.51x10‑2	 ‑0.0787 
HCG18	 Red	 1.24x10‑12	 1.20x10‑11	 0.4696 
LINC00029	 Red	 2.01x10‑3	 3.94x10‑3	 1.7851 
LINC00467	 Red	 1.06x10‑10	 7.32x10‑10	 0.4418 
LINC00470	 Red	 5.90x10‑6	 1.78x10‑5	 1.6068 
LINC00487	 Red	 2.29x10‑2	 3.49x10‑2	 0.9837 
LINC00574	 Red	 8.80x10‑5	 2.45x10‑4	 0.7952 
MAGI2‑AS3	 Red	 3.00x10‑2	 4.35x10‑2	 ‑0.4123 
MIR17HG	 Red	 2.02x10‑27	 4.18x10‑26	 1.5489 
MORC2‑AS1	 Red	 3.08x10‑16	 4.96x10‑15	 0.5989 
SHANK2‑AS3	 Red	 1.49x10‑8	 8.00x10‑8	 1.6254 
TTTY13	 Red	 7.02x10‑4	 1.54x10‑3	 2.8019 
ASMTL‑AS1	 Turquoise	 2.97x10‑12	 2.69x10‑11	 0.6011 
C20orf166‑AS1	 Turquoise	 3.52x10‑4	 8.64x10‑4	 ‑1.8050 
CCDC26	 Turquoise	 6.66x10‑3	 1.15x10‑2	 0.9937 
CIRBP‑AS1	 Turquoise	 2.95x10‑9	 1.71x10‑8	 0.6040 
CRNDE	 Turquoise	 2.43x10‑3	 4.58x10‑3	 0.4485 

Table I. Continued.

Group	 Module	 P‑value	 FDR	 logFC

CSNK1G2‑AS1	 Turquoise	 3.76x10‑9	 2.10x10‑8	 1.2461 
CYP1B1‑AS1	 Turquoise	 2.36x10‑3	 4.49x10‑3	 ‑0.7444 
DSCR10	 Turquoise	 5.40x10‑4	 1.22x10‑3	 3.0388 
ENO1‑AS1	 Turquoise	 1.73x10‑4	 4.56x10‑4	 0.4499 
FBXL19‑AS1	 Turquoise	 3.49x10‑32	 1.01x10‑30	 0.9572 
JPX	 Turquoise	 3.27x10‑5	 9.30x10‑5	 0.2466 
LGALS8‑AS1	 Turquoise	 1.04x10‑6	 3.87x10‑6	 0.4645 
LINC00052	 Turquoise	 2.46x10‑6	 8.70x10‑6	 3.7146 
LINC00161	 Turquoise	 4.63x10‑4	 1.08x10‑3	 0.9597 
LINC00189	 Turquoise	 2.11x10‑8	 1.09x10‑7	 1.2475 
LINC00290	 Turquoise	 2.47x10‑2	 3.73x10‑2	 2.6024 
LINC00308	 Turquoise	 4.33x10‑3	 7.85x10‑3	 2.1851 
LINC00309	 Turquoise	 2.65x10‑4	 6.75x10‑4	 2.2938 
LINC00311	 Turquoise	 1.32x10‑2	 2.14x10‑2	 0.6300 
LINC00323	 Turquoise	 6.57x10‑3	 1.15x10‑2	 0.5396 
LINC00347	 Turquoise	 1.63x10‑3	 3.32x10‑3	 2.4716 
LINC00471	 Turquoise	 3.59x10‑6	 1.18x10‑5	 1.0278 
LINC00477	 Turquoise	 4.83x10‑3	 8.64x10‑3	 1.4857 
LINC00479	 Turquoise	 4.59x10‑4	 1.08x10‑3	 1.1469 
LINC00482	 Turquoise	 1.02x10‑4	 2.80x10‑4	 0.8407 
LINC00518	 Turquoise	 6.17x10‑8	 2.98x10‑7	 2.5336 
LINC00582	 Turquoise	 4.52x10‑4	 1.08x10‑3	 ‑1.5306 
NBR2	 Turquoise	 1.03x10‑9	 6.49x10‑9	 0.3945 
NEAT1	 Turquoise	 1.19x10‑5	 3.45x10‑5	 0.2762 
NPSR1‑AS1	 Turquoise	 9.94x10‑31	 2.40x10‑29	 5.6701 
PCBP1‑AS1	 Turquoise	 3.37x10‑8	 1.69x10‑7	 ‑0.4557 
RUSC1‑AS1	 Turquoise	 7.90x10‑7	 3.10x10‑6	 0.1934 
ST7‑AS2	 Turquoise	 5.65x10‑6	 1.77x10‑5	 0.2453 
ZNF295‑AS1	 Turquoise	 1.89x10‑3	 3.74x10‑3	 1.0881 
ZNF503‑AS2	 Turquoise	 2.98x10‑2	 4.35x10‑2	 ‑0.1638 
C20orf203	 Yellow	 3.31x10‑2	 4.75x10‑2	 0.7754 
DLEU2	 Yellow	 1.01x10‑35	 4.88x10‑34	 1.0471 
FAM201A	 Yellow	 1.42x10‑9	 8.58x10‑9	 0.8587 
FAM66C	 Yellow	 1.54x10‑2	 2.45x10‑2	 ‑0.5395 
HCG4B	 Yellow	 2.42x10‑7	 1.10x10‑6	 1.1311 
HCG9	 Yellow	 7.28x10‑3	 1.24x10‑2	 0.5412 
HCP5	 Yellow	 3.42x10‑6	 1.15x10‑5	 0.4477 
INE1	 Yellow	 4.51x10‑12	 3.85x10‑11	 0.8886 
KIF25‑AS1	 Yellow	 1.51x10‑7	 7.06x10‑7	 1.7721 
LINC00174	 Yellow	 2.83x10‑13	 2.93x10‑12	 0.8178 
LINC00265	 Yellow	 4.80x10‑7	 1.99x10‑6	 0.5363 
LINC00599	 Yellow	 9.87x10‑3	 1.66x10‑2	 1.5708 
LINC00606	 Yellow	 1.28x10‑2	 2.12x10‑2	 4.1423 
LY86‑AS1	 Yellow	 7.20x10‑4	 1.56x10‑3	 1.2773 
PART1	 Yellow	 6.79x10‑6	 2.01x10‑5	 ‑1.5909 
RHPN1‑AS1	 Yellow	 6.31x10‑33	 2.29x10‑31	 1.5361 
SND1‑IT1	 Yellow	 1.31x10‑13	 1.46x10‑12	 1.1209 
SOX2‑OT	 Yellow	 2.75x10‑2	 4.11x10‑2	 ‑0.4175 
TP73‑AS1	 Yellow	 4.11x10‑3	 7.55x10‑3	 ‑0.3515 
TUG1	 Yellow	 3.08x10‑11	 2.35x10‑10	 0.2871 
ZNF252P‑AS1	 Yellow	 4.75x10‑37	 3.44x10‑35	 1.4731

Differentially expressed lncRNAs were screened using the MetaDE.ES 
algorithm in the R package MetaDE (version 1.0.5; https://cran.r‑project.
org/web/packages/MetaDE/), P<0.05 and FDR<0.05 were set as the 
cut‑off criteria. FDR, false discovery rate; FC, fold‑change.
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dataset using univariate Cox regression analysis. Among the 
12 prognosis‑associated lncRNAs, 5 belonged to the green 
module and 7 were from the turquoise module.

Construction and assessment of risk score system. Based on 
the expression levels of 12 prognosis‑associated lncRNAs 
in TCGA dataset, the optimal lncRNA combinations that 
correlated with prognosis were selected using the Cox‑PH 
model. 5‑lncRNA, 5‑lncRNA and 8‑lncRNA (Table  III) 
optimal combinations were separately screened from the prog-
nosis‑associated lncRNAs in the green, turquoise and green 
+ turquoise modules, respectively. The risk score systems 
based on each optimal lncRNA combination were as follows: 
Risk score (green module) = (‑0.9059377) x ExpITPK1‑AS1 

+ (3.3537827) ExpKCNQ1DN + (‑2.1388024) x ExpLINC00167 

+ (‑1.037547) x ExpLINC00173 + (1.9587271) x ExpLINC00307. 
Risk score (turquoise module)=(‑0.268429) x ExpASMTL‑AS1 

+ (‑0.3410407) x ExpCIRBP‑AS1 + (1.0926567) x ExpDSCR10 

+ (‑0.3433227) x ExpJPX + (0.5437058) x ExpLINC00479. Risk 
score (green + turquoise module)=(1.9685961) x ExpKCNQ1DN 

+ (‑0.6567239) x ExpLINC00167 + (‑0.4293328) x ExpLINC00173 + 
(‑0.246053) x ExpASMTL‑AS1 + (‑0.25746771) x ExpCIRBP‑AS1 + 
(0.7023183) x ExpDSCR10 + (‑0.3204003) x ExpJPX + (0.5495452) 
x ExpLINC00479.

Based on the three risk score systems, the risk scores 
of the samples in TCGA dataset were calculated. The 
samples in the TCGA dataset were divided into high‑risk 
and low‑risk groups according to the median of their risk 
scores. Kaplan‑Meier survival curves were used to evaluate 
the correlation between the overall survival of the samples 
and the two groups. The results revealed that the risk score 
system based on the optimal lncRNA combination [including 
ITPK1 antisense RNA 1 (ITPK1‑AS1), KCNQ1 downstream 
neighbor (KCNQ1DN), long intergenic non‑protein coding 
RNA 167 (LINC00167), LINC00173 and LINC00307] of 
the green module had the most significant predictive effect; 
therefore, the risk score system of the green module was the 
optimal system (Fig. 5). In this risk score system, the low‑risk 
group (mean overall survival time, 16.71±18.26 months) had 
a greater overall survival time compared with the high‑risk 
group (mean overall survival time, 13.63±15.76  months) 
for the TCGA training dataset. In addition, the correlation 
between overall survival and the two groups was significant 
(P=0.0049). For the validation dataset GSE62254, the low‑risk 
group (mean overall survival time, 57.13±30.88 months; mean 
progression‑free survival time, 42.34±30.26 months) also had 
a greater overall survival time and progression‑free survival 
time relative to the high‑risk group (mean overall survival 

Figure 5. Kaplan‑Meier survival curves of the correlations between patient survival and the risk grouping based on the risk score systems of the modules. 
(A) green, (B) turquoise and (C) green + turquoise modules. Left, middle and right curves represent the overall survival time of TCGA dataset, the overall 
survival time of GSE62254 and the progression‑free survival time of GSE62254, respectively. The black and blue lines represent the low‑risk group, and the 
red and purple lines represent the high‑risk group. TCGA, The Cancer Genome Atlas; GSE, gene set enrichment.
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time, 46.98±29.97 months; mean progression‑free survival 
time, 30.91±27.97 months). Similarly, the two groups were 
significantly correlated with overall survival time (P=0.0251) 
and progression‑free survival time (P=0.0006). Additionally, 
the associations between the risk score and survival 
status/lncRNA expression are displayed in Fig. 6. The risk 
score altered from low to high on the vertical axis; in the 
middle panels, red represents mortality, and black represents 
survival, which represented the distribution of mortality and 
survival at high and low risk in addition to the distribution of 
survival time. Fig. 6 reveals the expression trend of 5 genes 
from low risk to high risk (for example, LINC00307 expres-
sion tends to be decreased, while KCNQ1DN expression tends 
to be increased).

Differential expression analysis. There were a total of 1,105 
consensus DE‑RNAs (all were mRNAs) in the GSE65801, 
GSE29998, GSE33335 and GSE27342 datasets, including 22 
mRNAs (2 upregulated and 20 downregulated) in the green 
module. The clustering heat map demonstrates that the different 
degrees and dysregulation directions of the DE‑RNAs were 
essentially the same in the 4 datasets (Fig. 7).

Analysis of lncRNA‑associated pathways. Based on the 
correlation coefficients of the 5 optimal lncRNAs in the green 
module, and the 22 mRNAs obtained as aforementioned, 
the lncRNA‑mRNA network (involving 106 nodes) was 
constructed (Fig. 8A). GSEA analysis illustrated that 4 path-
ways [‘cell adhesion molecules (CAMS)’, ‘cytokine‑cytokine 

Table II. Stabilities and functional annotations of the 7 modules of TCGA dataset.

		  Module			   Preservation
Module	 Color	 size, n	 mRNA	 lncRNA	 Z‑score	 Module annotation

1	 Blue	 336	 334	 2	 9.7094	 Pattern specification process
2	 Brown	 331	 328	 3	 1.2017	 Epithelium development
3	 Green	 318	 288	 30	 19.0215	 Immune response
4	 Grey	 2,856	 2,822	 34	 4.2851	 Cell‑cell signaling
5	 Red	 250	 213	 37	 13.2273	 Digestive system process
6	 Turquoise	 956	 910	 46	 27.4163	 Cell adhesion
7	 Yellow	 326	 294	 32	 15.7692	 Digestion

Z<5 indicates that the module is unstable; Z>5 indicates that the module is stable, and Z>10 indicates that the module is highly stable. Module 
annotation indicates the functional terms enriched for the modules. TCGA, The Cancer Genome Atlas; lncRNA, long non‑coding RNA.

Table III. Optimal lncRNAs screened from the prognosis‑associated lncRNAs in green, turquoise and green + turquoise modules.

Modules	 lncRNA	 β‑value	 P‑values	 Hazard ratio (95% CI)

Green	 ITPK1‑AS1	‑ 0.9059	 0.0496	 0.0777 (0.0039‑1.5300)
	 KCNQ1DN	 3.3538	 0.0050	 13.7200 (2.1360‑18.1400)
	 LINC00167	‑ 2.1388	 0.0284	 0.0500 (0.0035‑0.7191)
	 LINC00173	‑ 1.0376	 0.0480	 0.4930 (0.2229‑1.0900)
	 LINC00307	 1.9587	 0.0357	 2.0260 (1.0430‑3.9380)
Turquoise	 ASMTL‑AS1	‑ 0.2684	 0.0270	 0.6392 (0.4302‑0.9498)
	 CIRBP‑AS1	‑ 0.3410	 0.0458	 0.6489 (0.4146‑1.0160)
	 DSCR10	 1.0927	 0.0039	 4.4030 (1.5400‑12.5900)
	 JPX	‑ 0.3433	 0.0470	 0.6624 (0.4243~1.0340)
	 LINC00479	 0.5437	 0.0231	 1.9880 (1.0900‑3.6260)
Green + turquoise 	 KCNQ1DN	 1.9686	 0.0029	 3.3500 (1.3101‑5.3910)
	 LINC00167	‑ 0.6567	 0.0476	 0.0790 (0.0048‑1.3100)
	 LINC00173	‑ 0.4293	 0.0482	 0.4338 (0.1693‑1.1110)
	 ASMTL‑AS1	‑ 0.2461	 0.0238	 0.7758 (0.5088‑1.1830)
	 CIRBP‑AS1	‑ 0.2575	 0.0489	 0.8482 (0.5322‑1.3520)
	 DSCR10	 0.7023	 0.0208	 2.2280 (1.6399‑7.7580)
	 JPX	‑ 0.3204	 0.0131	 0.6847 (0.4187‑1.1200)
	 LINC00479	 0.5495	 0.0337	 1.9057 (1.0510‑3.4550) 

P‑values were generated by univariate cox regression, with P<0.05 as the threshold. lncRNA, long non‑coding RNA; CI, confidence interval.
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Figure 6. Associations between risk score and survival status and/or lncRNA expression in the datasets. (A) the training set and (B), the validation set. A1 
and B1 represents the risk score: The horizontal axis represents the sample and the vertical axis represents the risk score. A2 and B2 represents survival 
status: The horizontal axis represents the sample and the vertical axis represents the survival time. A3 and B3 represents the expression levels of 5 lncRNAs: 
The horizontal axis represents the sample and the vertical axis represents the expression level of the gene. Red means high expression; green stands for low 
expression. lncRNA, long non‑coding RNA; ITPK1‑AS1, ITPK1 antisense RNA 1; KCNQ1DN, KCNQ1 downstream neighbor; LINC00167, long intergenic 
non‑protein coding RNA 167.

Figure 7. Clustering heat maps of the consensus differentially expressed RNAs in the GSE27342, GSE29998, GSE65801 and GSE33335 datasets. Black and 
white represent tumor and control samples, respectively. Red means high expression; green stands for low expression. GSE, gene set enrichment.
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Figure 8. (A) lncRNA‑mRNA network and gene heat map. The lncRNA‑mRNA network is based on the green module. Grey circles represent non‑consensus 
differentially expressed RNAs. Red regular triangles and green inverted triangles represent upregulated RNAs and downregulated RNAs, respectively. Green 
squares represent the 5 optimal lncRNAs in the green module. Red and green lines represent positive and negative correlations, respectively. (B) Heat map of 
the genes involved in the lncRNA‑associated pathways. The deeper the red, the higher the positive correlation. lncRNA, long non‑coding RNA; ITPK1‑AS1, 
ITPK1 antisense RNA 1; KCNQ1DN, KCNQ1 downstream neighbor; LINC00167, long intergenic non‑protein coding RNA 167.

Table IV. Pathways that positively correlate with LINC00167, LINC00173 and LINC00307.

	 LINC00167	 LINC00173	 LINC00307
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
Pathway	 ES	 NES	 P‑value	 ES	 NES	 P‑value	 ES	 NES	 P‑value

Cell adhesion molecules 	 0.1598	 1.1790	 0.0096	 0.1654 	 1.3800 	 0.0011 	 0.1465 	 0.8646 	 0.0058 
Cytokine‑cytokine receptor interaction	 0.2250	 0.9947	 0.0451	 0.2052 	 1.0447 	 0.0357 	 0.1136 	 0.7058 	 0.0484 
Chemokine signaling pathway	 0.2305	 1.0060	 0.0429	 0.1052 	 0.5347 	 0.0469 	 ‑0.1560 	 ‑1.0490 	 0.0335 
Leukocyte transendothelial migration	 ‑0.1690	 ‑0.7141	 0.0461	 0.2331 	 0.1563 	 0.0137 	 ‑0.1860 	 ‑0.7750 	 0.0480 

P‑values were generated by GSEA analysis, with P<0.05 as the threshold. ES, enrichment score; NES, normalized enrichment score.
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receptor interaction’, the ‘chemokine signaling pathway’ and 
‘leukocyte transendothelial migration’] had significant positive 
associations with 3 lncRNAs (LINC00167, LINC00173 and 
LINC00307) (Table IV). Moreover, the 4 pathways involved a 
total of 32 genes [including chemokine (C‑C motif) ligand 22 
(CCL22), chemokine (C‑C motif) receptor 7 (CCR7), cluster 
of differentiation (CD) 274 molecule (CD274), CD40 ligand 
(CD40LG), chemokine (C‑X‑C motif) ligand 13, CXCL13; 
chemokine (C‑X‑C motif) receptor 5 (CXCR5), intercellular 
adhesion molecule 1 (ICAM1), matrix metalloproteinase 9 
(MMP9) and vascular cell adhesion molecule 1 (VCAM1)], and 
these genes associated positively with the 4 pathways (Fig. 8B). 
Therefore, it was speculated that LINC00167, LINC00173 
and LINC00307 may possess the same association directions 
with the 4 pathways and the 32 genes, and are involved in GC 
progression via these pathways.

Discussion

In the present study, 5 stable modules (blue, green, red, 
turquoise and yellow) were identified using WGCNA. In 
particular, the green and turquoise modules associated 
significantly with histological grade. Subsequently, 12 prog-
nosis‑associated lncRNAs (5 lncRNAs in the green module 
and seven lncRNAs in the turquoise module) were identified. 
Moreover, 5‑lncRNA, 5‑lncRNA and 8‑lncRNA optimal 
combinations were screened separately from the prog-
nosis‑associated lncRNAs in the green, turquoise and green + 
turquoise modules, respectively, which were used to construct 
risk score systems. Notably, the risk score system based on 
the optimal lncRNA combination (including ITPK1‑AS1, 
KCNQ1DN, LINC00167, LINC00173 and LINC00307) of the 
green module had the most significant predictive effect and was 
thus identified as the optimal system. Differential expression 
analysis indicated that there were 1,105 consensus DE‑RNAs 
in the GSE65801, GSE29998, GSE33335 and GSE27342 
datasets. Following the construction of the lncRNA‑mRNA 
network, 4 pathways had significantly positive associations 
with LINC00167, LINC00173 and LINC00307. Moreover, the 
32 genes involved in the 4 pathways associated positively with 
the pathways.

Potassium voltage‑gated channel subfamily E regulatory 
subunit 2 (KCNE2) is the β subunit of potassium voltage‑gated 
channel subfamily Q member 1 (KCNQ1) in gastric parietal 
cells, and KCNQ1/KCNE2 is activated (accompanied with acid 
secretion) by certain pathways (50,51). Through mediating the 
expression of KCNQ1, atrial natriuretic peptide serves a role 
in the proliferation of the GC AGS cell line (52). KCNQ1 and 
insulin‑like growth factor 2 mRNA‑binding protein 2 poly-
morphisms may serve as independent predictive factors for 
chemotherapeutic response, and glucokinase (hexokinase 4) 
regulator polymorphisms may independently predict the survival 
of patients with metastatic GC (53). The KCNQ1 protein level 
was decreased in colorectal cancer samples, and was associated 
significantly with the unfavorable overall survival of patients 
with colorectal cancer (54). These observations demonstrated 
that KCNQ1DN may be involved in the prognosis of GC.

CCL22 functions in the development of GC by increasing 
the number of regulatory T cells, and CCL22 levels in sera 
predict the metastasis and recurrence of GC  (55). CCR7 

causes epithelial‑mesenchymal transition by promoting Snail 
expression, which results in the migration and invasion of GC 
cells (56,57). A somatic mutation in CD274 induces its over-
expression by disturbing miR‑570 binding, and subsequently 
promotes immune evasion in GC by suppressing the activa-
tion and proliferation of T cells (58). The expression level of 
CXCL13 is a promising prognostic marker for patients with 
GC following surgical resection, and may be used to predict 
the response of these patients to postoperative adjuvant chemo-
therapy (59). CD40 contributes to CXCR5 expression, and the 
migration and accumulation of myeloid‑derived suppressor 
cells in GC, indicating that CD40 may promote tumor growth 
by influencing immune evasion (60,61). ICAM1 overexpres-
sion is induced by leptin via the Rho/Rho‑associated protein 
kinase pathway, which contributes to tumor cell migration in 
patients with GC (62). MMP9 in the blood has been identified 
as a novel tumor marker; in particular, the plasma level of 
MMP9 is a more effective predictor of GC development and 
progression compared with its serum level (63,64). VCAM1 
functions in the perineural invasion (PNI) of GC by medi-
ating the interaction between tumor cells and neural cells; 
therefore, VCAM1 inhibition suggests a promising approach 
for the treatment of PNI in patients with GC (65). LINC00167, 
LINC00173 and LINC00307 had the same association direc-
tions with the 4 pathways and 32 genes (including CCL22, 
CCR7, CD274, CD40LG, CXCL13, CXCR5, ICAM1, MMP9 
and VCAM1), suggesting that LINC00167, LINC00173 and 
LINC00307 may associate positively with GC through their 
participation in the 4 pathways, and by mediating the expres-
sion of these genes.

Certain limitations of the present study should be consid-
ered. Bioinformatics analyses were used to obtain these 
results, and no experimental research was performed. Platform 
differences and data heterogeneities of the datasets may have 
influenced the accuracy of the risk score system. Therefore, 
further experiments are required to confirm the results.

In conclusion, 12 prognosis‑associated lncRNAs were 
identified from the green and turquoise modules. In addition, 
the optimal risk score system may be used to predict the prog-
nosis of patients with GC. lncRNAs ITPK1‑AS1, KCNQ1DN, 
LINC00167, LINC00173 and LINC00307 may serve impor-
tant roles in the pathogenesis of GC.
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