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Abstract. Cervical myelopathy is a well‑described medulla 
spinalis syndrome characterized by sensory disorders, such 
as pain, numbness, or paresthesia in the limbs, and motor 
disorders, such as muscle weakness, gait difficulties, spas‑
ticity, or hyperreflexia. If left untreated, cervical myelopathy 
can significantly affect the quality of life of patients, while 
in severe cases, it can cause disability or even quadriplegia. 
Cervical myelopathy is the final stage of spinal cord insult and 
can result from transgene dysplasias of the spinal cord, and 
acute or chronic injuries. Spondylosis is a common, multifactor 
cause of cervical myelopathy and affects various elements 
of the spine. The development of spondylotic changes in the 
spine is gradual during the patient's life and the symptoms are 
presented at a late stage, when significant damage has already 
been inflicted on the spinal cord. Spondylosis is widely consid‑
ered a condition affecting the middle aged and elderly. Given 
the fact that the population is gradually becoming older, in the 
near future, clinicians may have to face an increased number 
of patients with spondylotic myelopathy.
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1. Morphology

The vertebral column is the structural base of the human 
body. It comprises complex bony elements (vertebrae) and soft 
fibrous elements (intervertebral discs and ligaments). The key 
anatomical parts of the vertebrae are the vertebral body, the 
pedicle, lamina, the spinous process and the transverse process 
in the thoracic and lumbar parts of the spine. The intervertebral 
disc is located between the vertebral bodies. The zygapophy‑
seal and Luschka joints are the primary joints that contribute to 
the maintenance of the vertebral column's architecture during 
static position and motion. Finally, various fibrous ligaments, 
such as the anterior and posterior longitudinal ligaments and 
the ligamentum flavum, contribute to the maintenance of 
spinal cord structure. Each part of the vertebral column has 
unique biochemical and functional characteristics; however, 
they all articulate with each other in order to for the body to be 
able to make complex and delicate movements (1,2).

The intervertebral disc is the most critical and extensively 
investigated structure of the soft tissues of the vertebral 
column. It is placed between the un‑elastic and non‑compressed 
bodies of the vertebrae and sustains multi‑direction compres‑
sive, bending, or shearing forces (1,2) during body motion 
or posture sustenance. However, the acting forces over the 
spine are not distributed equally over the intervertebral discs, 
leading to more significant wear of the most stressed parts of 
the disc. The reasons for that are some anatomical characteris‑
tics of intervertebral disc components (e.g., eccentric location 
of nucleus pulposus in the disc) and the fact that the spine 
sustains multi‑direction loads (3).

The intervertebral disc is separated into two parts: The 
outer part is the annulus fibrosus, while the inner part is the 
nucleus pulposus. Furthermore, the annulus fibrosus is subdi‑
vided into an external zone consisting of complex collagen 
type I fibers and an internal area composed of soft collagen 
type II fibers (1,2). The external zone of the annulus fibrosus 
bridges two successive vertebral bodies. In addition, due to 
its architecture and biochemical characteristics, the annulus 
fibrosus functions similar to a diffusion filter that controls the 
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crossing of fluids, ions and macromolecules between articular 
plates and intervertebral discs (4).

The nucleus pulposus is a gel‑like formation composed 
mainly of glycosaminoglycans and water (1,2). It is located 
approximately in the middle of the distance between the 
central and posterior parts of the intervertebral disc (5). In the 
case that a static compressive load is forced on the interverte‑
bral disc, the nucleus pulposus loses some of its water content 
and its height is reduced. When the pressure from this load 
is terminated, the nucleus pulposus retains the lost moisture 
and regains its original size. In the case that a shear load is 
inflicted on the intervertebral disc, the nucleus pulposus can 
move inside the annulus fibrosus, consuming the load. The 
nucleus pulposus retains its original location inside the disc 
when the pressure of the load is terminated.

This difference in the biochemical structure of the annulus 
fibrosus and nucleus pulposus is fundamental to their unique 
functionality. Thus, the annulus fibrosus, with its high content 
of fibers, serves to stand tension, shear and torsion, while 
the nucleus pulposus, with its high content of proteoglycans, 
serves to stand compression forces (6‑8). In conclusion, the 
intervertebral disc acts functions as an elastic jolt absorber 
under multi‑axial loads.

Two continuous vertebrae are linked with a pair of joints 
known as the zygapophyseal. These are accurate joints 
containing articular plates, articular cartilage and synovial 
tissue, and bridge the faceting process of two continuous 
vertebrae. Apart from their connecting role, zygapophyseal 
joints participate in the motions of the spine and sustain a part 
of the loads that act over the spine. Similar to intervertebral 
discs, zygapophysial joints are designed to sustain multi‑axial 
compressive (9) and shear (10,11) loads. Additionally, 
zygapophyseal joints stabilize other parts of the spine's soft 
tissues, particularly the upper vertebral column (12).

On the lateral side of the cervical intervertebral disc, the 
annulus fibrosus is subdivided by transverse clefts (13,14). 
These clefts are not anatomical formations that exist in the fetus, 
but develop later in the child's life and become more profound 
in adulthood (15,16). Later on in adult life, a joint pseudocap‑
sule is formed inside the fissures (1,2), and the formed joint is 
known as the uncovertebral or Luschka joint (13,14). However, 
the exact formation mechanism of these fissures remains to 
be determined. In various models, it has been found that the 
clefts are formed in the intervertebral disc area, where the 
highest load pressure acts (12,17,18). On the contrary, the role 
of Luschka joints is well known. They cooperate with facet 
joints to perform lateral bending and axial spine rotation (19). 
Furthermore, Luschka joints restrict extreme movements of 
the spine (7,20), avoiding possible damage.

Finally, various fibrous ligaments connect two or more 
continuous elements of the vertebral column. These ligaments 
are generally high‑percentage elastin and collagen structures 
and are designed to resist tensile and destructive loads (7). 
Their exact function depends on their biochemical character‑
istics and the spinal parts they connect. Ligaments with a high 
concentration of elastin have a more elastic function (21,22), 
whereas ligaments with a high percentage of collagen have 
a more stabilizing role. Furthermore, the complex entheses 
of spine ligaments render them capable of resisting multiple 
loads, although they are most effective when distracted along 

the direction of the fibers (23). The critical ligaments of the 
spine are described below:

The anterior longitudinal ligament is located on the ventral 
side of the spinal cord and binds the bodies of the vertebrae. 
Due to its location, the anterior longitudinal ligament limits 
the extension of the spine (23).

The posterior longitudinal ligament binds the dorsal part 
of the vertebral bodies. Due to its caudal location, it limits 
the flexion of the spine. On the other hand, as the posterior 
longitudinal ligament is located close to the center of rotation, 
it is not as effective against loads during rotation (12).

Interspinous ligaments connect the vertebral processes of 
the spine. Mainly, they are composed of collagen fibers, as 
5‑20% of them are comprised of collagen (24,25). Therefore, 
their main role is to limit the flexion of the vertebral 
column (25). Additionally, these ligaments cooperate with the 
anterior longitudinal ligament and resist the applied forces 
during rotation.

The ligamentum flavum is located in the posterior part of 
the laminae. It is the most elastic tissue of the body, with a 
collagen/elastin ratio of 1/4 (26,27). Its main role is to maintain 
the vertical posture of the spine and assist the vertebral column 
in resuming it after flexion.

Capsular ligaments connect the inferior articular 
process of a vertebra with the superior process of the 
lower vertebra (28). They serve as local stabilizers of the 
zygapophyseal joint (28,29), particularly during rotation (28).

2. Pathophysiology

Intervertebral discs, joints and ligaments have a poor or 
absent feeding vascular network. As a result, the nutrition of 
the intervertebral discs is covered mainly through a vascular 
network that penetrates only to the outer zone of the annulus 
fibrosus and through diffusion from vertebral end plates (30). 
Additionally, fluids and elements of nutrition enter the inter‑
vertebral disc during the movements of the spine. When the 
disc is compressed, it loses water through a mechanism which 
is discussed below. When the compression stops, the disc 
retains its original height, absorbing fluids and nutrients with a 
mechanism similar to a pump.

This lack of blood vessels inside the nucleus pulposus, the 
inner part of the annulus fibrosus and the articular cartilage 
does not only have negative effects. The architecture of the 
aforementioned structures appears to be more solid without 
penetrating vessels, rendering them more effective in resisting 
loads (31).

The harmonic cooperation of the vertebrae, the inter‑
vertebral discs, the small joints and the ligaments renders 
the vertebral column capable of sustaining multiple external 
forces, such as compression, shear and rotation during the static 
or dynamic posture of the body. Additionally, it contributes to 
maintaining the architectural integrity and functionality of the 
vertebral column during and after the force stops acting.

Cervical spondylotic myelopathy (CSM). Cervical myelopathy 
is a well‑described medulla spinalis syndrome characterized 
by sensory disorders, such as pain, numbness, or paresthesia in 
the limbs, as well as motor disorders, such as muscle weakness, 
gait difficulties, spasticity, or hyperreflexia. Pathologically, 
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myelopathy is characterized by atrophy of the anterior 
horn (32) and loss of the neurons in the gray matter, with 
accompanying cavity formation within the gray matter. By 
contrast, in white matter, demyelination, necrosis (33), myelin 
pallor,and atrophy can be encountered (33,34). A summary of 
the underlying causes, mechanisms and consequences of this 
condition is illustrated in Fig. 1.

Cervical myelopathy can result from transgene dyspla‑
sias of the spinal cord, acute insults, such as trauma 
or ischemia, and chronic issues such as infections and 
age‑related degeneration of the spinal cord. Spondylosis is 
a multifactorial (genetic deformation, aging deterioration 
and loading history) (35) cause of cervical myelopathy 
and affects various elements of the spine like vertebrae, 
intervertebral discs, joints and ligaments. Spondylosis is 
characterized by multi‑type vertebral column deformations, 
such as the formation of bony spurs, the degeneration of 
facet and Luschka joints (32), the calcification of soft tissues 
and ligaments, and the degeneration of the intervertebral 
disc. The outcome of all these deformations is a profoundly 
narrow spinal canal (36,37), which causes direct pressure 
on the medulla spinalis. Additionally, it has been shown 
that the chronic degeneration of the spine causes the static 
compression of the spinal medulla. The dynamic compres‑
sion that occurs during the movements of the spine can cause 
cervical myelopathy (38,39). Finally, ischemic deterioration 

appears to be induced during aging and contributes to the 
development of myelopathy (33,34).

Spondylosis is widely considered a condition affecting 
middle‑aged individuals; 95% of asymptomatic males and 70% 
of asymptomatic males by the age of 60‑65 years have signs of 
degeneration in cervical radiography (38), and 57% of asymp‑
tomatic individuals >40 years of age have disc degeneration, 
while 40% of the individuals in the same age group have bone 
spurs in a cervical MRI (40), whereas only 10% of individuals 
by the age of 25 have spondylotic deformations (41).

Age deterioration. During the first years of life, the vertebral 
column is at the peak of its morphological integrity and 
functionality. As the years progress, a number of age‑related 
changes occur in the spine. These changes, along with 
spinal deformations which occur due to acting loads, disrupt 
the architecture of the vertebral column and deteriorate its 
functionality.

The intervertebral disc, as aforementioned, is an avascular 
structure that meets its needs for fluids and macromolecules 
through the vascular network of the outer annulus fibrosus and 
diffusion from the surrounding tissues. More specifically, when 
a load compresses the disc, water is drained out, increasing the 
osmotic pressure inside the disc and decreasing the height of 
the disc. When the load stops acting, the high osmotic pres‑
sure in the disc drives the lost amount of water back to the 

Figure 1. Cervical spondylotic myelopathy: Cervical vertebral column with herniated discs, causative factors, pathophysiological mechanisms and conse‑
quences and stages of disc herniation; please refer to the text for details. Parts of this image was derived from the free medical site, http://smart.servier.com/ 
(accessed on September 13, 2023) by Servier, licensed under a Creative Commons Attribution 3.0 Unported License.
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nucleus pulposus and the disc back to its original height. The 
disc of a young individual contains an increased number of 
proteoglycans and only a small amount of fiber, and thus it 
has an enhanced ability to absorb water. In summary, during 
youth, the biochemical structure and the proper function of 
the intervertebral disc, in combination with the integrity of 
the annulus fibrosus vascular network, guarantee the proper 
supplementation of the disc (31).

During aging, the biochemical composition (42) and the 
architecture of the intervertebral disc change significantly. The 
biochemical changes involve the shift of chondroitin‑4‑sulfate, 
chondroitin‑6‑sulfate and keratan sulfate, which are the main 
glycosaminoglycans in the intervertebral disc of a young indi‑
vidual, to dermatan sulfate (31). The changes which occur in 
the glycosaminoglycans, and amounts and quality of proteins 
I the disc during aging reduce the quantity of water inside 
the disc.

As a result, the disc height is reduced (1) and it becomes an 
unelastic and fibrous structure (41). Additionally, melanin‑like 
molecules are collected inside the nucleus pulposus, and the 
disc thus acquires a dark brown shade (43). Architectural 
changes occur in the first years of adult life. They involve 
multiple tears and fissures that develop on the lateral surface 
of the annulus fibrosus and progressively extend to the nucleus 
pulposus (1,44). Due to its biochemical and structural changes, 
these gap formations result from the reduced capacity of the 
disc to carry loads (44).

Furthermore, nutrient supply to the avascular disc becomes 
less efficient in a spine from an older individual. As a result, 
the poorly supplied intervertebral disc has a low regeneration 
rate. This fact reduces the ability of the disc to repair the 
damage from mechanical loads (45).

The aging procedure affects the intervertebral disc and 
the surrounding cartilage formations. Namely, the amount of 
proteoglycans in cartilage is reduced over time (46), reducing 
the ability of the cartilage to maintain an adequate amount of 
water, and making it less elastic. Additionally, the connection 
between the collagen fibers alone (47) and the collagen and 
sugar molecules become tighter, increasing the inelasticity of 
the spine.

In summary, during the first years of adulthood, interver‑
tebral discs and the surrounding cartilage domains become 
stiffer, the height of the disc decreases, and the amount of 
water inside the disc is reduced, rendering the poorly supplied 
disc unable to sustain multi‑direction loads (35). The changes 
described above, which are early deteriorations observed over 
the spine, are known as intervertebral chondrosis (1).

In the following years of adult life, more deteriorated 
detriments accumulate over the spinal cord. During this stage, 
the percentage of intra‑disc water is further reduced, causing 
a significant downside to the intervertebral disc compared 
with the stage of intervertebral chondrosis (1). In addition, the 
nucleus pulposus and the internal part of the annulus fibrosus 
are the most affected during this stage. By contrast, the outer 
part of the annulus fibrosus is less affected. As a result, internal 
part of the disc prolapses through the healthier outer part of 
the annulus fibrosus (1).

Apart from the intervertebral disc, cartilage and spongiosa 
are affected at this stage. The reason is that the degenerated 
disc does not function sufficiently, and some acting loads are 

forced onto the adjacent structures of the disc. This causes a 
disorder of the natural architecture of the cartilage endplates 
and the formation of ossification, while the vertebral spongiosa 
becomes sclerotic and thicker (1). This second stage of spinal 
degeneration is termed intervertebral osteochondrosis.

As aforementioned, the intervertebral disc is an avascular 
formation. Nonetheless, during the aging procedure, newly 
formed blood vessels penetrate the nucleus pulposus through 
the tears of the annulus fibrosus or the end plates of the 
vertebrae (48,49). The exact mechanism of the deployment of 
blood vessels remains to be determined. High‑quantity glycos‑
aminoglycan formations, such as intervertebral discs resist 
the deployment of new vessels. During aging, the quantity 
of glycosaminoglycans is reduced in the intervertebral disc, 
allowing them to penetrate new vessels. Angiogenesis may 
be a potential repair mechanism of the spine for age‑related 
degeneration (31) or the outcome of reduced levels of glycos‑
aminoglycans. The only confirmed fact is that the penetration 
of blood vessels inside the nucleus pulposus changes its struc‑
ture. The expression of metalloproteinases near the newly 
developed vessels of the intervertebral disc can contribute to 
these changes (50).

All the age‑related changes in the architecture of the verte‑
bral column described above affect its stability and efficiency 
in resisting forces during standing or body movements. The 
degenerated intervertebral disc cannot stand the loads during 
acting, inflicting an increased load stress on the adjacent artic‑
ular cartilage of vertebrae and their end plates (44). To reduce 
the instability of the spine, multiple bony particles (osteo‑
phytes) are formed (51) at the edge of the vertebrae. Lamellar 
bone covers osteophytes, which have spongiosa similar to that 
of the vertebrae (52). These osteophytes increase the area of 
the area that sustains the compression and make the arthrosis 
more stable. Spondylosis deformations enhance this effect, and 
osteophytes are common in the more mobile cranial part of the 
cervical spine. At the same time, they are uncommon in the 
caudal part (53,54).

While the formation of osteophytes is a well‑known 
defense mechanism to stabilize degenerated arthrosis, the 
exact mechanism of osteophyte formation is controversial. 
Schmorl's first model postulates that the fissures and tears in 
the outer zone of the annulus fibrosus make the intervertebral 
disc complex, and the nearby vertebral bodies more unstable 
and susceptible to pathological movements. The outcome of 
these movements is that the anterior longitudinal ligament 
sustains an increasing load, which is transferred to ligament 
insertions on the surface of vertebral bodies. Additionally, the 
intervertebral disc presses the anterior longitudinal ligament 
during these movements, increasing the tension at the ligament 
insertions. The outcome of this continuous stress is the forma‑
tion of osteophytes at the insertions of the anterior longitudinal 
ligament (55). The second model, described by Collins (56), 
proposes that the fissures and tears in the outer zone of the 
annulus fibrosus are the ports through which tissue from 
the degenerated disc penetrates out of the nucleus puplosus. 
During this time, the collected penetrating disc tissue near 
the vertebrae edges is ossified, resulting in the formation of 
vertebrae body osteophytes (56). In summary, both models 
propose that the anterior longitudinal ligament plays a key role 
in the formation of osteophytes. This is unusual, considering 
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that the common location where osteophytes are formed is the 
ventral surface of the vertebrae just caudally to the vertebrae 
edges, a location where the anterior longitudinal ligament is 
not sufficiently strong (53).

The sum of all age‑related spine deformations affects not 
only the intervertebral disc, but also the joints of the spinal 
cord. Osteochondrosis of the vertebral end plates and interver‑
tebral discs alters the segmentation of the acting loads (44). In 
addition, the joint is forced to participate in a greater range of 
movements (57) due to the instability caused by the degenera‑
tion of the spine (51). These structural changes, combined with 
hypermobility, are believed to induce the formation of tears 
in cartilage and osteoarthritis‑like deformation of the facet 
joints. Additionally, intense sclerosis is found in the subchon‑
dral formations, while the final step of degeneration is the 
hyalinization of the zygapophyseal joints and the formation of 
osteophytes (52).

Furthermore, due to the change in load segmentation, 
uncovertebral processes and Luschka joints are forced to resist 
higher forces (44), resulting in the flattening of uncovertebral 
processes (1,44). The load segmentation change, in combina‑
tion with the flattening of uncovertebral processes, increasing 
the load on the articular cartilage and the adjacent end plate of 
the vertebrae (44), inflicting further damage to these structures. 
Additionally, the flatter uncovertebral processes are a potential 
place for osteophyte formation (52). These osteophytes can 
grow in the direction of the transverse foramen and compress 
the vertebral artery, particularly during extreme neck move‑
ments, causing severe hypoperfusion to the cervical part of the 
medulla spinalis (58).

Finally, the overgrowing osteophytes can compress the 
ligamentum flavum, bending it and making it harder (59). 
This bent ligamentum flavum can inflict direct pressure on the 
medulla spinalis and the vertebral artery, causing lesions to the 
spinal cord due to pressure or hypoperfusion.

Canal size. The medulla spinalis is a delicate neural forma‑
tion inside a protective cage known as the spinal canal of 
the vertebral column. The size of the spinal canal differs 
along the spinal cord or among the sexes (males appear to 
have a wider canal in all the cervical segments compared 
with females) (60). The wider part is located in the lumbar 
spine, while the diameter of the spinal canal is reduced when 
during cranial movements. The anteroposterior diameter of 
the canal between C3 and C7 segments has been reported to 
be 17‑18 mm (61,62), while other reports have demonstrated 
a decrease to the considered normal sagittal diameter of the 
canal to 14.1±1.6 and 13.73±1.37 mm (60,63).

Various researchers have reported that spinal canal stenosis 
is a key factor predisposing to the development of the direct 
compression of the medulla spinalis and cervical myelop‑
athy (38,63,64). The fact that individuals with congenital canal 
stenosis are more susceptible to cervical myelopathy (65,66) 
supports this theory. Moreover, the size of the cervical canal 
is considerably reduced in patients with cervical myelopathy 
compared with healthy individuals (37,67). By contrast, 
myelopathy symptoms are more severe in patients with a 
considerably decreased canal size (63). Direct measurements 
in patients and cadavers have demonstrated that a compro‑
mise of the canal's acreage <60 mm2 (68) or the canal's 

sagittal diameter <13 mm (69) is associated with an increased 
possibility of developing cervical myelopathy (37,44). On the 
other hand, individuals with a canal diameter between 13 and 
17 mm have a reduced possibility of developing myelopathy. 
However, they can still present signs of cervical spondylosis, 
and individuals with a canal diameter >17 mm will not develop 
cervical spondylosis (37).

Spondylosis, as aforementioned, is the spinal cord's normal 
aging procedure and includes a group of changes, such as the 
deterioration of the intravertebral disc, the hypertrophy and 
ossification of the spine's ligaments, and the formation of 
osteophytic spurs (32,70). These changes compromise the size 
of the spinal canal, inflicting direct pressure on the medulla. 
Chronic pressure is a predisposing factor for developing 
CSM (32,44,70). Moreover, when spondylosis and congenitally 
narrowed canals coexist, the possibility of developing CSM 
increases (44).

Dynamic compression. Although the model described above 
appears sufficient, it fails to explain the onset of myelopathy in 
patients with minimal compromise of the spinal canal and the 
absence of symptoms in healthy individuals with spinal canal 
stenosis (71,72). Moreover, cervical myelopathy increases in 
incidence in individuals with extreme or unphysiological neck 
movements (64,71,73‑75). Subsequently, static compression 
of the medulla from spondylotic formations does not appear 
to be the unique pathophysiological model that describes 
spondylotic myelopathy.

To explain that paradox, the motion physiology of the 
spinal cord needs to be studied. During normal flexion and 
extension, the morphology of the spine is altered, affecting 
the diameter of the spinal canal (76,77). In flexion, the spinal 
canal is elongated, and the spinal cord is stretched, inducing 
axial tension (72,76). Typically, the cervical and lumbar 
spine are the most mobile parts of the spinal cord; thus, it 
is logical that the white and grey matter of these spine parts 
are stressed the most (78,79). In extension, the spinal canal is 
narrowed due to the shingling of the laminae and buckling of 
the ligamentum flavum, while the spinal cord itself becomes 
shorter and thicker (42,76). Additionally, during a shift from 
flexion to extension, the bulging of the intervertebral discs 
and ligamentum flavum decreases the diameter of the spinal 
canal (80). Moreover, the canal is compressed by interver‑
tebral discs and ligamentum flavum bulging when a load is 
inflicted upon the spinal cord. These modifications of the 
architecture of the spine during motion inflict direct pressure 
on the cervical medulla (81), and are predisposing factors 
for the development of CSM. The observation advocates the 
theory that extreme cervical spine movements are associated 
with progressive CSM (73‑75). An additional supporting argu‑
ment is that surgical decompression and stabilization of the 
spine, which decrease the pressure over the cord and eliminate 
the abnormal motion, improve the clinical status of patients 
with CSM (82‑85).

Of note, age‑related degenerative changes in the spine 
exacerbate the dynamic compression of the cord. In flexion, 
the spinal cord can be farther stretched over anterior osteo‑
phytes or calcified herniated discs, while in extension, the 
buckling ligamentum flavum compresses the cord (69,86). 
As previously demonstrated in a clinical protocol, the cord's 
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compression during motion by ventral osteophytes can induce 
chronic stretching and shear injury to the dorsal cord (87). This 
fact supports the theory that dynamic compression, in combi‑
nation with spondylosis, is a predisposal factor for developing 
CSM. Moreover, age‑related changes in the spine can induce 
cord pressure and, consequently, CSM through local tethering 
action. In individuals with no spondylosis, the strain during 
motion of the vertebral column is split over the entire spinal 
cord. By contrast, in individuals with spondylotic deformation, 
the strain is focused adjacent to age‑related formations (72). A 
potential explanation is that spine ligaments induce tethering 
stress over the cord in areas near spondylotic deformations 
during flexion and extension (72).

Ischemia. The notion that ischemia contributes to the devel‑
opment of CSM is not a new one, but remains controversial. 
Numerous protocols support this theory. Specifically, the 
anterior spinal artery and parenchymal arterioles present 
pathological changes, such as vessel wall thickening and 
hyalinization (88,89). By contrast, radicular artery diameter is 
affected by the fibrosis of intervertebral foramina in patients 
with CSM (90). Additionally, histopathological clues of isch‑
emic injury over the grey and white matter of the spine have 
been observed in patients with CSM (76,91).

A pathophysiologic explanation is that time‑related 
degenerative formations of the cervical spine can compress 
major feeding arteries such as the vertebral arteries (33), 
the anterior spinal artery and its ventral branches, or the 
radicular arteries of the neuroforamina (73,89). As a result, 
the blood flow velocity within the vertebral artery can be 
abnormally reduced (92), while blood perfusion to vital 
parts of the spinal cord is compromised (93). Moreover, 
spondylotic deformities can compress the venous outflow of 
the spine, reducing blood drainage from the spine (73,89). 
Various studies on humans and animals support this 
hypothesis. The outcome of a canine study where terminal 
branches of the anterior spinal artery and penetrating 
branches of the lateral pial plexus are curved and stretched 
around degenerative formations of the spine was a decrease 
in blood flow to corticospinal tracts (94). Additionally, 
angiography studies on animal models suffering from CSM 
have revealed signs of ischemia (95,96). Other researchers 
have examined the simultaneous insult of direct compres‑
sion and ischemia to the cord. In detail, ischemia appears to 
enhance the injury due to the anterior compression over the 
medulla (94), changing blood flow to the spinal cord (97). In 
this protocol, corticospinal tracts are the most affected part 
of the medulla (94), which has also been found in patients 
with CSM (69). In another experimental protocol, the direct 
compression of specific spine arteries causes a decrease 
in blood flow to the respective artery's feeding part of the 
spine (98).

On the other hand, there are some clinical and experi‑
mental protocols that fail to associate ischemia with CSM. In 
detail, patients or laboratory animals with moderate CSM have 
no (99) or only mild signs of ischemia (100,101). By contrast, 
pathological evidence of ischemia has only been found when 
severe canal stenosis coexists (102,103). Moreover, some 
experimental studies have only found minor changes in blood 
flow during compression and decompression (79,104).

3. Conclusion

Spondylosis is a multi‑factor cause of cervical myelopathy. The 
onset of CSM‑related symptoms is insidious and if left untreated, 
it can cause severe disability in affected patients. Given the fact 
that spondylotic changes take time to be developed and that the 
population is gradually becoming older, CSM will be one of the 
most common health issues among elderly patients in the future. 
A better understanding of the mechanism that drives to the 
formation of spondylotic changes will aid in the development of 
more effective treatment and preventive strategies.
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