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Abstract: We present a smartphone-based indoor localisation system, able to track pedestrians over
multiple floors. The system uses Pedestrian Dead Reckoning (PDR), which exploits data from the
smartphone’s inertial measurement unit to estimate the trajectory. The PDR output is matched to
a scaled floor plan and fused with model-based WiFi received signal strength fingerprinting by a
Backtracking Particle Filter (BPF). We proposed a new Viterbi-based floor detection algorithm, which
fuses data from the smartphone’s accelerometer, barometer and WiFi RSS measurements to detect
stairs and elevator usage and to estimate the correct floor number. We also proposed a clustering
algorithm on top of the BPF to solve multimodality, a known problem with particle filters. The
proposed system relies on only a few pre-existing access points, whereas most systems assume or
require the presence of a dedicated localisation infrastructure. In most public buildings and offices,
access points are often available at smaller densities than used for localisation. Our system was
extensively tested in a real office environment with seven 41 m x 27 m floors, each of which had two
WiFi access points. Our system was evaluated in real-time and batch mode, since the system was
able to correct past states. The clustering algorithm reduced the median position error by 17% in
real-time and 13% in batch mode, while the floor detection algorithm achieved a 99.1% and 99.7%
floor number accuracy in real-time and batch mode, respectively.

Keywords: pedestrian dead reckoning; indoor localisation; smartphone; inertial measurement unit;
particle filter; DBSCAN; barometer; WiFi; floor transitioning; Viterbi

1. Introduction

Indoor localisation has many applications, such as tracking objects or pedestrian
navigation. Satellite navigation systems, e.g., GPS, are not usable indoors. Dedicated
localisation systems for indoor environments have been developed in recent years [1,2].
These systems make use of wireless technologies, such as Ultra-Wideband (UWB) [3-5],
visible light communication [6,7], WiFi [8,9] or Bluetooth [10]. A human or object is
equipped with a tag that is localized relative to a fixed infrastructure of anchor nodes.
A common drawback of these systems is dependency on the anchor nodes [2]. These are
expensive, and their setup requires manual work. The accuracy of these systems is affected
by (changes of) the environment, as well as the placement and quantity of anchor nodes.

An alternative solution for indoor localisation is Inertial Navigation Systems (INSs), us-
ing Inertial Measurement Units (IMUs). These devices consist of three-axis accelerometers,
gyroscopes and, optionally, magnetometers. The smartphone has been widely adopted by
the public during the last decade, and most smartphones are equipped with an IMU. While
more accurate systems use a dedicated IMU strapped to the foot or leg [11], smartphone-
based systems have some obvious advantages: they can be deployed without dedicated
hardware and offer good user comfort because people already carry their phone with them.
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A smartphone-based INS starts with Pedestrian Dead Reckoning (PDR). In this method,
individual steps are detected from acceleration or gyroscope data. For each step, the step
length and step heading are estimated by fusing the accelerometer, gyroscope and/or
magnetometer data. The trajectory is then estimated by dead reckoning [12,13]. The major
disadvantage of INS/PDR is that errors are cumulative: the localisation error increases
with time. A challenging aspect is heading estimation. Most approaches rely on using only
the gyroscope (delivering good heading accuracy in a short time interval, but prone to
drift over time due to integration errors) [14-16] or the fusion of the gyroscope with the
magnetometer (delivering absolute headings, but prone to large errors due to the presence
of iron materials in indoor environments) [17-19].

The output of a PDR algorithm is often matched to a scaled floor plan by a Particle Filter
(PF) [20-24]. Wall locations are used as physical constraints, eliminating drift caused by both
heading and step length estimation errors. In fact, the PF with map matching can track the
pedestrian even if the initial position and/or heading are unknown [20,23,24]. Common prob-
lems with the PDR-PF approach are sample impoverishment [25] and multimodality [19,23].
The former happens when the filter relies too much on the output of the PDR algorithm.
The particles can become stuck in one place due to errors in the PDR algorithm. The latter
happens when the filter is allowed to diverge too much from the PDR output. The particles
can then spread out into different modes. Furthermore, multimodality can also be caused
by symmetry in the walkable environment [26]. These problems can be solved by fusing
the PDR-PF system with the mentioned localisation techniques into a hybrid localisation
system. The tradeoff is that these hybrid systems are dependent on dedicated infrastructure,
which is not always available.

Another challenge in an indoor pedestrian localisation system is detecting floor tran-
sitions and determining the correct floor number (i.e., floor detection), thus allowing a
pedestrian to be tracked across multiple floors. This can be achieved by detecting the floor
number directly using (WiFi) fingerprinting [25,27] or by detecting floor transition events
using data from onboard sensors [24,28-31].

We designed and implemented a complete smartphone-based indoor pedestrian
localisation system, which is independent of any dedicated localisation system and does
not require knowledge of the pedestrian’s initial position, heading and floor number.
The system consists of a PDR algorithm [17] and the Backtracking Particle Filter (BPF) [32].
Clustering the particles with Density-Based Spatial Clustering for Applications with Noise
(DBSCAN) [33] was used on top of the BPF, increasing the accuracy when the particle
distribution is multimodal. We proposed a new accurate floor detection algorithm based
on the Viterbi algorithm, which actively detects both stairs and elevator usage (and vertical
direction) without the need for additional /dedicated hardware (except the smartphone
being carried). Received Signal Strength (RSS) Model-based Fingerprinting (MBF) using
only pre-existing WiFi Access Points (APs) provides rough floor number detection and was
fused with the PDR-BPF localisation system. The BPF and Viterbi-based floor detection
algorithm keep track of past positions and floor numbers, respectively, and can correct
them using new information. Therefore, this system is best suited for applications where a
delay of the output is acceptable. The only requirement for this system is that a detailed
floor plan and some WiFi APs be present, which is the case for most public buildings and
office environments.

The contribution of this paper was an infrastructure-independent smartphone-based
multifloor indoor pedestrian localisation system with:

e The combination of clustering, MBF of WiFi RSS, detection of both stairs and elevator
usage and backtracking to reduce the multimodality problem with particle filters
in the indoor PDR context and the step length and heading drift errors from the
PDR algorithm;

¢ Floor number detection via WiFi RSS MBF and a floor transition detection algorithm,
detecting both stairs and elevator usage by fusing accelerometer and barometer data;
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e Integration into a complete infrastructure-independent localisation system, able to
track pedestrians across multiple floors.

The remainder of the paper consists of related works (Section 2), then the methodology
and implemented algorithms are explained (Section 3) and evaluated (Section 4). The work
concludes with a discussion in Section 5.

2. Related Work
2.1. Pedestrian Dead Reckoning

While some works presented full PDR systems, others focused on the subproblems of
PDR: determining device orientation, step detection, step length estimation and pedestrian
heading estimation. The orientation is used to transform sensor measurements from
the local to the global coordinate frame. This is necessary to estimate the pedestrian’s
heading. Generally, the accelerometer is used to estimate the gravity vector, and thus
the tilt. The magnetometer data can then be tilt compensated and provide the device
heading. However, the attitude from accelerometer data is sensitive to other forces (e.g.,
from walking), and the magnetometer is sensitive to magnetic objects [34]. Attitude and
Heading Reference System (AHRS) algorithms fuse gyroscope data with accelerometer and
optionally magnetometer data for robust device orientation. Two known AHRS algorithms
are the Madwick and Mahoney filters [35]. Kalman filters are also implemented as AHRS,
of which the unscented KF was shown to have the best performance in [36]. The pedestrian
heading depends on the carrying mode. Our system used the device heading directly
as in [17,37], because the phone is always held in the hand without rotating it relative
to the user’s body. Multimode PDR systems allow multiple carrying modes (e.g., in the
pocket), of which many are based on Principal Component Analysis (PCA) of accelerometer
data [28,38]. Since the device and pedestrian heading were identical in our system, they are
simply called heading in the remainder of the text. Acceleration peak detection is the most
popular step detection method [17,19,28]. Other methods are based on device attitude [37]
or relative amplitudes in the frequency domain [39]. The step length can be modelled
according to the peak-to-peak [40] or variance and peak frequency [19] of acceleration and
pitch amplitude [37]. Several step detection and step length algorithms were compared
in [39,41], respectively.

2.2. Map Matching with Particle Filters

In [20], it was demonstrated that the IMU in a typical smartphone is less accurate than
a dedicated IMU (Xsens), but map matching improves their localization accuracy to the
same level. Contrary to PDR algorithms, the differences in other PF implementations are
more subtle. Reference [21] assumed the user is often walking in a straight line. When a
set of particles is in a corridor and the heading change is small, the filter will guide the
particles along the direction of the corridor. If the heading change is large and a door is
nearby, the particles are guided towards the door. Detailed floor plans of public buildings
are not always available. Reference [24] used the simplified Open Street Maps (OSM)
floor plans and enhanced them, assuming interior properties (e.g., minimum corridor
width) conformed to established standards. A mesh-based transition model was proposed
in [23], which allowed propagation towards possible locations only by calculating all wall
intersections once in an offline phase. This is similar to using graphs [42], but a mesh is
also more memory efficient. Reference [22] used a Gaussian curve to weigh particles in
addition to removing impossible particles. What makes map matching especially powerful
is that it can be used when the initial position is unknown. The initial particles are then
uniformly distributed over the floor plan [23,24]. When the initial heading is unknown,
the particles are initialized with a random heading [20,23] or the magnetometer is used to
estimate the initial heading [24].

As mentioned, a known problem with particle filters is the tradeoff between parti-
cle diversity and focus [43], determined by the amount of artificial noise added by the
propagation model. Too much focus means the PF relies too much on the PDR output,
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causing all the particles to become stuck in the wrong room due to PDR errors and hard
wall constraints. Large diversity means the PF can diverge heavily from the PDR output
(and/or ignore physical constraints), causing multimodal state distributions. This multi-
modality problem is often mentioned [19,22,43], but mostly left unsolved. Reference [23]
proposed an approximation of a Gaussian Kernel Density Estimator (KDE) to select the
most probable mode of the multimodal particle distribution instead of averaging all parti-
cles. However, no global improvement was achieved. Smoothing with a forward-backward
smoother [25] and Backtracking Particle Filter (BPF) [32] was proposed, which can correct
past multimodality errors if the filter converges to one mode again in a later stage.

2.3. Hybrid Localisation

In hybrid localisation, two or more localisation techniques are fused to provide better
accuracy than each separate technique. PDR is often fused with WiFi/Bluetooth localisa-
tion. Trilateration using RSS [44] or channel state information [45] has been proposed, but
RSS fingerprinting is the most popular method [46-48]. Fingerprint databases or radio
maps are constructed in an offline phase, where each position corresponds to a vector of
RSS values of APs in range. The RSS vectors were acquired empirically in [44,48], while [46]
used a path loss model (i.e., MBF). In the online phase, a KDE was used in [48] to estimate
the location and error covariance matrix given the radio map and a new RSS vector. This
was then fused with PDR in an unscented KF. In [44], fingerprints were matched with
the Euclidean distance, and the chosen position was fused with trilateration using a KF.
The resulting position was then fused with PDR using a second KF. The work in [48] used
K Nearest Neighbours (KNNs) instead, and the resulting position was fused with PDR
in the same PF used for map matching. After the PF has removed impossible particles,
the remaining ones are weighted based on their distance to the estimated position from fin-
gerprinting. Similarly, Reference [46] weighed each particle by matching the database RSS
vector at the particle’s location to the new RSS vector. The rough, but absolute positioning
provided by WiFi improved the accuracy, especially during the initial stages when particles
were still spread out in different modes. Furthermore, sample impoverishment in PDR-PF
systems can be solved in a hybrid localisation system. A KF as a second filter was proposed
in [25], using only PDR and WiFi RSS measurements. When the deviation of the particle
closest to the KF’s state estimate passes a threshold, the PF is reinitialized by sampling from
the KF’s state distribution. Similarly, an Interacting Multiple Model Particle Filter IMMPF)
was proposed in [43], where a secondary PF uses only the WiFi RSS as the input. The main
PF samples from the secondary PF when the Kullback-Leibler divergence between the
two filter passes a threshold. In parallel, the secondary PF samples from the main PF
when outliers in the RSS measurements are detected. Lastly, an infrastructure-independent
hybrid localisation system was proposed in [49], which exploited the smartphone’s IMU
and camera for fusion of PDR and camera-based Simultaneous Mapping and Localisa-
tion (SLAM).

2.4. Floor (Transition) Detection

In [27], the floor was chosen that had the database RSS vector with the highest similar-
ity to the measured RSS vector. However, detection accuracy depends on the environment
and the available APs. Floor transition detection using machine learning and features
extracted from multiple sensors (accelerometer, gyroscope and/or barometer) was suc-
cessfully implemented in [19,24,28,50]. References [28,29] obtained over 90% accuracy in
distinguishing between going upstairs and downstairs, but elevators were not detected.
References [24,50] detected both stairs and elevator usage, but it performed worse at distin-
guishing the direction of stairs usage. Floor (transition) detection can also be achieved by
detecting height changes. The cumulative height change during a transition can then be
used to estimate the amount of changed floors. Height change was accurately estimated
in [29,51] using only the IMU sensors, but this was achieved using dedicated strapdown
IMUs, which provide higher accuracy than unconstrained smartphones [20]. The barom-
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eter was used successfully as an alternative to detect floor transitions by converting the
measured pressure to height [52]. Reference [31] used the height calculated from the first
pressure measurement as a reference to estimate the height difference during the rest of the
trajectory. However, the estimated height can drift by several meters within an hour due to
atmospheric pressure drift caused by the weather [30]. In [53], the moving average and
linearity of the pressure data were used to detect floor transitions. However, the pattern
being recognized only applied to a specific type of staircase, and also, pedestrian detection
using surveillance camera’s was used for higher accuracy. Accurate height estimation and
floor (transition) detection was achieved in [30,54] with the barometer and a Kalman filter,
but a reference barometer at a known floor compensated for atmospheric pressure changes
over time. Without a reference device, for systems based on floor transition detection
and/or relative height estimation, the initial floor number must be known, and it is difficult
to recover from false or missed floor transitions. This was solved by adding absolute floor
detection with WiFi (or Bluetooth) fingerprinting [23,25,55,56]. Reference [55] used WiFi
RSS and barometer measurements in the update phase of a Kalman filter to estimate the
height. References [56,57] used WiFi RSS for floor detection and a barometer to detect stairs.
Reference [56] used a probabilistic model to detect if a recent pressure change was caused
by a floor change. Therefore, a floor number change was only detected when the change
was (almost) finished. Reference [57] used a moving average to detect floor transitions,
but the floor number was detected with a pressure look-up table, which needed frequent
recalibration using WiFi fingerprinting. Reference [23] used WiFi and Bluetooth finger-
printing and detected floor transitions with the barometer and gyroscope. However, their
method depended on the placement of many APs (e.g., 42 beacons). In [25], fingerprinting
was only used for 2D localisation. The barometer was used to detect height changes, while
the PF was allowed to propagate particles on all floors. The floor number of the floor with
the most particles was chosen.

3. Method

Figure 1 illustrates a high-level overview of the algorithm explained in this section.
Each block references the corresponding subsection. The following steps were realized:
PDR (Section 3.1), WiFi RSS-MBF (Section 3.2), a BPF (Section 3.4) fusing PDR, WiFi
RSS measurements and floor plan information and, finally, a Viterbi-based floor number
detection algorithm (Section 3.3), including stairs and elevator detection.

Pedestrian Dead Reckoning | >

Magnetometer o

i' Accelerometer : » Elevator detection
L""'""""""m’d' Viterbi floor detection

Barometer Stair detection

WiFi RSS * R8s self.
__________________________ calibration
Smartphone

RSS-prediction

Backtracking Estimated trajectory

Particle Filter —
+ Clustering

I

hd

h 4

Floor plan

Figure 1. High-level flowgraph of the application.
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3.1. Pedestrian Dead Reckoning

As illustrated in Figure 1, the data used for this part came from the smartphone’s
IMU, which consisted of 3-axis accelerometers, gyroscopes and magnetometers. The PDR
algorithm was reproduced from two papers and therefore only briefly explained. For more
detail, see [17,41].

3.1.1. Calibration and Preprocessing

The gyroscope was calibrated by placing the device on a stable surface for a few
seconds and subtracting the average value of each axis from the consecutive measure-
ments [58]. This removed the gyroscope bias. The magnetometer was calibrated by
compensating for the influences of hard and soft magnetic objects, which cause additive
and multiplicative errors, respectively. After rotating the device around two perpendicular
axes, least squares ellipsoid-fitting was used as described in [59]. The smartphone can be
tilted while holding it, and the tilt will inevitably fluctuate while the user is walking. This
problem was solved by rotating the sensor data. The Android OS has a software AHRS
sensor [60], which can provide the orientation as pitch, roll and yaw angles. Pitch and
roll represent the tilt and were used to construct the rotation matrix. After rotating the
accelerometer data, the Z-axis represents vertical acceleration and X- and Y-axes represent
horizontal acceleration. The same applies for the magnetometer, for which the horizontal
components were used to calculate the heading. The gyroscope heading was calculated by
scalar projection of the gyroscope data onto the estimated gravity vector. This resulted in
the horizontal angular rate, which was then integrated. For more details, see [17].

3.1.2. Step (Length) Detection

When the pedestrian is walking, the vertical acceleration pattern resembles a sinu-
soidal wave. First, the gravity or DC component, as well as high-frequency noise are
removed. Each step event is then detected by finding peaks in the data, which are caused
by the impact of the foot on the ground. More details can be found in [17]. The step length
I, of the n-th step was based on the model proposed in [41] (Equation (1)), which improved
the known Weinberg model [40]. a4x,n is the detected peak value, and a4, ,, is local
minimum that precedes the peak. In the original model, the coefficient K,, was constant.
In [41], however, K;, was estimated during each step, based on a quadratic function of the
estimated velocity. The velocity was estimated by integrating the acceleration data.

Iy = Ky * 4\/ Amax,n — Aminn 1)

3.1.3. Heading Estimation

The heading was estimated by fusing the gyroscope and magnetometer heading.
The fused heading is a weighted average of the current magnetometer heading, current
gyroscope heading and previous fused heading. The weight coefficients are adaptive,
based on magnetometer stability and the correlation of the magnetometer and gyroscope.
For more details, see [17].

3.2. WiFi RSS Aided Localisation

As illustrated in Figure 1, the predicted RSS from radio maps and the calibrated
RSS from the smartphone were used as the input in the BPF and floor number detection
algorithms. Both algorithms calculate a new output for each step detection. Therefore, all
RSS measurements since the last step are buffered until the next step and then used as one
RSS vector. RSS values from the same AP were averaged because they were measured at
roughly the same position. The radio maps were constructed with the WiCA Heuristic
Indoor Propagation Prediction (WHIPP) tool [61]. The user can upload an image of the
floor plan, draw the walls over the image and enter the scale, the building materials of each
wall, as well as the location and other parameters of the WiFi APs. The tool then estimates
the path loss for each AP on a grid of coordinates based on the location of the APs and
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the locations and materials of each wall. The path loss model incorporates the distance,
wall attenuations and diffraction around corners. As such, it also provides good path loss
estimations in Non-Line-Of-Sight conditions (NLOS). The model was extensively explained
in [62]. The RSS values are finally predicted by subtracting the path loss PL (in dB) from
the transmitted power P. P also accounts for the antenna gains of the AP and smartphone.
These are often unknown, which translates to a bias of several dB in the predicted RSS
values compared to the real RSS values. The RSS bias RSS\¥ was compensated with
self-calibration per AP, as proposed in [63]. This method estimates the bias by mapping the
Cumulative Distribution Functions (CDFs) of the measured RSS values to the CDFs of the
estimated RSS values. For optimal calibration, a random walk through the building was
made during the offline phase while recording the RSS, and then, the bias for each AP was
calculated. In the online phase, each measured RSS value was calibrated by subtracting the
bias for the corresponding AP.

3.3. Floor Number Detection

Figure 2 shows a high-level flowgraph of the three-phase algorithm. It consisted of a
combination of floor number detection with WiFi RSS MBF and floor transition detection using
the accelerometer and barometer. In contrast to many comparable systems [23,25,28,29,55,56],
our system detected both stairs and elevator usage, and these detections served a dual
purpose: to aid in determining the sequence of visited floors (Section 3.3) and to improve
2D localisation (Section 3.4.3).

In the first phase, the accelerometer data were used to detect elevator usage. In the
second phase, barometer data were used to detect stairs usage, while the (absence of)
elevator detections was used to ignore noisy barometer data and prevent confusion between
elevator and stairs detections. In the third and final phase, the output of the previous
phases was fused with RSS fingerprinting by a Viterbi-based algorithm to detect the correct
floor number.

[Accelernmeter ]—P[ Elevator detection

| >
— T
Barometer »| Stair detection Floor number
detection
WiFi RSS o
(calibrated) g

Figure 2. High-level flowgraph of the floor number detection algorithm. This algorithm consists of

three phases. First, stairs and elevator usage are detected, and the height change is estimated. Then,
RSS measurements are matched with the model-based radio maps, and finally, the output of the first
2 phases is combined to estimate the floor number.

RSS fingerprinting provides absolute floor number detection, but is prone to errors,
and the number of APs per floor is limited (Section 3.5). Fusion with floor transition
detection allowed the system to ignore false floor changes and also allowed detecting real
floor changes earlier.

3.3.1. Elevator Detection with the Accelerometer

An algorithm for recognizing a moving elevator in accelerometer data was proposed,
based on the elevator acceleration sensing principle of [64]. Our algorithm added a Low-
Pass (LP) filter to the acceleration modulus to remove high-frequency noise, thus reducing
the false negative rate. The acceleration modulus while the elevator is rising is shown
before (Figure 3a) and after filtering (Figure 3b). These accelerations were measured
with a Samsung Galaxy S4 Mini. To reduce the false positive rate, the algorithm must
detect a hill followed by a valley to detect a rising elevator or vice versa. A maximum
time offset between a candidate hill and valley was set by measuring (or estimating)
the time the elevator needs to move from the lowest to the highest floor. In the case of
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an elevator detection, the first step after the detected elevator interval was labelled as
ELEVATOR (Algorithm 1). In [64], the height change was estimated by double integration
of the accelerations. However, integration errors can cause large deviations from the real
height change. We estimated the maximum speed v;,,x and acceleration/deceleration time
interval of the elevator T¢%Y by averaging these two parameters from detected elevator
transitions in the training data. The amount of floors changed n was then estimated using
Equation (2), with Tel fota; the time interval of the whole elevator transition and /., the
estimated floor height. This method provided better height estimation, at the cost of a
limited amount of training data needed. For more details on elevator detection, see [64].

Algorithm 1 Floor transition detection.

Data: Accelerometer data, barometer data, step detections

Result: Floor change and transition type per step detection

STAIRS, ELEVATOR, NOISE «+ 1,2,3; /* Transition labels (0 for no transition) */
Ws, W, thh — 31200h,LPr \/ia'h,Lp,' /* Parameters */
heights, transitions < list, list;

for t < O to step_detections.Length —1 by 1 do

transition < (0, 0), /* (Floor number change, transition type) */
Elevator_detection(transition); /= see Section 3.3.1 */
h %helght during step i’,’ /* Converted from barometer measurements */
append h to heights;

if heights[t] — heights[t — W] > thy, and transition[1]! = ELEVATOR then

L tmnsitzon[l} < NOISE; /* Fast height change and elevator detection is noise */
Ah hEightS[t] — heights[t — Wl] if Al > thh and /* Significant height change */
all([tmnsitions[k} [1] <= 1f01"k S [ W], H) and /* no noise or elevator */

all([sign(Ah) == sign([heights[k] — heights[k — ]] fork e [t — Z—WI ,t]]) then
transition[1] <— STAIRS, floor_change <
fork<t—1tot— W, by —1do

Ai
floor_height”

/* Backward search for recent stairs detection */
if transitions|k][1] == STAIRS then
/* Add floor change from most recent stairs detection until current step */
I heights[t—1]—heights[k]
floor_change < transitions[k]|[0] + Floor_Treight break;

| transition[0] < floor_change

| append transition to transitions;

1 it
"= Umax * (Tfole Tgcf:?) ()

hfloor

]
M}M'M })WWMVV

Acceleration modulus (m.s?)

el i W i

Acceleration modulus (m.s2)

7.5 10 125 15 175 0 25 5

75 10 125 15 17.5
Time (s)

Time (s)

(a) (b)

Figure 3. Acceleration modulus while the pedestrian is taking an elevator. Before (a) and after (b) filtering with the Gaussian

low-pass filter and removal

of the gravity component.
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3.3.2. Stairs Detection with Barometer

In the stairs detection algorithm, the pressure was converted to a height change [52],
but no initial height was assumed (i.e., the initial height was 0 m). Stairs transitions
were detected by searching for a significant height change within a long window of W,
step detections and a short window of W; < W step detections. Slow height changes
(long window) indicated stairs usage, while fast height changes (short window) indicated
either elevator usage or noise. This noise can be caused by opening/closing doors or
windows [30]. The last step of a short window was labelled as NOISE (Algorithm 1)
when a significant height change was detected within that window. All steps in a long
window were labelled as STAIRS when a significant height change was detected within
that window and none of the steps were labelled as ELEVATOR or as NOISE. This
prevented the algorithm from detecting an elevator and stairs transition at the same time
and also prevented false stairs or elevator detections due to large sudden pressure (and thus
height) changes. We also noticed that fluctuations could last several seconds, especially in
an older device. Therefore, we imposed an additional condition on the stairs detection: the
sign of the height change must be constant over a smaller window, which is slid over the
(long) stairs detection window. This means that large fluctuations within the long detection
window would not trigger a stairs detection.

If the stairs transition was initially detected, the height difference over the whole
window was estimated. If one or more STAIRS labels existed within the window, the same
stairs transition was still happening; thus, the height change until the most recent detection
was added to the height difference between that detection and the current detection.

The pseudocode of the described algorithm is provided in Algorithm 1. It uses
three parameters: W), W, and the height change threshold /. The barometer of an older
smartphone (Samsung Galaxy S5) produces significantly more noise than the barometer
of a newer smartphone (Samsung Galaxy S7). Therefore, Iy, was adapted to the device.
The length of the stairs detection window was also adapted to the device, since there
must also be a real height change to be able to detect it. Assuming the barometer sensor
noise is Gaussian and the height measurements (converted from pressure measurements)
have a standard deviation 0y, the estimated height difference by subtracting two height
measurements was also Gaussian: N(Ah, 02, ) with Ah the real height difference between
the two measurements and x;, = V20h,. We imposed |Ah| = 30y, and assuming a
stairs rise of 0.15 m [65], the stairs detection window should be at least 20 * o, steps long.
A longer window means it will take longer before a stairs transition can be detected. An LP
filter was used on the height data, and the new standard deviation opj, 1 p < ) reduced
the window length. However, the LP filter itself also caused a delay [53]. Therefore,
we recursively calculated the optimal cutoff frequency for the LP filter for each device.
The chosen value for the stairs detection threshold made false positives more likely than
false negatives, given the expected value for the height change (30, 1 p). However, a false
positive stairs detection is not as bad as a false negative detection in this context, because the
detected height change must be at least 50% of the height between two floors to trigger a
floor number change.

3.3.3. Viterbi-Based Floor Detection

Finally, we proposed a Viterbi-based algorithm to combine the detected stairs and
elevator transitions with WiFi RSS fingerprinting, to enable accurate floor number detection.
The pseudocode of the algorithm is shown in Algorithm 2, and the important variables
and equations are explained below. Note that Algorithms 1 and 2 are explained separately
for clarity, but actually form one integrated algorithm.
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Algorithm 2 Viterbi floor detection.
Data: Accelerometer, barometer and WiFi RSS measurements, step detections
Result: Visited floor per step detection
20 Lines 1-3 of Algorithm 1;
21 Crans, Cops <— 1.5, 1;
22 floors < List of integers representing the floor numbers;
23 trellis <—zeros((floors.Length, transitions.Length)) ;
24 acc < empty list;
25 append zeros(floors.Length) to acc;
26 costs,seqBatch, seqrealtime <— 3 x zeros(floors.Length);
27 fort < 0 to step_detections.Length — 1 by 1 do
28 Lines 4-19 of Algorithm 1;
29 ng, typer < transition;
30 | newCosts, newAcc <2 x zeros(floors.Length);
31 if type; then
/* Height change accumulated by Viterbi after last floor transition. */
32 acc_transition < acc[k]; /* Same k from Algorithm 1 */
33 else
/* Reset accumulated floor change to avoid influence of height drift. */
34 acc_transition < zeros(floors.Length)
35 end
36 fori € floors do
37 costsTmp <— empty list c?élss <; (Equation (4)) for j € floors do
/* Calculate the cost of transitioning to floor i from each possible floor j. */
38 C(SHSLl) < (Equation (5));
39 append C(Si|S,_,) to costTmp ;
40 end
a1 C(S}) «~Min(costsTmp); /+ (i.e., Equation (3)) */
I newCosts[i] < C(S);
3 if C(Si) == costTmpli] then
/* If the minimum cost is not unique, prefer to stay in the same state . */
a4 prevFloor < i;
45 else
46 | prevFloor < ArgMin(costsTmp) ;
47 end
48 newAccli| <— i — prevFloor + acc_transitions[prevFloor];
49 trellis[i,t — 1] < prevFloor;
50 end
51 costs,acc < newCosts, newAcc;
52 append newAcc to acc; append ArgMin(costs) to seqrealtime ;
53 end
54 seqBatch < backtracking through trellis;

The original Viterbi algorithm [66] uses a transition and emission probability matrix to

calculate the probability for current state S} given the previous state S| _,, where ¢ denotes
time and 7, j are the indices of possible states. On the contrary, our algorithm uses a cost

function (Equation (5)) to calculate the cost C(S}|Si ;) for state S} given previous state
Si |, where St is the i-th floor during the t-th detected step index. C(S) is the cost up until
the current step, given that the pedestrian is at the i-th floor (Equation (3)). The initial
cost for each floor was zero, i.e., no assumptions about the initial floor were made. ny
is the number of floor changes detected at step t. type; is the transition type at step ¢.

acc_tmnsition[SLl] is the floor change accumulated by the Viterbi algorithm during a

stairs transition for the j-th floor up until the previous step. d, IéjSS is the normalized distance
between the measured RSS vector and the j-th floor and is calculated with Equation (4),



Sensors 2021, 21, 4565

11 of 29

where d;ijs ¢ is the smallest Euclidean distance between the measured RSS vector at time ¢
and the fingerprints of floor j. If the measured RSS vector does not contain a value for a
certain AP, then a default value of —100 dBm is inserted for that AP. If there are no RSS
measurements available at step ¢, then dRSS is set to zero for all floors. The transition
cost cians and observation cost c,ps are coefficients that depend on the accuracy of the
transition detection and fingerprint matching, respectively. A separate KD-tree was used
for every floor radio map to quickly find the fingerprint with smallest Euclidean distance.
Finally, the sequence with the smallest cost was chosen as the most likely sequence for
batch processing. For real-time processing, the floor with the smallest cost was chosen at
each step.

. ~ i1s/ ' -1
c(s)) = MZ”LS(SJSFO] Vieo,n—1], t>0 3)
Cobs- dIéSS’ t=0
. dtl
Tos = ks @

1 gtk
Z” dRSS
C(Sﬂst—l) = C(S£—1) + Crans.|i — j + acc_transition[Si_l] — | + Cobs"?]élgs (5)

3.4. Backtracking Particle Filter with Clustering

Figure 4 shows a high-level flowgraph of the BPF algorithm. The input for this
algorithm is the output of all other parts of the system, i.e., PDR, floor plans, WiFi RSS
fingerprinting, floor number detection and floor transition detection. Specific design
choices are described here. For more details on BPF and PF in general, see [32,67].

3.4.1. Initialization

First, the floor level was estimated using measured RSS values (Section 3.3), and the
corresponding floor plan was loaded. A set of Ny particles was uniformly distributed over
the floor plan, each of which had the following attributes: [x,y, b;, b, W, parent]. (x,y) is
the 2D location of the particle. Step length bias b; and heading bias b, were randomly
chosen. W is the particle weight and was set to % parent points to the particle from
which the particle originated and allowed tracing back its lineage recursively. parent was
initially void.

3.4.2. Propagation

First, the BPF checks if the floor number has changed and loads the new floor plan if
necessary. The particles from initialization or from the previous cycle (Figure 4) are then
deeply copied. These copies are the new particle generation, and parent now points to the
original particle.

Propagation of the i-th particle was performed by calculating the position of each
new particle based on the parent location, inherited biases and the current PDR output.
Artificial Gaussian noise N(0, 0;,) was added to the inherited heading bias b;1 to enable
heading drift compensation. Although N(0, 0;) was added to b; to account for noise, bf was
inherited without the noise, because a systematic step length error was assumed. The latter
occurred due to badly tuned coefficients in the step length model. More details on the
propagation model can be found in [19,20].
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Figure 4. High-level flowgraph of the particle filter algorithm.

3.4.3. Update

As depicted in Figure 4, the floor plan, WiFi RSS measurements (Section 3.2), elevator
detections (Section 3.3.1) and stairs detections (Section 3.3.2) were used to reweigh the
particles. If the trajectory between a particle and its parent intersected a wall segment,
the particle was removed. This also removed the reference to its predecessors. If all
references to a particle of a previous step were removed, that particle was lost. This way,
the BPF was able to smooth the trajectory on the fly. The (B)PF algorithm is easily expanded
by fusing additional information.

If a calibrated RSS vector was available, a new weight W; ,,.,, was assigned to each
particle i by comparing the “measured” vector with the database RSS vector at the position
of the particle with Equation (6), where W; ;4 is the particle’s old weight, 0y is the standard
deviation of the RSS noise and d is the Euclidean distance between the vectors. o;ss depends
on the quality of the PL estimation and RSS stability and was empirically determined.
Furthermore, the database vector was adapted to the measured vector, depending on the
APs from which the signals were received.

Furthermore, W; ,,.., was reduced when particle i was not on a staircase while the step
was labelled as STAIRS. The same applied for the ELEVATOR label.

(522)

207ss

(6)

Wi,new = Wiold - €

3.4.4. Resampling

If the amount of particles dropped below N << Ny, the weights of the updated
particles were normalized, and a new set of N particles with equal weights was created
by sampling from the updated particle set. The high amount of initial particles Ny was
only needed to have many particles spread over the floor plan. When the filter converged,
a smaller particle set sufficed and was more efficient.
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3.4.5. Trajectory Estimation with DBSCAN

As mentioned before, multiple physically valid solutions are possible depending
on the travelled trajectory, the geometry of the building, the amount of APs available
for fingerprinting, etc. This leads to multimodal state distributions, i.e., the particles are
gathered in different clusters. This happens especially when no constraints on initial
position and/or heading are applied [26], as was the case in our system. Simply using
the centroid of the particles causes large errors. Therefore, DBSCAN [33] was proposed to
recognize the largest cluster of a particle set. The motivation for using DBSCAN was that
the amount of clusters can change and must be detected automatically. Since the walls were
used to remove impossible particles, the clusters can be arbitrarily shaped. DBSCAN can
handle both situations and can also detect outliers by excluding them from any cluster. All
obtained clusters were refined by removing the particles that had a wall between them and
the cluster centroid. The removed particles were annexed to a new cluster. The position
was finally estimated by calculating the weighted centroid of the largest cluster if its weight
was at least 75% larger than the second “heaviest” cluster. If only one cluster was found, it
had to contain at least a third of all particles. In all other cases, the position was estimated
as the weighted centroid of all particles. While these parameters were not very sensitive,
choosing much lower values increased the chance of choosing the wrong cluster because
the correct cluster was not always the largest. Especially if the PDR output was noisy,
the correct cluster would often remain small until particles of other clusters started to
disappear because of wall collisions.

If a cluster was found that satisfied the weight conditions, the weights of its particles
were increased by 5%. Choosing a higher fraction can lead to sample impoverishment
in case the wrong cluster is chosen. To increase particle diversity when multiple similar
clusters were found, the particle weights were increased by a factor inversely proportional
to the cluster weight. This would increase the chance that particles of small clusters would
be resampled and that a small, but correct cluster would “survive” long enough until other
larger clusters bumped into the walls. The particle weight increase was again limited to a
maximum of 5% to prevent the overinflation of the weights.

The BPF updated the previous positions by recursively calculating the centroid of
the predecessors of only the cluster’s particles. This allowed the BPF to recover when
the wrong cluster was chosen and was removed during subsequent map matching steps.
In that case, another cluster would be chosen, and the previous positions could be corrected
by backtracking. This is illustrated in Figure 5. Multiple clusters were found (Figure 5a),
but none of them were significantly heavier than all other clusters. No particular cluster
was selected; thus, the position (and the entire trajectory) was estimated using all particles.
One step later (Figure 5b), the weight of the correct cluster increased and now exceeded
the weight threshold. Only the clustered (red) particles were now used for calculating the
new position and backtracking the previous states, resulting in the red trajectory. The other
(grey) particles were considered to be outliers. The grey trajectory was estimated by
backtracking with all particles. Note that the outlier particles were not deleted. Instead, all
particles that were chosen during the resampling step were used in the next filtering cycle
to prevent sample impoverishment.

3.4.6. Tail Update

The tail is the sequence of particle generations that are still recursively linked to the
present particle generation. If the tail length has reached the given limit, the oldest particle
generation is removed. This means the currently oldest position cannot be updated with
backtracking any longer.

A short tail length requires less CPU time and memory, while a larger tail length
provides higher accuracy [32].
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Figure 5. No significantly heavy cluster was found (a); thus the new position was calculated by averaging all particles. One

step later (b), the correct cluster became heavier and was recognized by the clustering algorithm. The new position was

calculated by averaging only the clustered (red) particles.

3.5. Evaluation Configurations
3.5.1. Environment

The considered environment consisted of seven 41 m x 27 m (1107 m?) floors in
an office building. Figure 6 shows a floor plan of the 5th floor of this building, where
most of the measurements were performed. The office floor has three elevators (Es), four
staircases (Ss) and two WiFi APs. Figure 7a shows one of the two centre staircases. These
are located in separated stairwells and connect to all other floors of the twelve-storey
building. Figure 7b shows one of the metal open spiral staircases, each of which connect
the kitchens of two floors. 5S4 is indicated by dashed lines because the staircase is only
present at Floors 9-12, while 53 is present at Floors 3-8. Figure 7c shows the three elevators.
The APs are indicated with blue dots. Note that the centre of the floor consists of thick
concrete walls, where the smartphones often cannot detect the APs’ signals. The floor
height is 3.5 m. Plots of the other floors were omitted because they are almost identical.
For example, each floor has two APs, but sometimes in a different corner of the hallways.
The path loss model of Section 3.2 incorporated all elements of Figure 6, except for the
open staircase (S3), when predicting the RSS fingerprints for the fifth floor.

3.5.2. Validation Approach

The smartphones used were a Samsung Galaxy S5 (2014) and a Samsung Galaxy S7
(2016). Both smartphones have a 9-DOF IMU, barometer and WiFi chipset. The data were
logged with the GetSensorDataApp [68]. The smartphone was placed on a stable surface
for a few seconds at the start of each trajectory, then rotated around two perpendicular axes.
This was performed to calibrate the gyroscope and magnetometer, respectively. The user
held the smartphone in the hand without rotating it relative to the body. The interface
of this app has a button for marking the time when the user passes a known position.
The known positions were marked on the floor using tape and often lied in the middle
of a hallway in front of a door frame for easy and correct annotation of the coordinates.
The user pressed the button while stepping on the tape. For a trajectory with 7 known
positions, n timestamps would be marked in the data. For each of these timestamps,
the estimated position of the detected step closest in time was chosen. No interpolation
between two estimated positions was performed. The errors of the localisation algorithm
were determined by the Euclidean distance between the known positions and the selected
estimated positions.



Sensors 2021, 21, 4565

15 of 29

glass —— wood plaster concrete e Access point

27m | E1
s1

S2

41m

Figure 6. Floor plan of the fifth floor of the office building. E1-3 are elevators. S1-2 are closed concrete
staircases that connect to all floors. S3 is an open metal staircase that connects the kitchens of the fifth
and sixth floors. An identical staircase connects Floors 7 and 8. 54 is shown in dashed lines because it
actually connects Floors 9 and 10. Two access points are located in the corridors. All other floors also
have two access points in the corridors.

(a) (b) ()

Figure 7. Pictures of one of the staircases in separate stairwells (a), the open staircase in the kitchen
(b) and elevators (c).

For multifloor trajectories, known positions were included in the elevators and at the
entrance of the staircases to correctly evaluate the floor (transition) detection algorithm.
The floor transition detection accuracy was determined by comparing the predicted labels
for each step to the true labels. The possible labels were “Walking” (i.e., no transition
detected) “Stairs Up”, “Stairs Down”, “Elevator Up” and “Elevator Down”. “Up” and
“Down” denote positive and negative height change. This distinction is often made in
the literature.

The floor detection errors were calculated as the absolute difference between the true
and estimated floor for each step detection, but only when the true activity was Walking.
Detected transition intervals during real walking did not cause ambiguity, since the floor
detection algorithm would estimate the most likely floor number regardless of the activity.
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3.5.3. Algorithm Configurations

One 80 m long trajectory was travelled by one person in the same environment using
both phones, to select the parameters for the BPF algorithm and to determine the barometer
noise parameter for each device. To calibrate the elevator detection algorithm, one person
used the elevator several times, rising/descending a different amount of floors each time.
The parameters and their corresponding values are listed in Table 1. Parameters from other
algorithms, such as the PDR algorithm, RSS prediction and elevator detection, were taken
from referenced papers [17,41,52,62,64].

The accuracy of the BPF with DBSCAN clustering was compared to the default
BPF, while the Viterbi-based floor detection algorithm was compared to the conventional
approach: pure RSS matching using the Euclidean distance metric. Furthermore, to assess
the contribution of fusing the RSS with transition detection, the algorithm was also tested
without incorporating the transition detections. Lastly, both the BPF and floor detection
algorithms could correct previous estimations based on new information and were therefore
evaluated in real-time and batch mode.

Table 1. Important parameters for the localisation and floor detection algorithms. GS5 and GS7 are
abbreviations for the Samsung Galaxy S5 and S7 smartphones, respectively.

Algorithm Parameter Value
BPF Ny 20,000
BPF N 1000
BPF o 0.15m
BPF o 3°
DBSCAN € 0.6
DBSCAN minPts 0.05N
WiFi RSS MBF Orss 11 dB
Stairs detection Wi 3
Stairs detection thay, 0.8 m (GS5), 0.5 m (GS7)
Stairs detection W; 17 (GS5), 11 (GS?7)
Floor detection Ctrans 4
Floor detection Cobs 1

3.5.4. Trajectories

Eight trajectories were travelled for the evaluation. Figure 8 shows the evaluation
points of each trajectory. These trajectories had a combined length of 1230 m and consisted
of a total of 160 known points and 19 floor transition events. We recorded a total of almost
two hours (116 min) of data for the evaluation. The first trajectory was performed once by
four persons, and all other trajectories were performed four times by one person, which
resulted in a total travelled distance of 4.9 km and 76 floor transition events. The first three
trajectories were entirely on the fifth floor, while the others were multifloor trajectories. In
total, there were 12.6 min spent using the elevator and 23 min spent climbing the stairs.
The remaining 81 min were spent roaming through the building, mostly on the fifth floor.
More information for each trajectory is provided in Table 2.
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Figure 8. Evaluation trajectories: dots are the known positions used for evaluation. The first three
trajectories are on the fifth floor only. The other trajectories are multifloor trajectories. The total

length of all trajectories is 1.2 km.
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Table 2. Evaluation trajectory information. Each trajectory was repeated four times. “S” and “E” stand for stairs and

elevator, respectively. * means the values are averaged.

Trajectory Details Floor Details
4 * Duration  * Steps Length Evaluation Floor Number Transition * Transition
(s) Detected 8 Points Sequence Types Time

1 114 180 122 35 5 - -

2 50 83 53 8 5 - -

3 142 219 138 17 5 - -

4 170 250 135 16 57,5 52,51 76
5 156 251 136 22 56,5 S3, 53 32
6 382 456 271 29 57,11,4 52,52, E2 141
7 350 282 143 16 56,7,89,10,11,5 S3,E3, S3, E3, 54, E3, E3 129
8 380 412 232 17 ,7,9,11,7,5 S2, E3, S2, E3, S1 150

4. Results

4.1. Floor Detection

Tables 3 and 4 show the confusion matrices of the classification results for batch
and real-time floor transition detection. In real-time mode, the most probable floor at a
given time was estimated using only information from the past. In batch mode, the most
probable floor was estimated by backtracking through the Trellis diagram (i.e., always using
information of the whole trajectory). The global detection accuracy of these intervals was
90.9% (Table 3) for batch and 84.6% (Table 4) for real-time mode. These results were biased,
since most of the evaluation data consisted of regular walking, and always choosing
Walking would result in 69.5% accuracy. The unbiased global accuracies were 92.6%
(batch) and 81.6% (real-time). In real-time mode, most errors were false negative stairs
detections at the start of a stairs transition, because of the long detection windows where
past measurements were used to detect the transitions. These steps were thus labelled as
regular walking. This was a design choice, because the long detection windows allowed us
to filter out noisy measurements. Indeed, the amount of false negative stairs detections was
drastically reduced in batch mode, because we knew at the start of a stairs transition that
the past steps in the detection window happened on a staircase as well. Of the remaining
stairs detection errors, all false negatives and most of the false positives happened at the
start and end of each real stairs transition as well, because of the delay introduced by
the LP filter on the barometer data and the long detection window (Section 3.3.2). These
errors had no impact on the floor number detection or localisation algorithms. The false
negative errors at the start of stairs transitions in real-time mode had a minor impact
on localisation: the BPF would converge slower if the state distribution was multimodal
during those situations, since stairs detection could not be used to reduce the weights of
the wrong particles (Section 3.4.3). The last kind of stairs transition errors could have an
impact on the floor number detection accuracy: false positive stairs transitions that were
not happening right before or after a real stairs transition. This happened mostly while
using the Samsung Galaxy S5, which produced significantly more noise. As mentioned
earlier, the detected height change must be at least 50% of the height between two floors to
trigger a floor number change. Therefore, most of these false positive detections did not
cause a floor number change. On the few occasions where a false detection did trigger a
floor number change, the Viterbi algorithm added an extra transition back to the correct
floor in a matter of seconds, because the RSS measurements favoured the correct floor.
Although most false stairs detections did not trigger a floor number change, they could still
influence the reweighing of particles. However, the chance that particles were in a staircase
during a false detection was very small, because the staircases were confined spaces and
particles could easily bump into walls. In any case, the weight penalty for particles outside
staircases was kept lower than the penalty for particles outside of elevators.
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Table 3. Confusion matrix for batch floor transition detection.

True Activity
Walking Stairs Up Stairs Down Elevator Up Elevator Down
Walking 89% 5% 8% 3% 6%
Stairs Up 6% 95% 0% 0% 0%
Detected Activity Stairs Down 3% 0% 92% 0% 0%
Elevator Up 1% 0% 0% 97% 0%
Elevator Down 1% 0% 0% 0% 94%
Table 4. Confusion matrix for real-time floor transition detection.
True Activity
Walking Stairs Up Stairs Down Elevator Up Elevator Down
Walkmg 89% 35% 33% 3% 6%
Stairs Up 6% 65% 0% 0% 0%
Detected Activity Stairs Down 3% 0% 67% 0% 0%
Elevator Up 1% 0% 0% 97% 0%
Elevator Down 1% 0% 0% 0% 94%

Table 5 lists a comparison of the variations of the floor number detection algorithm.
As expected, the highest accuracy was achieved by fusing both transition detection and RSS
measurements, with batch (99.7%) providing slightly better accuracy than real-time mode
(94.1%). Surprisingly, the accuracy of the RSS only (91.6%) was higher than that of Viterbi
with the RSS in real time (85.3%), while Viterbi with RSS in batch mode (94.1%) lied in the
middle of the five configurations. The results of one iteration of each multifloor trajectory
are visualized in Figure 9. Figure 9a—e shows the real-time output for one iteration of each
multifloor trajectory. Figure 9f— shows the batch output for the same iterations of the
corresponding trajectories. These plots confirmed the explained results. It is also visible
that real-time Viterbi with the RSS was a smoothed version of the RSS only, but with a
significant delay. This delay explained why it failed to improve the floor number detection
accuracy compared to the RSS only. Furthermore, in Figure 9d, the estimated floor number
was initially wrong. This could happen in the case of bad RSS measurements, since the floor
number was initially estimated by the RSS matching only (Section 3.3.3). The estimated
height change during the first stairs transition was also too large and caused an overshoot.
However, the Viterbi algorithm successfully added two extra transitions to compensate
for this.

With over 99% floor detection accuracy, our algorithm was comparable to other recent
works [31,53]. However, both required the initial floor to be known. The floor transition
detection in [53] was designed for a specific type of staircase, where each floor transition
consisted of “two staircases and a transition area between them”. Reference [31] achieved
100% accuracy, but a newer high-end smartphone (iPhone X) provided a clear advantage in
detecting the correct floor number. Other systems (e.g., [23,24]) were difficult to compare
because the floor detection accuracy was not separately evaluated.
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Figure 9. Plots of the estimated floor number as a function of the detected step index
for variations of the floor number detection algorithm. (a—e) shows the real-time output
for one iteration of each multifloor trajectory. (f—j) shows the batch output for the same
iteration of the corresponding trajectories.
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Table 5. Floor detection errors for different configurations as distance in floor numbers to the true floor. The Viterbi-based

algorithm incorporating both the RSS and floor transition detections achieved the highest accuracy.

Difference between True and Detected Floor Number

0 1 2 3 4 5 6 7
RSS only (Euclidean distance metric) 91.6% 6.8% 02% 0% 1.0% 01% 03% 0.1%
Viterbi: RSS (real-time) 85.3% 84% 35% 0% 21% 0% 05% 02%
Algorithm Viterbi: RSS (batch) 94.1% 38% 1.0% 0% 07% 0% 04% 0%

Viterbi: RSS and floor transition detection (real-time) 99.1% 09% 0% 0% 0% 0% 0% 0%
Viterbi: RSS and floor transition detection (batch) 99.7% 03% 0% 0% 0% 0% 0% 0%

4.2. Localisation

Figure 10a shows error CDFs comparing the BPF with clustering to the BPF without
clustering, both in real-time and batch mode. Each CDF was based on the errors of all
(32) evaluation recordings, each processed ten times. All configurations used WiFi RSS
and activity (stairs and elevator usage) detections as measurement updates. Some error
statistics of these results are summarized in Table 6. The proposed clustering algorithm
on top of the BPF reduced the median error of the overall recordings (each run 10 times)
by 17% (real-time) and 13% (batch) compared to the conventional BPF. The 90th percentile
error was reduced by 8% (real-time) and 15% (batch). The large performance difference
between real-time and batch mode was partly due to the BPF being initialized with all
particles uniformly distributed. The algorithm needed time to converge; thus, the real-time
position error was always larger during the first 20-25 step detections.

Figure 11 is an example of the real-time position error for one recording of Trajectory
6, comparing the proposed clustering algorithm on top of the BPF to the default BPF.
Since there were only a few ground truth positions for each trajectory, the errors of this
visualization were calculated by interpolating new positions for the detected steps. If n
steps were detected between two ground truth positions (marked in the recording by
pressing a button in the Android app), then # positions were interpolated on the blue lines
in Figure 8 connecting the two ground truth positions. The proposed clustering algorithm
produced the same or better results most of the time in this example (Figure 11). However,
for some trajectories, the accuracy was not improved or even slightly reduced.

A different approach to solving multimodality was proposed in [23]. Similarly, their
method was shown to improve accuracy in some situations, but reduced accuracy in other
situations. However, no global improvement was achieved in [23], while our method
achieved significant improvement. Note that, initially, the user had no knowledge on the
starting position, apart from the rough estimation provided by RSS fingerprinting with
very low AP density. After the user started walking, the IMU data were processed by
the PDR algorithm, of which the output was further processed by the BPE. After some
steps, many particles were removed due to wall intersections and RSS measurements.
The remaining particles were resampled many times, thus creating clusters. Around
20-30 steps, a relatively large cluster was formed around the true position. The algorithm
recognized that this cluster was larger than other clusters and calculated the position by
averaging the particles of this cluster only. This resulted in a sudden reduction of the error
for the clustering method, while the conventional method took longer to converge.
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Figure 10. Error CDFs of the backtracking particle filter algorithm in real-time and batch mode. (a) Comparison between
localisation with and without clustering, for all trajectories. Floor transition detections and the WiFi RSS were used
as measurement updates in the BPF algorithm for each configuration. (b) Comparison between using floor transition
detections as measurement updates in the BPF algorithm and not using the transition detections, for all multifloor trajectories.
The proposed clustering algorithm was enabled, and the WiFi RSS was used as the measurement update.

Table 6. Error statistics of the backtracking particle filter algorithm with and without clustering,
in real-time and batch mode.

Mean (m) P50 (m) P75 (m) P90 (m)
Batch—clustering 1.6 1.3 2.0 29
Batch—no clustering 1.8 1.5 2.5 3.4
Real-time—clustering 3.5 3.0 4.8 7.1
Real-time—no clustering 4.1 3.6 5.4 77

—— clustering
no clustering
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Figure 11. Real-time position error with (blue) and without (orange) the proposed clustering al-
gorithm on top of the (backtracking) particle filter as a function of the detected step index, for
Trajectory 6.

As mentioned in Sections 3.4.3 and 3.3, floor transition detections were used as mea-
surements updates by the BPF algorithm to improve 2D localisation. More specifically,
the particles were reweighted by reducing the weights of the particles outside of any
staircase or elevator in the case of a corresponding detection. Figure 10b shows error CDFs
comparing the BPF using detected floor transitions as measurement updates with the BPF
without using the floor transitions, again in real-time and batch mode. The CDFs were
based on the errors of only the multifloor trajectory recordings, each processed ten times.
The proposed clustering algorithm and WiFi RSS measurement updates were enabled for
all four configurations. This means the blue curves in Figure 10a,b represent the locali-
sation error CDF for identical configuration, but the former was based on all trajectories.
The median error was reduced by 20% in real-time and 37% in batch mode. The advantage
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of reweighing the particles based on stairs detections is explained in Figure 12c: when the
pedestrian entered the staircase, only a handful of particles entered the closed staircase,
while most of the particles were gathered in front of the elevator. While the pedestrian
walked up or down the stairs, many particles ran into the walls of the staircase. At the
same time, the particles in the open area in front of the elevators did not run into walls as
often. Without reweighing the particles when the stairs were detected, the particles inside
the staircase would not survive. Figure 12a,b shows the batch results with and without
reweighing the particles during stairs transition detections, respectively. The correct trajec-
tory was successfully backtracked in (Figure 12a), while there was a position offset towards
the elevators while the pedestrian was walking up the stairs in (Figure 12b).

step index: 19, floor: 5

il

I

R
TR T

LLLLLT

(a)

Figure 12. Plot of the estimated trajectory (red) and true trajectory (blue) by the backtracking

particle filter in batch mode with (a) and without (b) using stairs detections as measurement updates.
The distribution of particles when entering the staircase (c) is the same in both cases.

5. Discussion

We presented an indoor smartphone-based localisation system for pedestrians, which
consisted of a clustering algorithm based on DBSCAN on top of a backtracking particle
filter and a new Viterbi-based floor number detection algorithm. The clustering algorithm
attempted to solve multimodality, which is a known problem in the particle filtering context,
while the floor number detection algorithm was developed to extend our system from
2D to multifloor localisation. The WiFi RSS measurements were fused with detected floor
transition events. The RSS measurements were matched to a model-based radio map of
each floor to provide absolute floor number estimation. These radio maps were made using
the WHIPP tool [61,62]. The detected floor transitions provided accurate estimations of
height changes or the lack thereof, allowing fast detection of floor transitions while being
able to ignore false transitions caused by noisy RSS measurements. Our system was able to
detect and estimate the height change during stairs and elevator usage. We implemented
an existing elevator detection algorithm [64] and added a constraint to reduce the chance
of false detections. Then, we developed a new adaptive stairs detection algorithm, which
changed its parameters according to the noise produced by the barometer sensor. Our
stairs detection algorithm also addressed the pressure drift problem and was able to ignore
fast pressure changes, which could be caused by opening/closing doors or windows [30].
Unlike comparable algorithms ([51,56]), our floor number detection algorithm worked
separately from the particle filter algorithm. This avoided conflicts when there were
no particles at a staircase. However, it was possible in our localisation system that the
floor number changed while the estimated position was outside of a staircase or elevator
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(Figure 12). In addition, the RSS radio maps were also used to speed up the convergence of
the particle filter during initialisation.

Our system was evaluated by real measurements spanning seven 1107 m? floors in
an office environment (Section 3.5). Each floor had two APs, resulting in a sparse AP
density compared to other systems in the literature. These APs were part of the wireless
network of the office, so no APs were specifically installed for our training or evaluation
measurements. Furthermore, the walls in the centre of the building (surrounding two
staircases) were made of concrete, which often blocked the WiFi signal completely. We
travelled eight different evaluation trajectories and repeated them each four times using
two smartphone types, resulting in almost two hours of sensor data and a total travelled
distance of 4.9 km. Five trajectories included floor transitions, each of which was repeated
four times, resulting in a total of 76 floor transition events. Our system was evaluated in
both real-time and batch mode, since the Viterbi and backtracking particle filter algorithms
could improve past position estimations with new information.

The median position error of our localisation system was 3.0 m in real-time and 1.3 m
in batch mode. The proposed clustering algorithm was shown to reduce the median error
by 17% (real-time) and 13% (batch) compared to the same localisation algorithm without
clustering. All stairs and elevator transitions were detected. False stairs transitions were
detected several times, which resulted in an overall activity (i.e., walking, stairs up, stairs
down, elevator up, elevator down) recognition accuracy of 84.6% (real-time) and 80.9%
(batch). However, most false transition detections had no impact on the performance of
the floor number detection algorithm, which was able to ignore these false detections.
In the few cases where the algorithm wrongly changed the floor number, it switched back
to the correct floor several seconds later. Sometimes, the height change during a real
floor transition was estimated too low or high, which temporarily caused an error in the
floor number estimation. These errors only lasted for a few seconds, until the algorithm
added an extra transition towards the correct floor. The resulting accuracy of our floor
number detection algorithm was 99.1% (real-time) and 99.7% (batch), while the accuracy of
detecting the floor number using the RSS measurements only was 91.6%. Detecting floor
transitions also allowed us to improve the 2D localisation by reweighing particles outside
of staircases/elevators during detected transitions. This reduced the median error by 20%
(real-time) and 36% (batch) for the multifloor trajectories.

Our algorithm was also practical: the RSS radio map was model based; thus, expensive
measurement campaigns were not needed. We did not install additional hardware, e.g., a
reference barometer [54], and only used pre-existing APs, making the tracked smartphone
the only extra hardware needed. A small amount of training data per device was needed
for calibration of the WiFi RSS-MBF and floor transition algorithms. However, this was
easily performed by simply walking a random trajectory (50-100 m was enough for our
environment) and taking the elevator a couple of times.

Two ways to improve this system were identified. First, the magnetometer was only
calibrated at the start of each trajectory. However, disturbances from external magnetic
objects depend on the user location. The work in [69] proposed a simple calibration method
for compensating these disturbances while walking. This method could be used here to
improve the PDR algorithm. Second, while our MBF path loss model was accurate in
NLOS conditions by incorporating the floor plan, we did not compensate for human body
influences. As shown in [70], the human body standing between the smartphone and an
AP could easily increase the path loss by 10 dB. Orientation-aware fingerprinting would
allow the BPF to rely more on the RSS and improve localisation accuracy, especially during
the initial stage when the particles are still spread out.

To deploy this system in a new environment, some pre-existing APs and a detailed
floor plan (including AP locations and building materials) must be available. The following
steps need to be performed to set up the system:

®  The radio maps were constructed using the WHIPP tool (Section 3.2);
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* Arandom walk was performed on each floor to calibrate the radio maps (Section 3.2).
The data from these walks were also used to calibrate the stairs detection algorithm
(Section 3.3.2);

®  The elevator was taken several times, and the floor change was annotated, to deter-
mine the parameters used to estimate the height change (Section 3.3.1);

* A sshort trajectory (80 m for our tests) of a known length was walked to tune the step
length model (Section 3.1).

6. Conclusions

We designed an easily deployable multi-smartphone-based indoor localisation system
for pedestrians. It required only a few WiFi APs, which are currently available in most
buildings, and a smartphone. It also needed a limited and easily obtained amount of
training data. We proposed a new floor detection algorithm, which detected stairs and
elevator usage and fused these detections with WiFi RSS measurements to estimate the floor
number. The proposed algorithm achieved 99.1% accuracy in real-time and 99.7% in batch
mode. The evaluation dataset consisted of 116 minutes of recorded data, during which the
actors changed floors 76 times and performed eight trajectories four times. A BPF estimated
the travelled trajectory based on PDR, RSS measurements, floor transition detections and a
floor plan. We proposed a clustering algorithm based on DBSCAN on top of the BPF to
solve multimodality in the filter’s state distribution. While the problem was not entirely
solved, the proposed algorithm reduced the median error by 17% in real-time and 13% in
batch mode.

Our system was prone to another common problem in this research area: sample
impoverishment. This problem manifests itself in particle filters when all particles are
propagated towards the wrong position and are trapped because of hard constraints (i.e.,
walls). For some of our recorded trajectories, the filter failed many times before finding a
trajectory. Furthermore, the smartphone was held firmly in front of the body during all
experiments. Future work will consist of making our system more robust by handling
multiple ways of carrying the smartphone and preventing sample impoverishment.
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Abbreviations

The following abbreviations are used in this manuscript:

UWB Ultra-Wideband

IMU Inertial Measurement Unit

PDR Pedestrian Dead Reckoning

PF Particle Filter

KDE Kernel Density Estimator

BPF Backtracking Particle Filter

DBSCAN  Density-Based Spatial Clustering for Applications with Noise
RSS Received Signal Strength

MBF Model-Based Fingerprinting

AP Access Point

AHRS Attitude and Heading Reference System
WHIPP WIiCA Heuristic Indoor Propagation Prediction
NLOS Non-Line-Of-Sight

CDF Cumulative Distribution Function

LP Low-Pass
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