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Olesya Ajnakina, PhD,*† Dorina Cadar, PhD,* and Andrew Steptoe, DSc*

OBJECTIVES: Identifying the interplay between socioeco-
nomic markers (education and financial resources) and poly-
genetic predisposition influencing the time of dementia and
the diagnosis of clinical Alzheimerʼs disease (AD) dementia is
of central relevance for preventive strategies.
DESIGN: Prospective cohort design.
SETTING: The English Longitudinal Study of Aging is a
household survey data set of a representative sample.
PARTICIPANTS: A total of 7,039 individuals aged 50 years
and older participated in the study. Of these, 320 (4.6%) were
diagnosed with dementia over the 10-year follow-up.
MEASUREMENTS: Polygenic score (PGS) for Alzheimerʼs
disease (AD-PGS) was calculated using summary statistics
from the International Genomics of Alzheimerʼs Project. An
accelerated failure time survival model was used to investigate
interactions between AD-PGS and socioeconomic markers on
the timing of dementia and clinical AD dementia diagnosis.
RESULTS: A one standard deviation increase in AD-PGS was
associated with an accelerated time to dementia diagnosis by
4.8 months. The presence of the apolipoprotein E gene
(APOE-ε4) was associated with an earlier dementia onset by
approximately 24.9 months, whereas intermediate and low
levels of wealth were associated with an accelerated time to
dementia diagnosis by 12.0 months and 18.7 months, respec-
tively. A multiplicative interaction between AD-PGS and years
of completed schooling in decelerating the time to clinical AD
dementia by 3.0 months suggests educational attainment may
serve as a protective mechanism against AD diagnosis among
older people with a higher polygenic risk. Interaction between
AD-PGS and lower wealth accelerated the time to clinical AD
dementia diagnosis by 21.1 to 24.1 months.

CONCLUSION: Socioeconomic markers influence the time
to dementia and clinical AD dementia diagnosis, particu-
larly in those with a higher polygenic predisposition. J Am
Geriatr Soc 68:1529-1536, 2020.
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As average life expectancy increases, it is projected that
the number of people with dementia in England and

Wales will increase by 57% by 2040.1 In the absence of
effective treatments,2 delaying dementia diagnosis would
confer a great beneficial effect at both individual and socie-
tal levels.3

Although the causes of dementia are likely to be
multifactorial,4 robust measures of socioeconomic resources,5

such as educational attainment andwealth, are important deter-
minants of dementia diagnosis among older adults.6,7 Educa-
tional attainment, a status indicator achieved during the first
decades of life, has been linked to levels of wealth accumulated
in later life, although these two socioeconomic factors character-
ize different life stages8 and could have different pathways
influencing the time of dementia diagnosis. There is also a sub-
stantial genetic contribution to dementia. Two ε4 alleles of the
apolipoprotein E gene (APOE-ε4) are major risk factors9

although its presence is neither necessary nor sufficient to
develop dementia.10

A polygenic score (PGS) provides a unique approach to
capturing the cumulative genetic contribution to a condition by
combining numerous genetic variants of small effects.11 PGSs
were proven to have a relatively strong predictive utility for
Alzheimerʼs disease (AD) risk.12-14 However, the role of PGSs in
the timing of dementia diagnosis has not been tested. It is also
imperative to understand how genetic risk may interact with
socioeconomic factors in influencing the time to dementia diag-
nosis. A higher genetic risk may exacerbate the effect of lower
educational attainment and wealth or vice versa. Alternatively,
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the genetic riskmay be independent of socioeconomic character-
istics. A clearer understanding of gene-by-environment interac-
tion will help highlight potential pathways through which
dementiamay develop.

We used a large population-representative cohort of
older adults to investigate whether higher PGS calculated
from common genetic variants associated with AD was
associated with the time to dementia diagnosis. We further
tested interactions between these PGSs with educational
attainment and wealth in relation to the timing of dementia
diagnosis. We hypothesized that older adults with higher
PGS would be at greater risk of more accelerated time to a
dementia diagnosis. We further hypothesized there would
be significant interaction effects between PGS and socioeco-
nomic factors in association with the time to dementia.

METHODS

Sample

Data came from the English Longitudinal Study of Aging
(ELSA), a nationally representative longitudinal panel study of
English adults aged 50 years and older.15 The ELSA study
began in 2002-2003 (wave 1) with participants recruited from
an annual cross-sectional survey of households who were then
followed up every 2 years, providing detailed information on
health and socioeconomic circumstances for each ELSA partic-
ipant.15 The baseline was wave 2 (2004-2005) for the core
members who started at wave 1 or wave 4 for the participants
joining the study through the refreshment sample. The genetic
data were collected at waves 2 and 4. Follow-up data were
from wave 8 (2016-2017). We included ELSA participants
who were free of dementia at baseline. Ethical approval for
each ELSA wave was granted by the National Research Ethics
Service (London Multicentre Research Ethics Committee). All
participants gave informed consent.

Study Variables

Ascertainment of Dementia Cases

To ascertain dementia cases, we used methods with demon-
strated utility in population-based cohorts.16-18 Dementia diag-
nosis was ascertained at eachwave using self-report participantsʼ
physician diagnosis of dementia or clinical AD dementia. For
those ELSAparticipantswhowere unable to respond to themain
interview themselves, the Informant Questionnaire on Cognitive
Decline in the Elderly (IQCODE) was administered with a score
above the threshold of 3.38 indicating the presence of demen-
tia.19 The selected threshold demonstrated both excellent speci-
ficity and sensitivity for detection of all-cause (undifferentiated)
dementia.20 Overall, 83.5% of dementia cases were identified
from reports of physician-diagnosed dementia or clinical AD
dementia, and 16.5% were identified based on the IQCODE
score.

Survival Time

Time to dementia diagnosis was defined as the period from
the baseline when all participants were dementia free to the
date when an ELSA participant received the first self-report
physician diagnosis of dementia or the first time of confirmed

dementia through the IQCODE assessment during follow-up.
For those without dementia, the survival time was calculated
using the period spanning from study entry until the point of
their death, or the last wave before dropout, or wave 8. To
ascertain the point of death, mortality data were used from
the National Health Service central register; all individuals
included in the study provided written consent for the linkage.

Socioeconomic Indicators

Educational attainment at baseline was measured as the
number of years of completed schooling. To reflect the
accumulation of resources at older ages, wealth was mea-
sured at baseline by summing wealth from property, posses-
sions, housing, investments, savings, artwork, and jewelry,
and net of debt.15 Because incomes among older people
often do not reflect the available financial resources very
well, it was not included as part of the wealth definition.15

To provide more insight into the effects of different levels of
wealth, this variable was divided into high, intermediate,
and low levels using the interquartile range.

Covariates

Based on the previous findings,6 baseline age, sex, marital sta-
tus, current smoking status, genetic ancestry (measured with
principal components21), and APOE-ε4 status were included
as covariates. Similar to previous research,22 APOE-ε4 status
was defined according to the absence (APOE ε2/2, ε2/3, and
ε3/3) or presence (APOE ε2/4, ε3/4, and ε4/4) of APOE-ε4
alleles. Male sex, not married, currently smoking, and the
absence of APOE-ε4 alleles were used as reference groups.

Genetic Data

Quality Control

Genome-wide genotyping was performed at University
College London Genomics in 2013-2014 using the
Illumina HumanOmni2.5 BeadChips (HumanOmni2.5-4v1,
HumanOmni2.5-8v1.3). Quality control is described in the
Supplementary Tables. Briefly, samples were removed based
on call rate (<.99), suspected non-European ancestry as
identified though principal components analysis (see later),
and self-identification, heterozygosity, and relatedness. Sin-
gle nucleotide polymorphisms (SNPs) were excluded if they
were non-autosomal; the minor allele frequency was less
than .01%, if more than 2% of genotype data were missing
and if the Hardy-Weinberg equilibrium P < 10−4. To inves-
tigate population structure, principal components analysis
was conducted21; the top-10 principal components were
retained to account for any ancestry differences in genetic
structures that could bias results.21

Polygenic Score

To calculate PGS for Alzheimerʼs disease (AD-PGS), we
used summary statistics reported by the International Geno-
mics of Alzheimerʼs Project (IGAP) (Supplementary Tables).
AD-PGS was calculated using methods previously described
in the Health and Retirement Study.23 AD-associated SNPs,
weighted by their effect size derived from the IGAP,24 were
summed in a continuous score using PRSice.25 Because
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previous research highlighted that PGSs built from directly
genotyped data either had more predictive power26 or did
not differ significantly from PGSs calculated using imputed
data,23 we calculated PGSs based on genotyped data at dif-
ferent P-value cutoffs. Because PGSs including all available
SNPs either explain the most amount of variation in a trait
or are not significantly different than PGSs based on other
P-value threshold23; we used PGS based on a P-value
threshold of 1. A total of 1,191,420 SNPs were included in
AD-PGS.

We also report results from a high-resolution polygenic
scoring approach implemented in PRSice.25 For this set of
analyses, quality-controlled SNPs were pruned using clumping
to obtain SNPs in linkage equilibrium with an R2 = .1 within
a 200-bp window. PGSs were calculated at P-value thresholds
ranging from .001 to 1 (increments of .001); the best P-value
threshold was identified as the one that gave the smallest
P value for association with clinical AD dementia.25 In the
present study, the “best fit” P-value threshold was .001 that
encompassed 1,004 SNPs; we refer to this PGS as AD-PGSbest-
fit. To aid interpretability of the results, both AD-PGS and
AD-PGSbest-fit were standardized to a mean of 0 (standard
deviation [SD] = 1).

Statistical Analysis

Imputation of Missing Values

In the present study, some of the variables had up to 8% miss-
ing values (Supplementary Table S1). Given that complete case
analysis can lead to bias,27 we imputed the missing values
assuming missingness did not depend on unobserved values.28

For the imputation, we used missForest29 in RStudio v.3.6.0;
this is an iterative imputation method based on Random For-
ests. The missForest was shown to outperform the well-
known imputation methods such as k-nearest neighbors and
parametric multivariate imputation by chained equations in
the presence of nonlinearity and interactions.29 In the present
study, the imputed values were closely aligned with the
observed values for both continuous (normalized root mean
squared error = .12%) and categories variables (proportion of
falsely classified = .13%).29,30

Association Analyses and Interactions

To investigate influences of PGSs on educational attainment
and wealth on the time of dementia diagnosis, we used the
accelerated failure time (AFT) survival model for right-
censored data. In contrast to Cox proportional hazards regres-
sion, the AFT does not assume that effects of the predictors
on long-term outcomes are constant over time, an assumption
that may lead to biased parameter estimates.31 To identify the
best fitting parametric model (ie, exponential, Weibull, lognor-
mal, and gamma), we used the Akaike information criterion
that showed the gamma model was the most appropriate for
our analyses. The parameter coefficients from the AFT model
were converted into mean difference in the time to dementia
diagnosis through the equation ((eβ − 1) × mean time to diag-
nosis).32,33 Positive values imply a longer time to conversion,
and negative values imply a shorter time.

Interactions between PGSs and socioeconomic factors
were investigated using multiplicative and additive models.

The multiplicative model tests interaction as the departure
from multiplicativity according to which the combined
effect of risk factors differs from the product of their indi-
vidual effects, whereas the additive interaction tests whether
the combined effect of risk factors differs from the sum of
their individual effects.34 The results from the additive inter-
actions were derived using the relative excess risk due to
interaction (RERI) and attributable proportion due to inter-
action (AP).34

Sensitivity Analyses

To examine whether the findings were applicable to all
dementia or were specific to clinical AD dementia cases, we
repeated the analyses, limiting them to either clinical AD
dementia cases only or by removing individuals with a diag-
nosis of clinical AD dementia from the sample (non-AD
cases). Further, because PGS may be related to other brain-
related illnesses, we checked whether some participants in
our sample had brain-degenerative conditions such as
Huntingtonʼs and Parkinsonʼs disease. Although none of our
clinical AD dementia cases had these conditions, 60 (.89%) of
the nondementia control group appeared to have them. Con-
sequently, we re-ran the analyses, additionally adjusting them
for the presence of these conditions. Because beta estimates
with corresponding confidence intervals (CIs) and P values
did not change, we reported the original results. All associa-
tion analyses were conducted in Stata v.16 (StataCorp LP,
College Station, TX, USA).

RESULTS

Sample Characteristics

The sample comprised 7,039 individuals for whom the
quality-controlled genome-wide genotyping and dementia sta-
tus during follow-up were available. Of these, 320 (4.6%)
were classified as having dementia (ie, cases) over the 10-year
follow-up, and 6,719 (95.4%) remained dementia free
(ie, controls). Of all dementia cases, 76 (23.8%) had the diag-
nosis of clinical AD dementia, and 130 (40.6%) had
APOE-ε4. The baseline mean age for the entire sample was
64.8 years (SD = 9.4; median = 63; range = 50-101). Among
those diagnosed with dementia during follow-up, the avenge
time to dementia diagnosis was 8.2 years (SD = 3.3) (Table 1).

PGS, Educational Attainment, and Wealth in Relation
to Time of Dementia Diagnosis

A 1-SD increase in AD-PGS was associated with an average
decrease in the time to dementia of 4.8 months (β = −.05;
95% CI = −.10 to −.001; P = .01) (Table 2). The presence
of APOE-ε4 was associated with an earlier dementia diag-
nosis by approximately 24.9 months (β = −.29; 95% CI =
−.38 to −.20; P < .001). Independently from AD-PGS,
intermediate and low levels of wealth were shown to associ-
ate with an accelerated time to dementia diagnosis of
12.0 months and 18.7 months, respectively (Table 2). When
using AD-PGSbest-fit (Supplementary Table S2), 1-year increase
in completed schooling was associated with the decelerated
time to dementia diagnosis of 2.0 months (β = .02; 95%
CI = .002-.03; P = .04) but not in a model with AD-PGS.
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Neither multiplicative nor additive interaction models yielded
significant interactions between AD-PGS, and AD-PGSbest-fit,
and socioeconomic factors in association with the time of
dementia diagnosis (Supplementary Tables S2 and S3). When
individuals with clinical AD dementia were removed from
the analyses (Supplementary Table S4), a 1-SD increase in
AD-PGS was associated with a mean decrease in the time to
non-AD diagnosis of 5.8 months (β = −.06; 95% CI = −.11
to −.01; P = .02). Independently from AD-PGS, a low level of
wealth was associated with an accelerated time to non-AD
diagnosis by an average of 24.1 months. No significant inter-
action effects were found between AD-PGS and AD-PGSbest-fit
(Supplementary Table S5) and socioeconomic factors in asso-
ciation with the time of non-AD diagnosis.

PGS, Educational Attainment, and Wealth in Relation
to Timing of Clinical AD Dementia Diagnosis

Although AD-PGS was not significantly associated with clini-
cal AD dementia, the presence of APOE-ε4 in participants
diagnosed with clinical AD dementia was associated with an
accelerated timing of clinical AD dementia diagnosis by
approximately 33.9 months. A 1-year increase in schooling
was associated with decelerated time to clinical AD dementia
diagnosis (β = .03; 95%CI = .01-.06; P = .01) entailing a mean
increase in the time to development of clinical AD dementia
diagnosis of 3.0 months (Table 3). The interaction as the
departure from multiplicativity highlighted a significant inter-
action effect between AD-PGS and educational attainment

Table 1. Baseline Sample Characteristics of ELSA Participants

Baseline sample
characteristics

Total sample
N = 7,039

No-dementia controls
N = 6,719 (95.4%)

Dementia cases
N = 320 (4.6%) Test statistics

N (%)/Mean (SD) N (%)/Mean (SD) N (%)/Mean (SD) t/x2 df P value

Age at baseline, y 64.8 (9.4) 64.3 (9.2) 73.8 (8.6) −17.84 7,037 <.001
Male sex 3,254 (46.2) 3,120 (46.4) 134 (41.9) 2.56 1 .11
Age of dementia
diagnosis (years)

- 80.3 (8.5) - - - -

APOE-ε4 present 1,773 (25.2) 1,643 (24.4) 130 (40.6) 42.39 1 <.001
Currently smoker 1,023 (15.4) 981 (15.5) 42 (13.6) .85 1 .35
Not married 4,832 (68.6) 4,642 (69.1) 190 (59.4) 13.39 1 <.001
Educational attainment 13.7 (3.8) 13.7 (3.8) 12.6 (3.5) 5.18 6,455 <.001
Wealth 22.75 2 <.001

Low 2,280 (33.3) 2,143 (32.8) 137 (43.4)
Intermediate 2,285 (33.3) 2,177 (33.3) 108 (34.3)
High 2,287 (33.4) 2,217 (33.9) 70 (22.2)

Abbreviations: APOE-ε4, two ε4 alleles of the apolipoprotein E gene; ELSA, English Longitudinal Study of Aging; SD, standard deviation.

Figure 1. Mean polygenic score for Alzheimerʼs disease (AD) for different levels of wealth and presence of diagnosis of clinical AD
dementia.
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(β = .03; 95%CI = .01-.06;P = .01) corresponding to a deceler-
ated time to clinical AD dementia diagnosis by 3.0 months. A
significant multiplicative interaction effect between AD-PGS
and intermediate (β = −.28; 95% CI = −.49 to −.06; P = .01)
and low (β = −.24; 95% CI = −.45 to −.02; P = .03) levels of
wealth in association with the time to clinical AD dementia
diagnosis highlighted that a 1-SD increase in AD-PGS was
associated with an accelerated timing of clinical AD dementia
diagnosis by 24.1 months in participants with an intermediate

level of wealth and 21.1 months in participants with low
wealth (Figure 1). There also was a significant additive interac-
tion between AD-PGS and an intermediate level of wealth
(RERI = −.26; 95% CI = −.27 to −.06; AP = −.35; 95%
CI =−.62 to−.04) (Supplementary Table S6). Neithermultipli-
cative nor additive interaction models yielded significant inter-
actions between AD-PGSbest-fit and socioeconomic factors in
association with the time of clinical AD dementia diagnosis
(Supplementary Table S7).

Table 3. Multivariate Accelerated Failure Time Model Estimating difference in Time to the Diagnosis of Clinical AD
Dementia during the 10-Year Follow-Up

Dementia Variables

Multiplicative interaction effect
β converted to time

to diagnosis95% CI P value

PGS score only PGS −.06 −.14 to .02 .12 −5.75
APOE-ε4 −.42 −.60 to −.23 <.001 −33.87

Educational attainment Main effect PGS −.47 −.78 to −.17 .01 −59.25
APOE-ε4 −.41 −.58 to −.23 <.001 −33.22
Educational
attainment

.03 .01 to .06 .01 3.01

Interaction PGS * Educational
attainment

.03 .01 to .06 .01 3.01

Wealth Main effect PGS .13 −.02 to .29 .10 13.71
APOE-ε4 −.41 −.60 to −.23 <.001 −33.22
High - - - -
Intermediate −.13 −.33 to .08 .22 13.71
Low −.10 −.31 to .12 .35 −9.40

Interaction PGS * High - - -
PGS * Intermediate −.28 −.49 to −.06 .01 −24.12
PGS * Low −.24 −.45 to −.02 .03 −21.07

Note: The β coefficients in the accelerated failure time model were converted into time to first dementia diagnosis through the equation ((eβ − 1) × mean time
to dementia diagnosis). All analyses are adjusted for age, sex, marital status, current smoking status, APOE-ε4, and four genetic principal components. The
asterisk indicates an interaction between the two variables.
Abbreviations: AD, Alzheimerʼs disease; CI, confidence interval; PGS, polygenic score.

Table 2. Multivariate Accelerated Failure Time Model Estimating Difference in Time to Diagnosis of Dementia in
Older Adults during the 10-Year Follow-Up

Dementia Variables

Multiplicative interaction effect

β 95% CI P value
β converted to

time to diagnosis

PGS score only PGS −.05 −.10 to −.01 .01 −4.82
APOE-ε4 −.29 −.38 to −.20 <.001 −24.86

Educational attainment Main effect PGS −.12 −.28 to .04 .15 −11.17
APOE-ε4 −.29 −.38 to −.20 <.001 −24.86
Educational attainment .01 .001 to .02 .08 .99

Interaction PGS * Educational attainment .01 −.01 to .02 .42 .99
Wealth Main effect PGS −.001 −.09 to .09 .98 −.10

APOE-ε4 −.29 −.38 to −.20 <.001 −24.86
High - - - -
Intermediate −.13 −.24 to −.01 .03 −12.04
Low −.21 −.30 to −.07 <.001 −18.71

Interaction PGS * High - - - -
PGS * Intermediate −.04 −.15 to .03 .49 −3.87
PGS * Low −.09 −.20 to .02 .13 −8.50

Note: The β coefficients in the AFT model were converted into time to first dementia diagnosis through the equation: ((eβ − 1) × mean time to dementia diag-
nosis). All analyses are adjusted for age, sex, marital status, current smoking status, APOE-ε4, and four genetic principal components. The asterisk indicates
an interaction between two variables.
Abbreviations: APOE-ε4, two ε4 alleles of the apolipoprotein E gene; CI, confidence interval; PGS, polygenic score.
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DISCUSSION

To our knowledge, this is the first study to have investi-
gated interactions between AD-PGS and socioeconomic fac-
tors, such as educational attainment and accumulated
financial wealth, in predicting and quantifying the time to
dementia diagnosis and dementia subgroups, independently
from effects of the APOE-ε4 status in a large population-
representative sample of older adults.

Our results indicate that a higher aggregate of loci for AD
may exert its effect by accelerating the clinical presentation of
dementia, with illness diagnosis approximately 4.8 months ear-
lier in older adults with high polygenic risk than for those with
lower PGS. When AD cases were removed from the analyses,
higher PGS was associated with an earlier non-AD diagnosis
by an average of 5.8 months. These findings confirm that
dementia has a strong polygenic architecture.12,24 However,
using PGS calculated from a subset of genetic markers after
pruning out SNPs in linkage disequilibrium and applying a
P-value threshold did not yield significant associations between
higher genetic load of multiple alleles and the time to dementia
diagnosis. The differences in the number of genetic variants
included in each PGS depending on computational methods
may explain these findings. PGS calculated from hundreds to
thousands of common variants arguably captures the causative
variants35; thus in the present study, having included 1.2 M
common loci associated with AD, AD-PGS may represent the
true genetic risk. However, such a genetic score may accumu-
late noise and thus may lead to false associations.36 In contrast,
creating polygenic profiling based on pruning and P-value
threshold was criticized for discarding potentially important
information and limiting prediction accuracy,37,38 potentially
leading to negative findings.

Although a significant association between PGS and the
age of AD diagnosis was highlighted,39,40 we did not find a sig-
nificant relationship between AD-PGS and the time to clinical
AD dementia diagnosis in our sample. Whereas in previous
studies PGS was based on either 10 AD risk variants39 or only
those variants that reached a genome-wide association study
(GWAS) significance level,40 PGS used in the present study was
not restricted to any loci specific to AD nor to GWAS-
significant variants. Therefore, a potentially significant associa-
tion between AD-PGS and the time to clinical AD dementia
diagnosis might have been masked by the inclusion of an exces-
sive number of genetic variants. Nonetheless, the nonsignificant
association remained when PGS was calculated based on a
much smaller number of SNPs selected through high-resolution
scoring adjusting for linkage disequilibrium. It is also feasible
that this negative finding may reflect the relatively small sample
of clinical AD dementia cases available in the ELSA cohort.
Moreover, APOE-ε4 was associated with an accelerated time
to dementia diagnosis by approximately 24.9 months and
33.9 months for clinical AD dementia diagnosis. This finding
supports the notion that the predictive validity for PGSs is not
yet on a par with APOE-ε441 in estimating the time to demen-
tia and clinical AD dementia diagnosis.

A higher education attainment is thought to protect
against dementia risk.7,8 Our results estimated that each year
of completed schooling was associated with a delayed diagno-
sis of clinical AD dementia of approximately 3.0 months, but
this association was nonsignificant for dementia diagnosis. Fur-
ther, 1 year of completed schooling was associated with a

delayed diagnosis of clinical AD dementia by approximately
3.0 months among individuals at higher genetic risk. This
suggests that educational attainment may serve as a protec-
tive mechanism against the illness among older people with
higher polygenic risk. In support of the social determinants
hypothesis,42 according to which educational attainment
attenuates the role played by genetic risk factors, our find-
ings show that the effects of education on the timing of the
diagnosis of the illness are not consistent across dementia
subtypes, benefiting more those with a diagnosis of clinical
AD dementia and greater polygenic risk.

Lower wealth, which may reflect limited socioeconomic
resources, low digital literacy, and limited access to participa-
tion in cultural activities or reduced social networks, is an
important factor in dementia diagnosis.6 We showed that
one of the pathways through which low wealth exerts its
effect may be by accelerating the clinical presentation of
dementia leading to an earlier illness diagnosis by approxi-
mately 12.0 to 18.9 months independently from AD-PGS
and APOE-ε4. In relation to clinical AD dementia diagnosis,
lower levels of wealth appear to interact with AD-PGS by
accelerating the time to clinical AD dementia diagnosis by
approximately 21.1 to 24.1 months compared with older
people with a low genetic loading and a high level of accu-
mulated wealth. This is consistent with the genetic liability
threshold model according to which the combined effect of
many genetic risk variants with other factors causes an indi-
vidual to cross the threshold leading to the development of
the condition.43 These results hold promise for preventive
strategies aiming to delay the first diagnosis of clinical AD
dementia.

Strengths and Limitations

We analyzed a large population-based cohort who are
nationally representative of older adults in England. Our
study also included a relatively equal proportion of women
and men from socioeconomically diverse backgrounds. We
benefited from more detailed assessments of wealth than are
available in most current studies because this measure was
computed based on information on multiple individual com-
ponents rather than on the broad categorization of assets.
Nonetheless, using a doctorʼs diagnosis to identify most
dementia and clinical AD dementia cases may mean that our
study underestimated dementia cases and that the timing of
diagnosis may not be entirely accurate. Because of the rela-
tively small number of dementia cases, we could not explore
the types of dementia in detail, stratify analyses by age, and
add additional models investigating the competing risk of
APOE and heart disease in relation to the time of dementia
diagnosis, as this may increase likelihood of false results due
to multiple testing.

Similarly, to avoid overfitting, we also were unable to
adjust our models for interactions between the covariates as
advised.44 Although PGSs have a potential to improve health
outcomes through their eventual routine implementation as
clinical biomarkers, the poor generalizability of genetic stud-
ies across populations is noteworthy.45 This is because
the construction of PGSs depends largely on the availability
of the summary statistics from GWAS. However, appro-
ximately 79% of all GWAS participants are of European
descent despite making up only 16% of the global
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population.45 Given that genetic risk is different in European
and non-European individuals, further work is necessary to
develop a PGS model in nonwhite populations.

In conclusion, PGS provides a strong tool for predic-
tion of the length of time to dementia and clinical AD
dementia diagnosis. Educational attainment and low
wealth appear to be important factors influencing the time
to the illness in older individuals, particularly those with
higher AD-PGS. Although these findings need to be repli-
cated in an independent sample with larger numbers of
dementia or clinical AD dementia cases, they demonstrate
that public health strategies for dementia prevention
should protect those who are socioeconomically disadvan-
taged and have a higher PGS.
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