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1  | INTRODUCTION

The Qinghai‐Tibetan Plateau (QTP) and its adjacent Hengduan 
Mountains Region (HMR) have been considered as one of the im‐
portant biodiversity hotspots in the world (Myers, Mittermeier, 
Mittermeier, Da Fonseca, & Kent, 2000). The HMR in particular har‐
bors the richest temperate flora of seed plants in the world and is 
considered to be among the areas with the high concentration of 

endemic species in the world (Li & Li, 1993; Wu, 1988). The region 
comprises about 16,550 species, which consist of 2,264 genera and 
227 families (3,300 endemic species and 90 endemic genera) (Sun, 
Zhang, Deng, & Boufford, 2017). In the alpine zone of the HMR, the 
number of seed plant species is two to three times than that in other 
known alpine region (Xu, Li, & Sun, 2014a, 2014b).

The HMR is located at the eastern end of the Himalayan re‐
gions and the south‐eastern boundary of the Qinghai‐Tibet Plateau 
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Abstract
The Hengduan Mountains Region (HMR) is a major global biodiversity hotspot. 
Complex tectonic and historical climatic conditions created opportunities for natu‐
ral interspecific hybridization. Likewise, anthropogenic disturbance potentially raises 
the	frequency	of	hybridization.	Among	species	studies	to	date,	the	frequency	of	ho‐
moploid hybridization appears in the HMR. Of nine taxa in which natural hybridiza‐
tion has been detected, three groups are involved in homoploid hybrid speciation, 
and species pairs from the remaining six genera suggest that continuous gene flow 
occurs in hybrid zones. Reproductive isolation may greatly affect the dynamic and ar‐
chitecture	of	hybrid	zones	in	the	HMR.	Asymmetrical	hybridization	and	introgression	
can primarily be attributed to both prezygotic and postzygotic barriers. The frequent 
observation of such asymmetry may imply that reproductive barrier contributes to 
maintaining species boundaries in the alpine region. Ecological isolations with envi‐
ronmental disturbance may promote breeding barriers between parental species and 
hybrids. Hybrid zones may be an important phase for homoploid hybrid speciation. 
Hybrid zones potentially provided abundant genetic resources for the diversification 
of the HMR flora. The ecological and molecular mechanisms of control and mediation 
for natural hybridization will help biologists to understand the formation of biodi‐
versity in the HMR. More researches from ecological and molecular aspects were 
required in future studies.
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(Li, 1987; Sun et al., 2017). Climate shift accompanied by orogenic 
events may lead to geographical overlap of some species, which 
impel the frequent contact of plants in the HMR. The rate of species 
differentiation may coincide with the rapid uplift of the HMR, and 
the latter may have facilitated the diversification of species in the 
late	Miocene	(11.6–5.3	MYA)	(Sun	et	al.,	2017;	Xing	&	Ree,	2017).

Multiple mechanisms, such as allopatric speciation via geograph‐
ical isolation, natural hybridization, and allopolyploidy, are thought 
to promote species diversity in the HMR (Liu, Duan, Hao, Ge, & 
Sun,	2014;	 Liu,	Wang,	Wang,	Hideaki,	&	Abbott,	 2006;	Nie,	Wen,	
Gu, Boufford, & Sun, 2005; Wen, Zhang, Nie, Zhong, & Sun, 2014; 
Xing & Ree, 2017). Of these mechanisms, natural hybridization may 
be an important generator of plant diversity in the HMR. Natural 
hybridization has long been considered as an important evolution‐
ary phenomenon in plants, especially in flowering plants, and its 
potential role in the origin of species has been discussed since the 
time of Linnaeus (Baack & Rieseberg, 2007; Larson, 1968; Stebbins, 
1959).	According	to	one	recent	investigation,	natural	hybridization	is	
involved in 25% of plant species (Mallet, 2005; but see Folk, Soltis, 
Soltis, & Guralnick, 2018). Furthermore, natural hybridization can 
facilitate speciation and innovation through transferring adaptive 
traits via introgression, formation of recombinant forms, or allopoly‐
ploidization	 (Abbott,	 Hegarty,	 Hiscock,	 &	 Brennan,	 2010;	 Mallet,	
2007; Rieseberg & Carney, 1998; Soltis & Soltis, 2009). In contrast to 
allopolyploidy, homoploid hybridization is characterized by hybrid‐
ization between parental species without a change in chromosome 
number and result in the formation of novel hybrid species or hybrid 
zones	(Abbott	et	al.,	2013;	Gross	&	Rieseberg,	2005).	Homoploid	hy‐
bridization between species continually produces hybrids of mixed 
ancestry in hybrid zones (Harrison, 1993; Payseur, 2010). However, 
in hybrid zones, hybrids do not instantly establish as a new species 
need time to produce isolation barriers with their parental species. 
Hybrid individuals consist of early‐ or later‐generation hybrids in hy‐
brid zones. In some cases, hybrid swarm (various recombinant types) 
is	found	in	hybrid	zones	(Abbott,	2017;	Barton	&	Hewitt,	1985).	The	
location of hybrid zones is often either only a few hundred meters 
wide or may be several hundred kilometers long (Barton & Hewitt, 
1985). For homoploid hybrid speciation, the origin of a novel lineage 
reproductively isolated from its parents by ecological and spatial 
barriers after formation of hybrids between parental species in hy‐
brid	 zones	 (Buerkle,	Morris,	 Asmussen,	&	 Rieseberg,	 2000;	Gross	
& Rieseberg, 2005; Rieseberg, 1997). Hence, hybrid zones may be 
an important form for homoploid hybridization until hybrids are 
established.

Although	on	the	basis	of	recent	surveys	(Soltis,	Visger,	&	Soltis,	
2014; Soltis & Soltis, 2009; Yakimowski & Rieseberg, 2014), homo‐
ploid hybrid speciation appears to be less common than allopoly‐
ploid speciation, homoploid hybridization can be potential resources 
for plant evolution (Soltis & Soltis, 2009; Stebbins, 1959). However, 
at the regional scale, cytological statistical analysis of the chro‐
mosome numbers of 552 taxa of native angiosperms in the HMR 
suggest polyploidy may only play a minor role in the evolutionary 
diversification of the region (Nie et al., 2005). This conclusion has 

been supported by other investigations (Chen et al., 2014; Liu, 2004; 
Liu, Liu, Ho, & Lu, 2001; Liu, Zhou, Ho, & Lu, 1999). Therefore, ho‐
moploid hybridization may be a common type of natural hybridiza‐
tion in the HMR. In the region, cases of hybrid speciation have been 
reported to date at the diploid level, that is, Pinus densata, Picea pur-
purea, and Ostryopsis intermedia (Lu, Tian, Liu, Yang, & Liu, 2014; Sun 
et	al.,	2014;	Wang,	Szmidt,	&	Savolainen,	2001).	Additionally,	more	
genera in the HMR are involved in naturally occurring homoploid hy‐
bridization within hybrid zones (Table S1), such as Ligularia (Pan, Shi, 
Gong, & Kuroda, 2008; Yu Kuroda, & Gong, 2011, 2014; Yu, Pan, 
Pan, & Gong, 2014; Zhang, Yu, Wang, & Gong, 2018; Zhang, Gong, 
& Ryan, 2017), Rhododendron (Ma, Milne, Zhang, & Yang, 2010; 
Marczewski, Chamberlain, & Milne, 2015; Yan, Gao, & Li, 2013; Zha, 
Milne, & Sun, 2008; Zhang, Zhang, Gao, Yang, & Li, 2007), Primula 
(Ma, Tian, Zhang, Wu, & Sun, 2014), Roscoea (Du, Zhang, & Li, 2012), 
Silene (Zhang, Montgomery, & Huang, 2016), and Salix (Wu, Wang, 
Yang, & Chen, 2015).

The objectives of this paper are to (a) discuss the potential 
factors which trigger natural hybridization in the alpine region; (b) 
briefly review natural hybridization and homoploid hybrid speciation 
in the HMR; (c) discuss the effects of reproductive isolation on the 
level and direction of gene flow in hybrid zones; and (d) propose how 
natural hybridization may be important to the diversification of the 
HMR flora.

2  | FACTORS WHICH TRIGGER 
HYBRIDIZATION IN THE HMR

2.1 | Tectonic and climatic changes in the history

Historical–geographical processes and/or climate change may 
trigger rapid speciation in the mountains region (Liu, Duan, et 
al., 2014; Liu et al., 2006; Sun et al., 2017; Xing & Ree, 2017). 
Moreover, these historical events, especially for the uplift of the 
HMR, may also have offered opportunities for related species to 
contact	 (Anderson	 &	 Stebbins,	 1954;	 Folk	 et	 al.,	 2018;	 Frenzel,	
1968; Liu, Duan, et al., 2014). Secondary contact in parental spe‐
cies may be caused by geographical history with climate change 
(Abbott,	2017;	Folk	et	al.,	2018;	Liu,	Duan,	et	al.,	2014;	Sun	et	al.,	
2017). Three potential homoploid hybrid species are known from 
the HMR, and two of them suggest hybridization may be associ‐
ated with orogenic and climatic changes in the past of the HMR 
(Figure 1). Picea purpurea is thought to have originated via homop‐
loid hybrid speciation between Picea likiangensis and Picea wilsonii 
at	 the	Pleistocene	 (Sun	et	al.,	2014).	An	analysis	of	evolutionary	
history shows that during the Quaternary glaciation, climate shift 
may facilitate contact between both parents (Figure 1b), which re‐
sult to trigger the hybrid origin of P. purpurea (Sun et al., 2014). In 
addition, O. intermedia is a diploid species of hybrid origin, deriving 
from hybridization between Ostryopsis davidiana and Ostryopsis 
nobilis	(Liu,	Abbott,	Lu,	Tian,	&	Liu,	2014;	Lu	et	al.,	2014).	Ostryopsis 
davidiana may have migrated southward and made range contact 
with O. nobilis during a glacial maximum, creating a historical 
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opportunity for hybridization that does not exist in the present 
due to allopatry among the parents (Figure 1 and Table S1).

2.2 | The effect of anthropogenic disturbance

Environmental disturbance is regarded as a significant factor that 
facilitates	hybridization	(Abbott	et	al.,	2013;	Anderson,	1948,	1949;	
Anderson	&	Stebbins,	1954;	Harrison	&	Larson,	2014;	Rieseberg	&	
Carney, 1998; Thomas, 2015). In the case of Iris from the Mississippi 
delta, differences in prevalence of hybrids and of hybrid deriva‐
tive classes are affected by agricultural activity and hybrid region 
is limited at the border of the farm (Riley, 1938). Thus, anthropo‐
genic disturbance has been thought to generate opportunities for 
hybridization and novel habitat or hybridized habitats for the per‐
sistence	 of	 hybrids	 (Anderson,	 1948;	 Anderson	&	 Stebbins,	 1954;	
Guo, 2014). Besides, secondary contact of diverged species, due to 
habitat disturbance, is thought to promote the formation of hybrid 
zones	(Abbott,	2017).	A	handful	of	cases	to	date	revealed	that	an‐
thropogenic disturbance potentially promotes hybridization by ex‐
tending and altering plant phenology, especially for flowering time, 
creating opportunities for species to exchange genes that otherwise 
would not under undisturbed conditions (Ellstrand & Schierenbeck, 
2000; Lamont, He, Enright, Krauss, & Miller, 2003; Meerow, Gideon, 
Kuhn, Mopper, & Nakamura, 2011; Ortego, Gugger, & Sork, 2017; 
Vallejo‐Marín	&	Hiscock,	2016;	Yakimowski	&	Rieseberg,	2014).

In case studies to date, it has frequently been inferred that the 
formation and composition of hybrid zones are potentially associated 
with anthropogenic disturbance in the HMR (Ma, Tian, et al., 2014; 
Wu et al., 2015; Yu, Pan, et al., 2014; Zha, Milne, & Sun, 2008, 2009; 
Zhang et al., 2018; Zheng et al., 2017). Distinct hybrid derivatives 
are known that may have been arisen from human disturbance in 
Rhododendron (Table S1). In two hybrid zones of Rhododendron irrora-
tum and Rhododendron delavayi studied with chloroplast markers, gene 
flow is unidirectional and F1s dominate in one, whereas gene flow is 

bidirectional and F1s occurs with other classes in another site that ex‐
perienced human disturbance (Zha, Milne, & Sun, 2009). Higher hy‐
brid population frequencies and sizes occur in hybrid zones between 
R. decorum and R. delavayi in disturbed habitats (Zha et al., 2008). 
Long isolation and enough mutations may lead to Ligularia sympatric 
species coexist without hybridization (Liu et al., 2006; Zhang et al., 
2018). However, pre‐existing isolation barrier may have been broken 
via human disturbance. Thus, both hybrid groups from three sympatric 
Ligularia have been formed in an area subject to human disturbance 
(L. cyathiceps × L. duciformis and L. duciformis × L. yunnanensis) (Zhang 
et al., 2018). Moreover, in three further species pairs (Ligularia, Primula, 
and Salix), it has been inferred that habitat disturbance may result in 
different patterns of hybrid classes in zones of sympatry (Ma, Tian, 
et al., 2014; Ma, Xie, et al., 2014; Wu et al., 2015; Xie et al., 2017; 
Yu,	Pan,	et	al.,	2014).	Although	these	case	studies	have	allowed	us	to	
make preliminary conclusions about the effect of anthropogenic activ‐
ities on natural hybridization, the relationship between hybridization 
and environmental disturbance requires future work.

Different types and degrees of disturbance (natural and/or an‐
thropogenic) are considered important in the formation of hybrid 
zones	 (Abbott,	 2017).	We	 found	 only	 one	 case	 that	 tried	 to	 ana‐
lyze and distinguish these differences: Wild fire frequency but not 
human activities have been found to increase hybridization between 
Quercus berberidifolia and Quercus durata	 (Abbott,	2017;	Ortego	et	
al., 2017). No work of this kind has been implemented in the HMR; 
future work is needed to understand the types of disturbance that 
may have led to present‐day hybrid patterns.

3  | HOMOPLOID HYBRID SPECIATION IN 
THE HMR

Recent reviews on homoploid hybrid speciation have identified 
more than 30 well‐characterized cases of this phenomenon in the 

F I G U R E  1   The landscape of 
homoploid hybrid speciation with 
geographical and glacial changes in the 
HMR. (a) Parental species are allopatric 
distribution before glacial period; (b) Both 
parents are contacted in sympatric site 
during glacial period; (c) Homoploid hybrid 
species are differentiated from their 
parents by isolation increasing
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plant kingdom to date. (Feliner et al., 2017; Schumer, Rosenthal, & 
Andolfatto,	2014).	But	the	importance	of	homoploid	hybrid	specia‐
tion may be severely underestimated in these identifications by ex‐
cessively stringent criteria and by ignoring the effect of timescales 
(Folk et al., 2018; Feliner et al., 2017). Two classic examples are found 
in	North	American	Helianthus and Iris	(Arnold,	1993;	Rieseberg,	Van	
Fossen, & Desrochers, 1995). Ecological isolation is an important 
component of reproductive barriers in homoploid hybrid species 
(Abbott	et	al.,	2013;	Gross	&	Rieseberg,	2005;	Taylor,	Willard,	Shaw,	
Dobson, & Martin, 2011). Hence, homoploid hybrid species gener‐
ally occur in habitats which are isolated from their parental species 
(Rieseberg, 1997). Hybridization can act as a force to recombine 
pre‐existing genetic variation in novel ways. This is a potential mech‐
anism allowing hybrids to spatially and ecologically diverge and po‐
tentially colonize niches unexploited by their parental taxa (Buerkle 
et	al.,	2000;	Mallet,	2007).	As	described	above,	homoploid	hybrid	
species are generally originated from parental sympatric region. 
Ancient	hybrid	zones	may	be	arisen	in	the	region	before	ecological	
niche differentiation between parents and hybrid lineages. Drastic 
tectonic and climatic changes in the history of the HMR may provide 
new ecological niches and facilitate completely habitats divergence 
between hybrid species and its parents (Liu, Duan, et al., 2014; Wen 
et al., 2014; Xing & Ree, 2017).

Pinus densata is a species that originated from hybridization be‐
tween Pinus tabuliformis and Pinus yunnanensis (Gao et al., 2012; Ma, 
Zhao, et al., 2010; Ma, Szmidt, & Wang, 2006; Song, Wang, Wang, 
Ding, & Hong, 2003; Song et al., 2002; Wang, Mao, Gao, Zhao, & 
Wang, 2011; Wang & Szmidt, 1990; Wang et al., 2001). Previous 
studies have suggested that ancient hybrid zones occurred in over‐
lapping region of both parental species, with the exception of the 
contemporary allopatric/partly sympatric distributions of P. tabuli-
formis and P. yunnanensis (Wang et al., 2001). Gene flow may have 
occurred between ancestrally sympatric populations that were sub‐
sequently separated by the uplift of the HMR (Gao et al., 2012; Song 
et	al.,	2003).	A	series	of	studies	suggest	that	the	origin	of	P. densata 
is estimated to be late Miocene, a timing that coincides with recent 
major geological events in the HMR (Gao et al., 2012). Homoploid 
hybrid species, P. densata, today mainly occurs at higher elevational 
zones than those occupied by either parental species (Song et al., 
2003;	Wang	et	al.,	2011,	2001).	Additionally,	P. densata can survive 
in water‐limited high‐elevation habitats due to having evolved sev‐
eral physiological traits that are adapted to extreme habitats in the 
HMR (Ma, Zhao, et al., 2010). Hence, the ecological and geographi‐
cal differentiation is associated with the isolation between P. densata 
and its parents (Table S1).

Similarly, with the species pair P. wilsonii and P. likiangensis, eco‐
logical isolation may potentially have created reproductive barriers 
between homoploid hybrid species (P. purpurea) and these two pa‐
rental taxa (Sun et al., 2014). Based on molecular data, P. purpurea 
not only shares alleles with both parents, but also possesses more 
unique alleles relative to alleles shared with either parent. These 
unique alleles may be relative to adapt new habitat in hybrid spe‐
cies. Nuclear data indicate that the origin of P. purpurea occurred at 

approximately	1.3	MYA;	during	this	period,	climate	shift	may	lead	to	
range contact between P. wilsonii and P. likiangensis (Sun et al., 2014). 
Thus, historical climate change may have contributed to hybridiza‐
tion between P. wilsonii and P. likiangensis. Currently, P. purpurea is 
isolated ecologically from its parents via occupying higher elevation. 
Demographic modeling results indicate that P. purpurea experienced 
geographical	range	expansion	about	0.75	MYA,	while	both	parents	
were inferred to have returned to their former regions during this 
period	(Sun	et	al.,	2014).	Alpine	areas	after	the	glaciation	have	been	
inferred that provide available regions for geographical expansion of 
P. purpurea (Sun et al., 2014). Similar geographical expansions have 
been reported from another hybrid species in the HMR, P. densata 
(Gao et al., 2012). Several studies of other taxa show such expan‐
sions of geographical range in mountainous areas and adjacent re‐
gions (Li et al., 2012; Liu et al., 2013; Liu, Sun, Ge, Gao, & Qiu, 2012; 
Sun, Ikeda, Wang, & Liu, 2010; Wu, Cui, Milne, Sun, & Liu, 2010).

Likewise, climatic oscillations in the Quaternary may also have 
spurred hybridization between O. davidiana and O. nobilis, potentially 
triggering the homoploid hybrid origin of O. intermedia (Liu, Duan, et 
al.,	2014;	Lu	et	al.,	2014).	On	the	basis	of	cpDNA	data,	O. intermedia 
is closely related to O. nobilis, whereas, based on nuclear data, O. da-
vidiana mainly contributes to the nuclear composition of O. interme-
dia.	A	 combination	of	 ecological	 niche	modeling	 and	paleoclimatic	
data for the last glacial maximum revealed that the parental taxa 
experienced historical rang overlap during glacial maximum condi‐
tions (Figure 1b). Subsequently, O. davidiana retreated to northern 
China during subsequent climatic warming, which may have reduced 
competition with O. intermedia (Figure 1c). In addition, O. intermedia 
expanded its distributional range to new niche space unoccupied by 
O. nobilis, which may have led to the fixation of the single observed 
haplotype in hybrid lineage (Lu et al., 2014). Based on these results, it 
appears that the origin and isolation of O. intermedia from its parents 
may potentially have resulted from historical climate change (Liu, 
Abbott,	et	al.,	2014;	Lu	et	al.,	2014).

In summary, environmental heterogeneity associated with the 
uplift of the HMR and subsequent historical climate dynamics may 
have promoted rapid speciation in this region (Liu et al., 2012, 2006; 
Qiu, Fu, & Comes, 2011). Major changes in topography and climate 
may have been responsible for historical geographical range dynam‐
ics that brought species into contact that previously were allopatric, 
creating opportunities for new evolutionary dynamics (Liu, Duan, et 
al., 2014; Liu et al., 2006; Sun et al., 2017; Xing & Ree, 2017). For 
all of the three hybrid speciation cases reviewed here, the hybrid 
species shows traits distinct from and outside the range of variation 
of either parental species (Lu et al., 2014; Ma et al., 2006; Sun et al., 
2014). Ecological isolation may be a repeated feature of homoploid 
hybrid speciation in the HMR because orogenic and climatic events 
in this region created opportunities to develop barriers between hy‐
brid	 lineages	and	 their	parents	 (Liu,	Abbott,	 et	 al.,	 2014;	 Lu	et	 al.,	
2014; Song et al., 2003; Sun et al., 2014; Wang et al., 2011, 2001). 
Although	the	importance	of	ecological	factors	in	facilitating	isolation	
between species has been recognized by several authors, in only one 
case for P. densata has ecological differentiation between the hybrid 
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species and both parents been directly addressed through assessing 
distinct physiological traits for specific alpine habitats. Hence, while 
ecological isolation has been demonstrated, little direct evidence ex‐
ists on the physiological traits associated with this divergence. More 
case studies directly addressing the impact of habitat dynamics on 
hybridization are needed (Folk et al., 2018).

According	to	Schumer	et	al.	(2014),	in	order	to	have	strong	evi‐
dence for homoploid hybrid speciation, three criteria should be sat‐
isfied: there should be (a) reproductive barriers isolating the hybrid 
from its parents, (b) evidence of hybridization in the genome, and (c) 
demonstration that the reproductive barriers were derived directly 
from hybridization. Currently, only three hybrid species of Helianthus 
are known to be completely consistent with these proposed criteria 
(Schumer et al., 2014). However, it has been argued that these cri‐
teria have potentially artificially narrowed the importance and fre‐
quency of homoploid hybrid speciation, and by excluding ecological 
dimensions may fail to address factors most crucial in the generation 
of novel lineages (Feliner et al., 2017). Nevertheless, the role of re‐
productive isolation should be rigorously examined in the cases of 
homoploid hybrid speciation (Feliner et al., 2017).

In addition to the three homoploid hybrid species known from the 
HMR that are discussed above, a number of further potential cases of 
homoploid hybrid species in the HMR are recorded for Rhododendron 
(R. agastum, R. duclouxii), Ligularia (L. × maoniushanensis) and Salix 
(S. × heteromera), respectively (Pan et al., 2008; Wu et al., 2015; Zha 
et al., 2009; Zhang, Zhang, Gao, et al., 2007). The species described 
as hybrid lineages in the HMR have not formed reproductive isolation 
with	their	parental	species.	Additionally,	to	date,	all	homoploid	hybrid	
species that have been documented are ecologically divergent from 
their	parental	species	(Abbott	&	Rieseberg,	2012).	These	“homoploid	
hybrid species” from the three genus (Rhododendron, Ligularia, and 
Salix) do not ecologically or spatially divergent from its parental spe‐
cies. Therefore, in this review, these hybrid derivatives are considered 
as hybrids rather than hybrid species (see Section 4).

4  | HYBRID ZONES IN THE HMR

Hybrid zones usually are described as regions where genetically dis‐
tinct populations or species continually come into contact and mate, 
resulting in hybrids often of mixed ancestry (Barton & Hewitt, 1985; 
Harrison, 1990; Hewitt, 1988). Hybrid zones provide an opportunity 
as	a	type	of	“natural	laboratory”	for	elucidating	reproductive	isolation	
mechanisms and overall the process of speciation as well as reveal‐
ing	dynamic	patterns	of	introgression	(Abbott	et	al.,	2013;	Harrison	&	
Larson, 2016; Sedghifar, Brandvain, & Ralph, 2016; Taylor, Larson, & 
Harrison, 2015). Hybrid zones are generally a result of secondary con‐
tact triggered by migration or habitat dynamics subsequent to diver‐
gence	that	facilitates	coexistence	of	divergent	species	(Abbott,	2017;	
Sousa & Hey, 2013). Reproductive isolation may constrain hybridiza‐
tion and formation of hybrid zones in sympatric regions, and hence 
often hybridization is associated with interruption of these barriers 
through environmental disturbance, such as natural climate change 
and/or	 human	 activities	 (Abbott,	 2017).	 The	 occurrence	 of	 hybridi‐
zation between divergent lineages depends on the strength of both 
prezygotic and postzygotic reproductive isolation (Ellstrand, Whitkus, 
& Rieseberg, 1996). Limited prezygotic isolation likely creates initial 
opportunities for interbreeding between species subsequent to diver‐
gence, while postzygotic isolation may primarily operate to maintain 
species distinctness despite ongoing low levels of gene flow between 
species.

4.1 | The formation of hybrid zones

Geographical history with climate change leads to the expansion of 
geographical ranges that provide opportunities for secondary con‐
tact in parental species after a period of differentiation in allopatry 
(Abbott,	2017;	Liu,	Duan,	et	al.,	2014;	Sun	et	al.,	2017).	The	phylo‐
geographic studies of homoploid hybrid species in the HMR implied 
that the formation of ancient hybrid zones is associated with these 

F I G U R E  2   Distribution map of hybrid 
zones for six genera in the Hengduan 
mountains region. The range of the HMR 
is shown as yellow color area in the black 
rectangle (red, yellow, and purple circles 
represent the range of hybrid zones for 
Ligularia, Rhododendron, and Primula, 
respectively)
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organic	events	(Gao	et	al.,	2012;	Liu,	Abbott,	et	al.,	2014;	Sun	et	al.,	
2014). Natural hybridization within stable hybrid zones has been re‐
ported in the HMR. Previous studies have demonstrated that several 
species pairs are involved, including those in Ligularia, Rhododendron, 
Primula, Roscoea, Silene, and Salix (Figure 2 and Table S1). Moreover, 
these hybrid events were potentially impacted by historic orog‐
eny and climate as well as contemporary anthropogenic activities 
(Du et al., 2012; Ma, Tian, et al., 2014; Wu et al., 2015; Yang, Qin, 
Li, & Wang, 2012; Yu, Pan, et al., 2014; Zhang, Zhang, Gao, et al., 
2007). Most of these taxa are characterized by diversification, end‐
emism,	or	adaptive	radiation	in	the	HMR	(Arnold	&	Richards,	1998;	
Cowley, 2007; Liu et al., 2006; Liu, Deng, & Liu, 1994; Milne, 2004; 
Wedderburn & Richards, 1992; Wu & Chuang, 1980). For recently 
diverged species, divergence time may not be enough to create ef‐
ficient isolation barriers. Compared with the three homoploid hybrid 
species, investigation of the instances from these six taxa suggest 
that gene flow between the parental species mainly arose, possibly 
as a result of contact and human disturbance, and then generate a 
number of hybrids with intermediate morphological traits within hy‐
brid zones.

A	collection	of	species	traits	are	prerequisites	for	the	formation	
of hybrid zones, such as partially sympatric distribution together 
with incomplete reproductive barriers, partly overlapping flowering 
phenology and shared pollinator species. The six taxa, as described 
above, are characterized by overlapping flowering periods (Table 
S1). Pollinating insects in the alpine area may play a vital role in the 
evolution of reproductive isolation and/or hybridization for these 
taxa (Nie et al., 2005). In two Rhododendron pairs, bumblebees and 
honey bees are found as common pollinators (R. delavayi × R. cyano-
carpum and R. delavayi × R. decorum), respectively (Ma, Zhang, Zhang, 
& Yang, 2010; Zhang, Feng, & Lu, 1997; Zhang, Zhang, Wu, & Qiao, 
2007). Similarly, shared pollinators are observed in sympatric Primula 
(P. secundiflora × P. poissonii), Roscoe (R. humeana × R. cautleoides) (Du 
et al., 2012; Zhu et al., 2009). Generalist pollination syndromes are 
thought in particular to be a key feature for hybridization in Ligularia 
(Cao, Ma, & Wang, 2008; Yu, Kuroda, & Gong, 2011; Yu, Kuroda, et 
al., 2014). Therefore, these prerequisites may reduce reproductive 
barriers and increase the probability for occurrence of hybridization 
in regions of sympatry for these taxa.

4.2 | The effect of reproductive barriers on 
hybrid zones

Reproductive isolating mechanisms can be categorized into two 
principle types: prezygotic and postzygotic (Baack, Melo, Rieseberg, 
& Ortiz‐Barrientos, 2015; Rieseberg & Carney, 1998; Rieseberg & 
Willis, 2007). Prezygotic isolation in plants comprises habitat, tem‐
poral, ethological, and gametic competition or incompatibility, while 
postzygotic isolations are mainly comprised of hybrid weakness or 
inviability, hybrid breakdown (Rieseberg & Carney, 1998). Because 
postzygotic isolation is costly due to gamete wastage, prezygotic 
isolation has been considered to be more important than postzygotic 
isolation for sympatric species (Baack et al., 2015). The dynamic and 

architecture of hybrid zones are potentially affected by both isola‐
tion mechanisms (Rieseberg & Carney, 1998).

Asymmetrical	hybridization	is	a	relative	common	phenomenon	in	
the	plant	kingdom	(Arnold,	1997;	Barton	&	Hewitt,	1985).	Multiple	
reproductive isolation mechanisms may potentially affect the di‐
rection	of	hybridization	and	 introgression	 (Arnold,	Tang,	Knapp,	&	
Martin, 2010). Bidirectional and asymmetrical hybridization typically 
are both commonly observed in hybrid zones of the HMR, although 
two instances reveal the sole occurrence of unidirectional hybrid‐
ization in Primula and Salix (Ma, Tian, et al., 2014; Wu et al., 2015). 
Asymmetrical	hybridization	may	be	largely	attributed	to	both	types	
of barriers in hybrid zones of the HMR. Both pre‐ and postzygotic 
isolation mechanisms usually result in a tendency toward asymmet‐
rical hybridization that leads to favoring one of the species as the 
maternal species (Ma, Xie, Sun, & Marczewski, 2016). Recently di‐
verged species usually have unequal strength in isolation barriers 
and/or in reproductive output, potentially leading to asymmetrical 
gene flow in sympatric zones. Examples include differences in phe‐
nology, pollinator preference, genetic incompatibility strength, and 
local abundance of parents (Carney, Gardner, & Rieseberg, 2000; 
Muranishi, Tamaki, Setsuko, & Tomaru, 2013; Zhou, Gong, Boufford, 
Wu, & Shi, 2008).

First, at least for protandrous species, the species that flowers 
earlier than another would be more likely maternal species, while 
pollen from the later flowering parent is more likely to be received. 
Flowering phenology has been shown to be a crucial prezygotic iso‐
lation in the HMR (Table S1).

Protandry, a key feature for Rhododendron, combined with 
flowering time may lead to generate hybrid asymmetry such that 
gene flow is strongly biased toward favoring an earlier flowering 
species as the maternal parent in this genus (Ma, Milne, et al., 2010; 
Milne	&	Abbott,	 2008;	 Zha,	Milne,	 &	 Sun,	 2008,	 2009).	 Among	
three	species	pairs	in	this	genus,	maternally	inherited	plastid	DNA	
(cpDNA)	 markers	 (Harris	 &	 Ingram,	 1991;	 Olmstead	 &	 Palmer,	
1994) have shown that most hybrid offspring share chloroplast 
haplotypes with R. delavayi, which previous studies have shown 
flowers earlier than R. cyanocarpum, R. decorum, and R. irroratum 
(Ma, Milne, et al., 2010; Zha, Milne, & Sun, 2008, 2009; Zhang, 
Zhang, Gao, et al., 2007; Zheng et al., 2017). Hence, it has been 
inferred that hybridization in this system is strongly biased toward 
R. delavayi as the maternal parent. With another similar case from 
Silene,	 hybrid	 individuals	 shared	 more	 cpDNA	 haplotypes	 with	
S. asclepiadea than with S. yunnanensis, suggesting S. asclepiadea 
is main maternal species. Similarly, protandry has been found in 
the both parental species and the peak flowering of S. yunnanen-
sis is later than S. asclepiadea about 10 days. Therefore, temporal 
asynchronism of the flowering phenology has been thought con‐
tributing to asymmetric hybridization in this species pair (Zhang et 
al., 2016). Likewise, the effect of flowering time without protandry 
on hybridization has been presented in other taxa. Ligularia sub-
spicata flowers slightly earlier than L. nelumbifolia.	Accordingly,	on	
the	basis	of	 cpDNA	markers,	L. subspicata appears to have been 
primarily the maternal parent (Yu et al., 2011).
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Secondly, asymmetrical hybridization can potentially arise from 
differences	in	pollen	quantity.	In	the	case	of	“pollen	swamping,”	it	is	
predicted that the rare species may generally act as the maternal par‐
ent	relative	to	more	abundant	species	(Arnold,	Hamrick,	&	Bennett,	
1993; Lepais et al., 2009; Levin, Francisco‐Ortega, & Jansen, 1996; 
Rieseberg, 1995). Gene flow patterns may competitively favor in‐
dividuals or flowers either with greater pollen production or that 
are greater in frequency in the hybrid zone. Moreover, difference 
in competition of the pollen at the stigmatic surface may facilitate 
asymmetrical hybridization. The bidirectional and asymmetrical hy‐
bridization are suggested in the case of L. subspicata and L. nelumbi-
folia (Yu et al., 2011). One of the parents is five times more prevalent 
than the other in a sympatric zone of Ligularia. In addition, compound 
corymb inflorescences can produce more pollen in some Ligularia, 
such as L. nelumbifolia (more than 100 cephaloid with 6–8 florets). 
In addition, the number of L. duciformis is more than L. yunnanensis. 
Likewise, in L. duciformis and L. yunnanensis, the relative abundance 
of parental species may result to bias in L. yunnanensis as maternal 
parent although both species have similar floral traits (Zhang et al., 
2018). Hence, a number of factors may cause asymmetrical hybrid‐
ization in the Ligularia species pair (Yu et al., 2011).

Finally, pollinator‐mediated (ethological) isolation may be an‐
other key prezygotic barrier in plants (Table S1). In the species pair 
P. secundiflora and P. poissonii, pollinator syndromes may contribute 
to an asymmetrical reproductive barrier in Primula (Xie et al., 2017). 
Hymenoptera are the main floral visitors of P. secundiflora (e.g., 
bumblebees and Anthophora), while ca 30% of pollinators are from 
Lepidoptera in P. poissonii (Xie et al., 2017). Thus, prezygotic pollina‐
tor‐mediated isolation is thought to be an important factor for asym‐
metrical gene flow in the Primula species pair (Xie et al., 2017). The 
same reasons may also result in asymmetrical hybridization in Silene. 
Butterflies are the main visitors to S. yunnanensis, while bumblebees 
trend to S. asclepiadea and hybrid individuals (Zhang et al., 2016). In 
the case of Rhododendron, no evidence of gene flow bias has been 
found in R. spiciferum and R. spinuliferum, yet these differ in polli‐
nators, where bird and bee pollination are present in R. spinuliferum 
and R. spiciferum, respectively (Yan et al., 2013). Larger compound 
corymb inflorescences in L. duciformis favor this species as the ma‐
ternal parent in hybridizing with the racemose species L. cyathiceps 
because the floral traits of former are more attractive to pollinators 
(Zhang et al., 2018). Consequently, pollinator‐mediated may lead to 
asymmetrical barriers and/or hybridization in these taxa of the HMR.

Postzygotic isolation may also contribute to maintain hybrid 
zones in the HMR. The weakness of many prezygotic isolation mech‐
anisms may often provide opportunities for interspecific incomplete 
reproductive isolation and gene flow in the six taxa as described 
above (Table S1). However, postzygotic isolation can prevent genetic 
homogenization of both species, which is one potential outcome 
from hybridization and introgression (Rieseberg & Carney, 1998). 
Because these types of barriers are difficult to lose once evolved, 
postzygotic isolation may also be an important mechanism influenc‐
ing the dynamics and structure of hybrid zones (Coyne & Orr, 2004; 
Orr, 1996; Orr & Turelli, 2001). Postzygotic isolation may also limit 

interspecific hybridization or the formation of novel hybrid lineage 
when prezygotic isolation was permeable.

For P. secundiflora and P. poissonii, postzygotic barriers restrain 
hybridization via selection against F1 hybrids (Table S1), which show 
much lower seed numbers, high rate of seed inviability, embryo de‐
velopmental failure, and low germination rates. The differences be‐
tween the two parental lineages in heteromorphic incompatibility 
of pollen potentially also contributes to the asymmetrical strength 
of reproductive isolations in the hybridizing species pair (Xie et al., 
2017). The predominance of the F1 hybrid generation is commonly 
reported in hybrid zones of the HMR, a structure that likely arises 
from pre‐existing strong postzygotic isolation among parental spe‐
cies (Table S1). In two hybrid zones of Rhododendron, all hybrid indi‐
viduals are categorized as F1 in one zone (HuaDianBa), while most 
individuals of F1 with small numbers of other classes are dominated 
in another zone (ZhuJianYuan) (Zha et al., 2009). Because selection 
potentially acts against later‐generation hybrid derivatives, habitat 
mediation may result in the difference between both the hybrid 
zones in hybrid fitness (Zha et al., 2009). In three further HMR spe‐
cies pairs, the F1 generation is primary hybrid component (Du et al., 
2012; Yu et al., 2011; Zhang et al., 2018). In the case of L. subspicata 
and L. nelumbifolia, extremely low seed germination rate of hybrid 
offspring (3‰) suggests the presence of strong postzygotic barriers 
may occur in this species pair (Yu et al., 2011). Likewise, in the three 
sympatric Ligularia case, hybridization only occurred in L. cyathiceps 
and L. duciformis or L. duciformis and L. yunnanensis. However, hybrids 
between L. cyathiceps and L. yunnanensis have not been detected 
(Zhang et al., 2018). Genetic data indicate relatively higher genetic 
distance between L. cyathiceps and L. yunnanensis than either has 
with L. duciformis. Hence, mutations between the both species may 
have been accumulated to build postzygotic isolation by sterility of 
hybrids (Zhang et al., 2018). In the case of R. humeana and R. cautleoi-
des, F1 hybrid individuals are found in the wild (Du et al., 2012). 
Unlike hybrid species distributed in novel or extreme habitats, only 
isolated, presumably ephemeral hybrid individuals have been found 
in intermediate habitats, suggesting these hybrids are not stabilized. 
However, in other cases from Ligularia and Rhododendron, F2 hybrids 
are the dominated class in hybrid zones (Ma, Milne, et al., 2010; 
Zhang et al., 2017). Overall, these cases suggest that incomplete 
postzygotic barriers may still have impact on the fitness of hybrid 
offspring, and this process may be responsible for the maintenance 
of species boundaries despite frequent hybridization in the HMR.

Sufficient fertile F1 hybrids can produce backcrosses and act as po‐
tential genetic bridge between both parental species for introgression 
(Cannon & Scher, 2017; Harrison et al., 2017; Twyford, Kidner, & Ennos, 
2015; Yatabe, Kane, Scotti‐Saintagne, & Rieseberg, 2007). Hence, fre‐
quent backcrossing may lead to introgression of genetic material to one 
or	both	parents.	As	discussed	above,	 asymmetrical	 hybridization	 is	 a	
commonly observed phenomenon in the HMR. Thus, distinct patterns 
of isolation between species likely generate asymmetrical introgression 
in many of the hybrid zones of the HMR (Table S1). Flower traits of 
hybrids may have similar morphology with its parental species due to 
repeated	 backcrosses	 occurring	 in	 hybrid	 zone	 (Abbott	 et	 al.,	 2013;	
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Arnold,	1997).	In	a	species	pair	of	Primula, asymmetrical hybridization 
(unidirectional admixture with maternal P. bulleyana) and repeated 
backcrossing may have resulted in more hybrids having phenotypes 
similar to P. bulleyana, and genetic composition may be introgressed 
from P. beesiana into P. bulleyana (Ma, Tian, et al., 2014; Ma, Xie, et al., 
2014). Open and shaded habitats are occupied by P. beesiana and P. bul-
leyana, respectively (Ma, Tian, et al., 2014), whereas P. bulleyana ‐like 
hybrids individuals have been found in open habitat. Therefore, intro‐
gression may transferred novel phenotypes from P. beesiana to P. bulley-
ana (Ma, Tian, et al., 2014; Ma, Xie, et al., 2014); this introgression may 
have	been	and	enabled	the	colonization	of	new	habitats	(Arnold,	1997;	
Arnold,	Ballerini,	&	Brothers,	2012;	Zulliger,	Schnyder,	&	Gugerli,	2013).	
Although	postzygotic	barriers	remain	uncharacterized	in	other	hybrid	
zones of the HMR, to date the postzygotic mechanisms above may be 
generally responsible for the frequent occurrence of asymmetrical in‐
trogression (Ma, Milne, et al., 2010; Xie et al., 2017; Yu et al., 2011; 
Yu, Pan, et al., 2014; Zha et al., 2009; Zhang et al., 2016). More work 
is required to determine how reproductive barrier affect the structure 
of hybrid zones and reflect selection. Species boundaries have been 
thought	to	be	“semipermeable”	(Harrison	&	Larson,	2014).

A	 combination	 of	 genetic	 and	 ecological	 analyses	 should	 be	
implemented to explore these issues, especially for intrinsic and 
extrinsic barriers to hybridization. Genomic analyses will help to un‐
ravel how gene flow between divergent lineages can produce novel 
morphological diversity for adaption to new habitats. Investigation 
of molecular and biochemical mechanisms in hybrid incompatibility 
could improve the understanding of the relationship between repro‐
ductive isolation and environment (Chen, E, & Lin, 2016).

5  | CONCLUSIONS

Interspecific hybridization may be among the factors responsible for 
higher plant diversity in montane regions (Liu, Duan, et al., 2014; Liu 
et al., 2006; Nie et al., 2005; Sun et al., 2017; Wen et al., 2014; Xing 
&	 Ree,	 2017).	 According	 to	 our	 review,	 approximately	 18	 species	
pairs from nine genera are suggested to be involved in homoploid 
hybridization. Based on the evidence accumulated to date, homop‐
loid hybridization appears to be a general phenomenon in the flora 
of the HMR.

The majority of species pairs are believed to form hybrid zones 
arising from incomplete isolation (reproductive and/or ecological 
barriers). Incomplete reproductive isolation is likely important for 
maintaining hybrid zones in these montane regions, since it can lead 
to asymmetrical hybridization, introgression, and species boundar‐
ies maintenance (Rieseberg & Blackman, 2010). In addition to natu‐
rally occurring ecological dynamics, a substantial number of hybrid 
zones known from the HMR appear in the context of anthropogenic 
disturbance, often in roadside situations. Unfortunately, there have 
been few detailed how the distribution of human activities has af‐
fected hybridization of the HMR. Hence, the effect of anthropogenic 
disturbance on natural hybridization, that is, reproductive barriers, 
should be taken into account.

The ecological niche of hybrids could diverge from the niche 
space occupied by parental species if hybrid zones generate hybrid 
lineages with novel trait combinations (Rieseberg et al., 2007). Three 
homoploid hybrid speciation events indicate that ecological isola‐
tions resulting from topological diversity may greatly facilitate the 
formation of reproductive barriers between parental species and 
hybrid species. Therefore, complex and dynamic geographical and 
climatic conditions, characteristic of the HMR, may create ecological 
opportunities that trigger hybridization and/or speciation (Liu, Duan, 
et al., 2014; Liu et al., 2006; Wen et al., 2014; Xing & Ree, 2017). 
Ecological divergence may be the most likely force to promote sta‐
bilization of hybrids and create opportunities for homoploid hybrid 
speciation in the HMR. Therefore, hybrid zones may be a key step for 
homoploid hybrid speciation.

The high occurrence in this mountains region possibly implies 
that plant hybrid zones may be partly responsible for genetic vari‐
ation involved in the evolution and diversification of flora in the 
HMR. However, in these case studies, extrinsic and intrinsic re‐
productive barriers are still insufficiently known at the molecu‐
lar and ecological levels. Hence, future efforts in understanding 
hybridization in the HMR should focus on dissecting ecological 
and molecular mechanism of reproductive isolation that may be 
responsible for these observed patterns. Future studies should 
focus on the mechanisms of reproductive isolation and ecological 
niche shift in these alpine hybrid zones. Understanding of these 
mechanisms will help evolutionary biologist to identify the role 
of homoploid hybridization in adaptive radiation of plants in the 
hyper‐diverse HMR.
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