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1  |   BACKGROUND

In animal breeding, it is needed to estimate breeding values 
to select the future reproducers. Best linear unbiased predic-
tion (BLUP) model that was conceptualized by Henderson 
(Henderson,  1963, 1975), made possible to predict breeding 
values for each candidate for selection. Originally, models' 
variance–covariance structure was described by a pedigree rela-
tionship matrix (PBLUP). Wide implementation of PBLUP was 

possible in the 90's thanks to the development of computation 
methods that could easily and rapidly solve complex mixed-
model equations integrating large pedigree relationship matri-
ces (Golden et al., 1991; Meuwissen & Luo, 1992; Tier, 1990).

Haley and Visscher (1998) suggested describing the 
variance–covariance structure with a genomic relation-
ship matrix. This matrix was later conceptualized by 
Meuwissen, Hayes, and Goddard (2001), which led to the 
genomic best linear unbiased prediction (GBLUP) model. 
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Abstract
BLUP (best linear unbiased prediction) is the standard for predicting breeding val-
ues, where different assumptions can be made on variance–covariance structure, which 
may influence predictive ability. Herein, we compare accuracy of prediction of four 
derived-BLUP models: (a) a pedigree relationship matrix (PBLUP), (b) a genomic 
relationship matrix (GBLUP), (c) a weighted genomic relationship matrix (WGBLUP) 
and (d) a relationship matrix based on genomic features that consisted of only a subset 
of SNP selected on a priori information (GFBLUP). We phenotyped a commercial 
population of broilers for body weight (BW) in five successive weeks and genotyped 
them using a 50k SNP array. We compared predictive ability of univariate models 
using conservative cross-validation method, where each full-sib group was divided into 
two folds. Results from cross-validation showed, with WGBLUP model, a gain in ac-
curacy from 2% to 7% compared with GBLUP model. Splitting the additive genetic 
matrix into two matrices, based on significance level of SNP (Gf: estimated with only 
set of SNP selected on significance level, Gr: estimated with the remaining SNP), led to 
a gain in accuracy from 1% to 70%, depending on the proportion of SNP used to define 
Gf. Thus, information from GWAS in models improves predictive ability of breeding 
values for BW in broilers. Increasing the power of detection of SNP effects, by acquir-
ing more data or improving methods for GWAS, will help improve predictive ability.
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The classical GBLUP model assumes that additive genetic 
variance is homogeneous across the genome. However, many 
gene mapping studies have shown that some genomic regions 
contribute more to genetic variance than others (Chicken 
QTL Database, 2017; Hu et al., 2013), with differences de-
pending on traits and/or populations.

In order to define a model based on the genetic archi-
tecture of individual traits, Zhang et al. (2010) proposed a 
variation of the GBLUP model, where prior information 
on genetic architecture of the traits was used to assign a 
discrete variance to each SNP when defining a genomic 
relationship matrix. Because different genomic regions 
affect different traits, a different genomic relationship 
matrix is needed for each trait. In this model, the genetic 
variance–covariance was described by a weighted genomic 
relationship matrix (WGBLUP) rather than by the standard 
GBLUP matrix, where each SNP was weighted equally. 
Zhang et al. (2010) showed that WGBLUP model performs 
better than GBLUP because it increases the prediction ac-
curacy of estimated breeding values (EBV) from 3% to 10% 
relative to GBLUP. The expected improvement in accuracy 
is high with WGBLUP for traits deviating more from an in-
finitesimal model. So, gain in predictive ability is expected 
for traits controlled by few large QTL.

Sørensen, Edwards, and Jensen (2014) proposed another 
model that considers the genetic variance across the genome 
and evaluated the collective effects of sets of SNP (GFBLUP, 
Genomic Feature BLUP). In this model, genetic markers were 
split into two or more components based on a priori genetic 
information, such as identified QTLs, gene ontology (GO) or 
pathway enrichment. Specifically, sets of SNP, which are ex-
pected to be in strong linkage disequilibrium (LD) with the 
QTL, are included in the first genomic matrix, which is called a 
genomic feature matrix (Gf). The remaining SNP are assigned 
to a second matrix, called the residual genomic matrix (Gr). This 
model was found to improve predictive ability relative to the 
standard GBLUP models for humans, fruit flies, dairy cattle and 
pigs (Fang et al., 2017; Rohde et al., 2018; Sarup et al., 2016). 
The improvement in predictive ability depends on the number of 
causal variants represented by the set of SNP defined by a given 
genomic feature and thus on the ability to identify such variants.

The genetic improvement in a breeding programme is 
proportional to the accuracy of predicted breeding values. 
Therefore, it is important to optimize genomic models used in 
genetic evaluations to maximize genetic improvement. Even, 
if models, such as WGBLUP and GFBLUP, might lead to an 
increase in predictive ability, it could be quite challenging 
to implement it into current breeding programmes in broil-
ers. Indeed, the estimation of SNP effects is time consum-
ing whereas, with the short interval of generation, evaluation 
should be done in a short time. It might increase this need for 
investment in genotyping also, since usually in broilers only a 
proportion of the selection candidates are genotyped.

In this study, various ways to define the genomic 
variance–covariance structure in a commercial line of broil-
ers were tested. The aim of our study was to evaluate the 
benefits of having prior information on SNP effects in the 
definition of the covariance matrix describing additive ge-
netic relationships among birds to improve the accuracy of 
predicted breeding values. We compared predictive accuracy 
of four best linear, unbiased prediction models with differ-
ently defined variance–covariance structure of the additive 
genetic effect: (a) a PBLUP, (b) a genomic relationship ma-
trix (GBLUP), (c) a WGBLUP and a genomic relationship 
matrix with genomic features (GFBLUP).

2  |   MATERIALS AND METHODS

2.1  |  Birds

Our population of birds consisted of both sexes obtained 
from a commercial line of broilers, raised in a commercial 
environment. Their parents were raised in a bio-secure envi-
ronment where selection was done on the relatives of birds in 
our study. Pedigree covered 23 selection rounds (SR), which 
corresponds to when a decision of selection was done, back 
to when the line was formed and included birds from both the 
commercial and bio-secure environments (Chu, Bastiaansen, 
et al., 2019; Chu, Madsen, et al., 2019; Mebratie et al., 2019). 
However, the phenotypes and genotypes used in this study 
were only commercially reared birds and were focussed on 
12 SR. Therefore, the only information on the parents was the 
pedigree information. All birds were both phenotyped and 
genotyped.

2.2  |  Phenotypes

Body weight (BW) was recorded once per week for five suc-
cessive weeks (W1–W5) after hatching. For two SR (SR17 
and SR18), BW was recorded only until Week 4; for remain-
ing, SR birds were recorded until Week 5. We analysed 10 
traits relative to BW for each of the 5 weeks by sex (m = male, 
f = female): BW1f, BW1m, BW2f, BW2m, BW3f, BW3m, 
BW4f, BW4m, BW5f and BW5m. We phenotyped approxi-
mately 17,000 birds in total and provide descriptive statistics 
of the analysed traits in Table 1.

2.3  |  Genotypes

All birds were genotyped with a custom Illumina 60k array 
(Illumina) and covered chromosomes GGA1 to GGA28, 
GGA33, Linkage group LGE64, and a group of SNP that did 
not have chromosome positions assigned.
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In total, 18,270 birds were genotyped for 55,792 SNP. We 
performed quality control using Plink (Purcell et al., 2007) 
software with the following procedure: (a) SNP with a call 
rate less than 90% were removed (13 SNP); (b) Individuals 
with a call rate less than 99% were removed (482 individu-
als); (c) SNP with a call rate <99.9% were removed (4,249 
SNP); (d) SNP with a minor allele frequencies <0.01 were 
excluded (4,914 SNP) and (e) SNP deviating from Hardy–
Weinberg equilibrium based on Fst (Wright, 1922) were re-
moved (114 SNP). Finally, genotype data included 46,502 
SNP and 18,096 individuals.

2.4  |  GWAS

For GFBLUP and WGBLUP models, individual SNP effects 
must be estimated. Therefore, for each SNP (1–46,502), we 
ran an SNP-by-SNP regression using this model for each of 
the 10 traits with univariate analysis:

where y is a vector of phenotypic observations and b is vec-
tor of fixed effects. Fixed effects included the interaction 
selection rounds by hatch (11–12 classes), the interaction 
selection rounds by hatch of dam (83 classes) and age of 
dam at hatching (28 levels). β1 is the effect for SNPia of the 
individual examined, and β2 is the effect of SNPid for each 
dam. SNPia and SNPid are vectors of SNP for the i-th SNP 
genotype indicator variable coded as 0, 1 or 2 for both an 
individual and its dam. Matrices of X, Z and W are inci-
dence matrices. Vectors u, m, c and e represent the direct 
additive genetic effect, maternal genetic effect, permanent 
environmental maternal effect and residual, respectively. 
Vectors u and m are the vectors of genomic values for direct 
additive genetic effects and maternal additive genetic effects 
captured by SNP on different chromosomes, leaving out 
the chromosome carrying snpi. To avoid redundancy, each 
time that a chromosome was excluded, we estimated vari-
ances of u and m using the AIREML module implemented 
in DMU (Madsen & Jensen,  2013). We assumed that the 
random effects and residuals were independent, normally 

distributed variables described as follows: u  ~  N (0, G�2
u
), 

m ~ N (0, G�2
m
) and e ~ N(0, I �2

e
). We corrected all p-values 

by a Bonferroni procedure. We set the genome-wide signifi-
cance threshold at p < (0.05/46,502).

2.5  |  Variance components estimation and 
prediction of breeding values

The manner in which we specified the variance–covariance 
structure was the only difference between the four models we 
examined (PBLUP, GBLUP, WGBLUP and GFBLUP). The 
general model we used was:

where y is a vector of phenotypic observations and b is 
vector of fixed effects. Matrices of X, Z and W were in-
cidence matrices. Vectors u, m, c and e were the direct 
additive genetic effect, maternal genetic effect, permanent 
environmental maternal effect and residual, respectively. 
We assumed that the maternal genetic effects, permanent 
environmental maternal effects and residuals were indepen-
dent, normally distributed variables described as follows: 
m ~ N (0, Ad�

2
m

), c ~ N (0, Id�
2
c
) and e ~ N (0, I�2

e
), where 

Ad is a pedigree relationship matrix for dams, and Id and I 
are identity matrices of dimensions, number of dams and 
number of observations, respectively. We compared four 
different assumptions regarding direct additive genetic ef-
fects and compared various assumptions on the covariance 
structure of u, described in the following sections. We as-
sumed direct and maternal additive genetic effects to be in-
dependent of one another.

For each variance–covariance structure we tested, we es-
timated variance components (VC) using the full dataset be-
cause, for GFBLUP, the additive genetic variance was split 
into two components. Therefore, the only way to know the 
variance explained by each of the components was to esti-
mate VC for each proportion tested. This means that for each 
of the following models (below), we estimated VCs using the 
corresponding variance–covariance structure and then used 
them to predict breeding values.

(1)y = Xb + β1 × SNPia + β2 × SNPid + Zu + Wm + Wc + e

(2)y = Xb + Zu + Wm + Wc + e

T A B L E  1   Descriptive statistics (number of observations, N; mean and standard deviation, SD) for body weight (BW) in grams for week 1 to 5 
for females (F) and males (M)

BW1 BW2 BW3 BW4 BW5

F M F M F M F M F M

N 8,280 7,950 8,900 8,547 8,768 8,338 8,582 8,139 7,819 7,371

Mean 153.86 154.76 392.49 402.69 761.57 809.97 1,131.06 1,243.04 1,549.84 1,735.12

SD 21.55 21.95 61.54 63.44 117.81 131.42 190.20 218.24 248.92 303.26
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2.5.1  |  PBLUP

For the PBLUP model, we used a pedigree relationship ma-
trix to describe variance–covariance structure. We assumed 
that variables for direct genetic effects were normally dis-
tributed, described as u ~ N (0, A�2

u
), where A is a pedigree 

relationship matrix for individuals.

2.5.2  |  GBLUP

For all SNP, we described the variance–covariance structure 
with a genomic relationship matrix. Therefore, we assumed 
that variables describing the direct genetic effects were nor-
mally distributed, described as u ~ N (0, G�2

u
), with G=MDM' 

and dii =
1

∑

2piqi

, where M is the matrix of cantered marker 

genotypes, and p and q are the allele frequencies of the i-th 
SNP (VanRaden, 2008).

2.5.3  |  WGBLUP

We used a WGBLUP to describe variance–covariance struc-
ture. We determined weights based on individual SNP effects 
estimated in the GWAS. Therefore, we assumed that varia-
bles describing the direct genetic effect were independent 
and normally distributed, described as u ~ N (0, G�2

u
), with 

G=MDM' and, dii =
�̂

2

1i
∕�1

∑

2piqi

 where �1 =
∑

2piqi × �̂
2

1i
∑

2piqi

 (Su 

et al., 2014) We estimated the SNP effect �1 using Model 1.

2.5.4  |  GFBLUP

For the GFBLUP matrix, we split the direct genetic effects 
into two components, one based on the genomic feature ma-
trix (Gf) and one based on the residual genomic matrix (Gr). 
Therefore, u = f + r where f ~ N (0, Gf�

2
gf), Gf = MfDfM

′
f
 

with dfii
=

1
∑

2piqi
and r  ~  N (0, Gr�

2
gr

) where 
Gr =  M

r
D

r
M �

r
drii =

1
∑

2piqi

, where Mf is the matrix of cantered 
marker genotypes included in the genomic feature matrix, 
and Mr is the matrix of cantered marker genotypes included 
in the residual genomic matrix. We assigned SNP to Mf or 
Mr based on results of our GWAS. For this, we ranked SNP 
based on their degree of significance and compared various 
proportions of SNP to be included in Gf. We compared 13 
different cut-off levels for SNP. For each proportion, we in-
cluded the most genome widely significant SNP in Gf. The 
proportions we compared were 0.1%, 0.2%, 0.3%, 0.4%, 
0.5%, 1%, 2%, 3%, 4%, 5%, 10%, 15% and 20% of SNP.

To examine if the genetic variance explained by the 20% 
of the most significant SNP was due to chance, we sampled 
randomly 9,300 SNP 10 times. Then genetic variance ex-
plained by those 20% of SNP was estimated.

If a VC in a model converged to zero, we removed the 
corresponding genetic effect from the model. For all cases, 
this situation only occurred for �2

gr
.

2.6  |  Cross-validation

In order to compare models, we applied a two-fold cross-
validation. For this, we first split the phenotypic data into two 
equal groups. Then, within each selection round, we randomly 
assigned animals to a group. Thus, we obtained three datasets, 
the full dataset and two reduced datasets. Then, we conducted 
a GWAS on both cross-validation groups. That is, we used the 
reduced datasets to estimate effects of SNP. For each genetic 
variance–covariance structure we tested, we estimated the VC on 
the full dataset, using AIREML software implemented in DMU. 
Therefore, for each trait we computed VC once for the PBLUB 
model, once for GBLUP model, twice for the WGBLUP model 
and 26 times for the GFBLUP model. For the WGBLUP and 
GFBLUP models, we used SNP information (weight or a set of 
significant SNP) to compare one group with another relative to 
estimated VC and breeding values. Thus, we used results from 
our GWAS for Group 1 to build a relationship matrix defining 
the variance–covariance structure of Group 2 and vice versa. 
We compared model accuracies using the correlation between 
the corrected phenotype (yc ) for fixed effects and the predicted 
breeding value based on the reduced dataset, divided by the 
square root of heritability: (Accuracy = cor (EBVr, yc )∕

√

h2). 
In order to compare traits on the same basis, we used the herita-
bility that we estimated with a PBLUP model on the full dataset. 
We assumed these estimates of heritability to be more accurate 
than heritability estimated with the GBLUP model because we 
observed some missing heritability with the GBLUP model 
(Table 2). We estimated inflation (often called “bias” in animal 
breeding literature) in predicted breeding values from the slope 
of the regression of the phenotype corrected for fixed effects on 
the predicted breeding value. Inflation values can be either posi-
tive or negative. Predictive accuracies and inflation values pre-
sented in this paper depict overall accuracies and inflation values 
across cross-validation groups. We computed standard errors of 
those estimates using formulas presented in the Appendix S1 of 
Chu, et al. (2019); Chu, et al. (2019).

We chose this two-fold cross-validation strategy to ensure 
that we had conservative criteria to compare models. Having 
close relatives in the training population ensured a high ac-
curacy for PBLUP and GBLUP models. Therefore, further 
increases in model accuracy were more difficult to achieve. 
Secondly, we wanted to ensure that frequencies of markers and 
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QTL were not influenced by selection or genetic drift during 
the experiment. This approach is in contrast to the often-used 
forward prediction methods used to assess the accuracy of pre-
dicted breeding values for individuals without its phenotype. 
However, this criterion is not relevant for assessing the accu-
racy of predicted breeding values in broilers because genotypes 
and phenotypes are available before sexual maturity. Therefore, 
selection criteria in genomic broiler-breeding programmes al-
ways include information from an individual's own phenotype 
and pedigree/genomic data on its relatives, including contem-
porary close relatives.

We performed all statistical analysis using the DMU soft-
ware package (Madsen & Jensen, 2013).

3  |   RESULTS

3.1  |  Summary of the data

Our single trait analyses focussed on BW of a commercial 
population of broilers measured at five successive weeks of 
age (for both sexes) (Table 1).

T A B L E  2   Estimated SNP effects relative to body weight (BW), by week (1–5 weeks) and sex (F = female, M = male)

(a)

Group 1 Group 2 Group 1 & Group 2 Total Male & Female

BW1

F 67 99 61 105 93

M 98 2 0 100

BW2

F 122 75 69 128 120

M 156 39 31 164

BW3

F 18 54 16 56 42

M 70 70 47 93

BW4

F 2 17 2 17 1

M 1 0 0 1

BW5

F 0 1 0 1 0

M 0 2 0 2

(b)

Number of SNP the initial week Number of SNP the next week Number of SNP in common

BW1-BW2

F 105 128 92

M 100 164 100

BW2-BW3

F 128 56 54

M 164 93 88

BW3-BW4

F 56 17 17

M 93 1 1

BW4-BW5

F 17 1 0

M 1 2 0

Note: (a) Number of SNP reaching Bonferroni corrected significance level (p <.01) for each cross-validation group (Group 1 and Group 2), number of SNP common to 
both cross-validation groups (Groups 1 & 2 combined ), total number of SNP, by trait (Total) and number of SNP common to both sexes. (b) Number of SNP reaching 
Bonferroni corrected significance level (p <.01) from a given week of age to the next.
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Fewer individuals were phenotyped for BW5 (body weight 
of 5-week-olds) than for the other traits we examined. For all 
samples, mean BW was higher for males than for females. 
This difference was significant for all traits (p <.05).

3.2  |  Genetic architecture of body weight 
by age

SNP effects were estimated using single marker regression 
analysis for each reduced dataset. Significant SNP we identi-
fied are summarized in Table 2. Details on individual SNP 
were omitted because our focus was on determining the ac-
curacy of predictive breeding values.

Spearman's correlation between SNP's effects estimated 
in the two cross-validation groups was on average 0.3. We 
identified several SNP reaching high levels of significance 
for BW1 and BW2, whereas we identified few highly signifi-
cant SNP for BW4 and BW5 (Table 2a). Moreover, Table 2a 
shows that males and females at the same age shared a large 
proportion of common, highly significant SNP affecting BW. 
Even so, we observed some differences (different SNP or dif-
ferent levels of significance for sets of SNP) between sexes.

Table  2b shows that the genetic architecture of BW 
changed as chicks aged. More than 65% of the SNP identified 
as highly significant in females at Week 2 were the same as 
the SNP identified as highly significant in Week 1, whereas 

only 30% of SNP identified as highly significant in females at 
Week 4 were identified as highly significant in Week 3 were 
the same. So, as chicks aged, genetic architecture of succes-
sive BW became more different from each other's.

3.3  |  Impact of genomic information on 
genetic parameters

The genetic parameters we estimated (with PBLUP and 
GBLUP models) with the full dataset for each trait are pre-
sented in Table 3.

Based on the PBLUP model, estimates of heritability (h2) 
in BW ranged from 0.19 to 0.31, with a standard error between 
0.04 and 0.05. Based on the GBLUP model, estimates of herita-
bility (h2) in BW ranged from 0.16 to 0.27 with standard errors 
of 0.02. For all data, our estimates of heritability were lower with 
the GBLUP model than when estimated with the PBLUP model.

Estimates of total variance were higher for males than for 
females for both models, and this difference became bigger as 
chicks aged. In the GBLUP model, heritability tended to be higher 
in females than in males as chicks aged, whereas we found no 
difference in heritability between sexes using the PBLUP model.

Maternal heritability (m2) ranged from 0.02 to 0.07 in 
the PBLUP model and from 0.02 to 0.08 in the GBLUP 
model. Estimates of heritability of maternal effects declined 
over time in both models. Moreover, heritability of maternal 

T A B L E  3   Estimates of genetic parameters for body weight, by age (week 1–5) and sex (F = female, M = male) estimated with PBLUP and 
GBLUP models

PBLUP GBLUP

h2 m2 c2
�

2
p

h2 m2 c2
�

2
p

BW1

F 0.20 0.034 0.095 307 0.18 0.041 0.096 305

M 0.19 0.075 0.065 315 0.16 0.078 0.070 312

BW2

F 0.27 0.025 0.064 2,838 0.20 0.020 0.078 2,776

M 0.27 0.028 0.066 3,075 0.20 0.037 0.079 3,030

BW3

F 0.26 0.024 0.048 9,531 0.21 0.023 0.060 9,406

M 0.26 0.021 0.064 11,966 0.18 0.032 0.081 11,799

BW4

F 0.30 0.021 0.038 23,314 0.24 0.020 0.046 22,917

M 0.31 0.017 0.046 31,637 0.20 0.035 0.066 31,056

BW5

F 0.31 0.018 0.038 48,033 0.27 0.021 0.041 47,542

M 0.29 0.019 0.030 68,369 0.23 0.029 0.04 67,931

Standard error 
range

0.04–0.05 0.015–0.024 0.015–0.020 0.02 0.012–0.021 0.012–0.018

Abbreviations: c2, permanent environmental maternal effect expressed as part of the total phenotypic variance (�2
p
); h

2, the direct heritability; m2, maternal heritability.
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effects tended to be higher in males than in females and to 
decline less quickly over time. Although heritability of di-
rect additive genetic effects tended to increase by age of the 
chicks, maternal heritability declined as the chicks aged.

3.4  |  Integration of genomic information of 
traits into the evaluation models

We predicted breeding values using PBLUP and GBLUP 
models to compared models where relationships were either 
based on pedigree or on genomic information. In the PBLUP 
model, variance–covariance structure was described by a 
pedigree relationship matrix, whereas in the GBLUP model, 
variance–covariance structure was described by a genomic 
relationship matrix. We made predictions for both folds and 
by using VC estimated from the full dataset for both models. 
The accuracy of a predicted breeding value for an individ-
ual chick without phenotypic information is not equivalent 
to accuracies of prediction obtained in broiler breeding pro-
grammes because, with broilers, phenotypes are obtained 
prior to sexual maturity, whereas predictions for breeding 
value are used as conservative criteria for comparing models.

Tables 4a,b show mean predictive accuracies of breeding 
values for individual chicks with masked phenotypes and 
the inflations of these estimates for each trait for all models 
(PBLUP, GBLUP, WGBLUP and GFBLUP).

This section is focussed on accuracies of prediction and 
inflations of the EBV obtained with PBLUP and GBLUP 
models. Detailed results from WGBLUP and GFBLUP mod-
els are presented below.

Based on PBLUP models, accuracies of prediction ranged 
from 0.50 to 0.59, with a mean of 0.53 (Table 4a). Inflation 
ranged from 1.01 to 1.49 (Table 4b). Inflations of breeding 
values were highest for BW at week 1 (BW1).

With the GBLUP model, accuracies of prediction ranged 
from 0.53 to 0.67 (Table 4a), with a mean of 0.60. Inflations 
were low and ranged from 0.97 to 1.09 (Table 4b).

Thus, genomic information contributed to higher accura-
cies of breeding values, providing an observed gain of accu-
racy from 2% (BW1m) to 24% (BW5f). Gains in accuracy 
were less in males than in females for younger age classes 
(i.e., Week 1 [BW1] to Week 3 [BW3] after hatching). For 
BW1, inflations of the estimates were significantly lower in 
the PBLUP model than in the GBLUP model.

3.5  |  Integration of genetic architecture of 
traits into the evaluation models

3.5.1  |  WGBLUP model

WGBLUP model was the first model we used to integrate 
the genetic architecture of traits into an evaluation model. 

In a WGBLUP model, variance–covariance structure can 
be described by a WGBLUP, so in this study, we weighted 
each SNP individually based on our GWAS results. This 
means that we computed 20 weighted genomic matrices, 
one per trait and cross-validation group. We made sub-
sequent predictions for both reduced datasets, using VC 
estimated from the full dataset. Accuracies of prediction 
and inflation of predicted breeding values are presented in 
Tables 4a,b.

Using the WGBLUP model, accuracies of prediction 
ranged from 0.52 to 0.66 (Table 4a), with a mean accuracy 
of 0.61. With this model, inflations ranged from 0.69 to 0.77 
(Table 4b). Our use of a WGBLUP, rather than a classic ge-
nomic relationship matrix, increased our predictive ability. 
We observed gains in accuracy for BW in age class BW2 
(BW 2 weeks after hatching) for females and males (+6% and 
+7%, respectively) and for BW3 for females and males (+2% 
and +4%, respectively). These increases in accuracy were 
only significant for chick at the second week after hatching 
(BW2). For the other traits, gains in accuracy ranged from 
−2% to 0%. Nonetheless, we observed an important inflation 
of the EBV.

3.5.2  |  GFBLUP model

GFBLUP model was the second model we used to integrate 
the genetic architecture of traits into an evaluation model. In 
this model, we described the variance–covariance structure 
with two genomic relationship matrices. The first matrix (Gf) 
was built using SNP showing the highest levels of signifi-
cance of effect on a given trait, whereas the second matrix 
(Gr) was built using the remaining SNP. We added various 
proportions of SNP, those with the highest −log10(p) values, 
in the genomic feature matrix (Gf). Table 5 provides accura-
cies of prediction and inflation of predicted breeding values, 
for each trait and proportions of SNP in Gf.

Based on our GFBLUP model, the best accuracies of pre-
diction ranged from 0.59 to 0.96 (Table 4a). With this model, 
inflations ranged from 0.62 to 1.21 (Table 4b).

Maximum gain of accuracy ranged from 1% (BW1f) to 
70% (BW3m), but we observed no improvements in accuracy 
of predicted breeding values for weight of week-old males 
(BW1m) and for 4-week-old females (BW4f) (Table  4a). 
High gain in accuracy was often associated with a higher in-
flation of breeding values.

Overall accuracies were higher when the number of 
SNP in the genomic feature comprised between 0.1% and 
0.5% of the most significant SNP or between 10% and 20% 
of all SNP (Table  5a). The proportion of SNP in the Gf 
matrix exhibiting the highest accuracies depended on the 
specific trait.

The proportion of total genetic variance explained by the 
Gf matrix ranged from 11% to 100%.
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4  |   DISCUSSION

4.1  |  Genetic parameters for BW

Our heritability estimates for BW were in the lower range 
of estimates reported in the published literature, where BW 
heritability is between 0.21 and 0.64 (Mignon-Grasteau 

et al., 1999, Gaya et al., 2006, Mebratie et al., 2017). The 
lower estimates we found might be explained by the fact 
that the broiler line we studied was selected for BW over 
many generations. Moreover, as age chicks aged, heritabil-
ity estimates (h2) of weight tended to increase. In our study, 
heritability estimates tended to be higher in females than 
in males.

T A B L E  5   Accuracy and inflation for estimated breeding values obtained with the GFBLUP model, by proportion (Prop) of most significant 
SNP included in the genomic feature matrix (Gf)

(a)

Propin Gf 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5 10 15 20

BW1

F 0.64 0.65 0.66 0.68 NC 0.61 0.60 0.60 0.60 0.61 0.63 0.63 0.64

M 0.59 0.58 0.55 0.54 0.54 0.53 0.53 0.53 0.52 0.56 0.57 0.59 NC

BW2

F NC NC NC 0.67 NC 0.61 0.60 0.61 0.61 0.61 0.62 0.62 0.62

M 0.62 0.62 0.62 0.62 0.61 0.59 0.58 0.57 0.58 0.57 0.57 0.57 0.58

BW3

F 0.62 0.63 0.64 0.64 0.65 0.59 0.59 0.59 0.59 0.59 0.59 0.60 0.61

M 0.56 0.56 0.57 0.58 0.58 0.54 0.54 0.54 0.63 0.79 0.87 0.92 0.95

BW4

F 0.57 0.57 0.58 0.58 0.60 0.57 0.56 0.56 0.56 0.56 0.56 0.57 0.58

M 0.48 0.48 0.48 0.49 0.49 0.48 0.48 0.48 0.48 0.48 0.63 0.66 0.68

BW5

F 0.58 0.58 0.58 0.55 0.56 0.57 0.57 0.57 0.58 0.58 0.59 0.77 0.96

M 0.76 0.76 0.77 0.79 0.81 0.73 0.71 0.71 0.70 0.71 0.70 0.73 0.74

(b)

Propin Gf 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5 10 15 20

BW1

F 0.87 0.89 0.95 1.00 NC 0.75 0.68 0.66 0.64 0.64 0.65 0.66 0.69

M 0.89 0.87 0.83 0.79 0.67 0.61 0.59 0.59 0.58 0.61 0.63 0.66 NC

BW2

F NC NC NC 0.93 NC 0.76 0.70 0.69 0.68 0.68 0.69 0.71 0.72

M 0.96 0.96 0.98 0.95 0.93 0.78 0.72 0.69 0.69 0.67 0.68 0.69 0.71

BW3

F 0.86 0.88 0.92 0.93 0.96 0.76 0.70 0.68 0.66 0.66 0.66 0.68 0.70

M 0.82 0.87 0.92 0.99 0.99 0.72 0.66 0.64 0.79 1.02 1.12 1.18 1.23

BW4

F 0.78 0.79 0.82 0.83 0.89 0.73 0.68 0.66 0.66 0.66 0.65 0.66 0.68

M 0.73 0.75 0.78 0.82 0.82 0.67 0.64 0.64 0.63 0.63 0.83 0.88 0.91

BW5

F 0.76 0.77 0.78 0.69 0.76 0.73 0.71 0.70 0.69 0.69 0.70 0.92 1.17

M 1.09 1.09 1.12 1.18 1.21 1.00 0.94 0.92 0.89 0.89 0.86 0.89 0.92

Note: Accuracy (a) is the correlation between phenotypes corrected for fixed effects and predicted breeding values (reduced dataset) divided by the square root of 
heritability estimated with the PBLUB model. Inflation (b) is the slope of the regression for the corrected phenotype based on estimated breeding values. Top row 
corresponds to the percentage of SNP included in the genomic feature matrix, based on level of significance. The remaining SNP have been set into the residual 
genomic matrix.
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Heritability estimates tended to be lower with our GBLUP 
model than with our PBLUP model. We believe that apply-
ing genetic markers to describe population structure was in-
sufficient for capturing all additive genetic variance in this 
population. Adding an extra additive genetic effect based on 
a pedigree relationship matrix into the GBLUP model may 
help overcome missing heritability difficulties by modelling 
residual additive genetic variances.

Again, our heritability of maternal effects (m2) occurred at 
the lower range of estimates reported in the published literature. 
For example, Koerhuis and Thompson (1997) reported mater-
nal heritability ranging from 0.01 to 0.17 depending on models 
and lines examined. Mignon-Grasteau et al. (1999) reported 
similar estimates of maternal heritability. Depending on age at 
measurement, maternal heritability ranged from 0.08 to 0.24, 
maternal heritability declined with age and maternal genetic ef-
fects ceased for females sooner than for males. As chicks aged, 
maternal effects declined and this decline was more rapid for fe-
males than for males, as it is in our study. Moreover, Hartmann 
et al. (2003) showed that maternal genes related to egg quality 
(yolk and albumen quality) had a larger effect on offspring BW 
at hatching than did additive genetic effects of genes inherent 
to the offspring itself. This finding suggests that some QTL re-
lated to BW identified in young chicks may in fact be maternal 
QTL affecting other traits or QTL having pleiotropic effects on 
both direct and maternal effects on BW.

4.2  |  Impact of integrating genomic 
information in prediction models

Adding genomic information to evaluation models provides 
better predictive ability of breeding values for birds without 
own records. Our improvements in predictive ability were quite 
small relative to improvements obtained by Chen et al. (2011), 
wherein predictive ability for BW improved by 50% for broil-
ers. The relatively small gain in predictive ability observed 
in our study is due to the conservative cross-validation strat-
egy applied in this study. The inherent increased accuracy 
of our approach is because every individual in the validation 
population had half of its siblings in the training population. 
Therefore, breeding values estimated with PBLUP tended to 
be already highly accurate. Nevertheless, even if gain in ac-
curacy was small for some traits, adding genomic information 
into the evaluation model affected the animals selected.

4.3  |  Input from SNP effects in genetic 
evaluation models

4.3.1  |  SNP effects estimation

To maximize the predictive ability of evaluation models in-
corporating genetic architecture of traits, estimation of SNP 

effects should be accurate. Fragomeni et al. (2017) showed, 
in a simulation study, that when covariance–variance struc-
ture is defined by a WGBLUP, using the true SNP effects 
over the estimated effects let to a gain in accuracy of 41%. 
The higher predictive ability of GFBLUP model relies as 
well on one's ability to accurately estimate SNP effects to 
differentiate the SNP describing causal mutations from other, 
non-causal SNP (Sarup et al., 2016; Zhang et al., 2016).

In our study, each SNP effect was estimated SNP by SNP. 
In doing so, we did not consider LD between SNP. This ap-
proach could have led us to placing more weight than rea-
sonable on specific genomic regions because the estimated 
effect of one SNP could be have been partially due to SNP 
in high LD. This over-consideration of some genomic re-
gions might explain the inflation of breeding values observed 
with WGBLUP and the large standard error observed with 
GFBLUP model. A joint estimation of SNP effects, using for 
example Bayesian variable selection methods, might help to 
estimate more realistic SNP effects.

4.3.2  |  WGBLUP model

Gain in predictive ability using WGBLUP has been ob-
served in various farmed species such as pig and cattle (Su 
et al., 2014; Tiezzi & Maltecca, 2015; Veroneze et al., 2016). 
The improvement of predictive ability depends on weight-
ing strategies as it has been showed in simulation studies 
(Karaman et al., 2018; Zhang et al., 2016) and in real data 
studies (Tiezzi & Maltecca,  2015). Some authors showed 
that considering SNP windows or/and using Bayesian meth-
ods to estimate SNP variances led to higher predictive ability 
(Karaman et al., 2018; Su et al., 2014; Teissier et al., 2018; 
Zhang et al., 2016).

The superiority, in term of predictive ability, of evaluation 
models using a WGBLUP over the ones classical genomic 
matrix depends also on the genetic architecture of the traits 
analysed. Indeed, WGBLUP model performs better for ge-
netic traits that differed strongly from the polygenic model 
(Zhang et al., 2010). Tiezzi and Maltecca (2015) reported 
gain in accuracy while using a WGBLUP approach only for a 
trait affected by a QTL with large effect, whereas no gain was 
observed for the other traits influenced by QTL with smaller 
effects. Thus, we expect that a gain in accuracy would be ob-
served for traits controlled by some large QTLs. We observed 
indeed gain in predictive ability for traits influenced by sev-
eral highly significant SNP. But for BW of week-old chicks, 
we observed no gain in accuracy, whereas we found few 
highly significant SNP affecting this trait. This lack of gain in 
accuracy could be due to the fact that the BW of 1-week-old 
chicks might not be regulated by the same genes that regu-
late BW of two- and 3-week-old chicks, or at least that the 
effects of the genes involved are not as high at earlier stages 
of growth than they are at later stages. Few highly significant 
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SNP were found for later traits, and so no gain in accuracy 
was observed for those traits. Previous selection pressures 
may have been primarily focussed on BW of older chicks and 
thus QTLs affecting birds at this age might more likely have 
been fixed by selection.

The WGBLUP model led to an increase in accuracy of 
EBV, but it also lead to a negative inflation (deflation) of 
breeding values compare to the one observed in the GBLUP 
model This increase in inflation might be explained by differ-
ences in scale between the two genomic matrices. Here, the 
largest difference between the average diagonals of the two 
matrices (classic genomic matrix vs. weighted genomic ma-
trix) was of 0.042 with a median at 0.030, which could have 
been due to the way we computed SNP weights. We suspect 
that a better estimate of the SNP’s effect might help reduce 
this inflation value and thus increase predictive accuracy.

4.3.3  |  GFBLUP models

In a simulation study, Sarup et  al.  (2016) obtained a gain 
of accuracy of 36% for the best-case scenario wherein all 
causal mutations were used in the Gf matrix and were as-
sumed to be known such that the G matrix was not “diluted” 
by anonymous SNP with no effects. Therefore, the high accu-
racy we found with the large proportion of SNP we included 
in our Gf matrix (BW3m, BW4m and BW5f) and found for 
BW5m seem overly optimistic to us, although we cannot ex-
plain our highly positive results. Random samples of 20% 
of SNP (10 samplings) showed fewer predictive accuracies 
than the samples obtained for our 20% of more significant 
SNP for BW3m and BW4m (0.31 for both vs. 0.48 and 0.53, 
respectively), suggesting a real effect of those SNP on those 
specific traits. Predictive accuracies for the other traits ob-
tained with a random sampling of 20% of SNP were similar 
to the predictive accuracy we obtained when using the top 
20% most significant SNP. In any case, it seems that 20% 
of SNP was sufficient to explain all genomic variance in the 
population we studied. The effective number of SNP (esti-
mate based on LD) was 13,732 SNP. Therefore, we conclude 
that 20% of SNP (~9,300 SNP) should be sufficient for deter-
mining the effective number of SNP needed to describe the 
LD in this population. This 20% estimate aligns with an Ilska 
et al. (2014) study demonstrating that the SNP density used 
for genomic evaluations has a small effect on accuracy of 
prediction of breeding values for BW in broilers.

The performance of genomic feature models relies on their 
ability to differentiate SNP linked to causal mutations from 
non-informative SNP. When more non-informative SNP are 
added to a genomic feature matrix (Gf), the predictive ability 
declines (Sarup et al., 2016). In contrast, a sufficient number 
of informative SNP (i.e. SNP describing causal mutations) 
should be added to this Gf matrix. In fact, Sarup et al. (2016) 

showed that to reach the highest degree of predictive ability, 
at least 10% of the genetic variance should be explained by 
the variants included in the genomic feature matrix. In our 
study, at least 11% of the genetic variance was explained by 
the genomic feature matrix.

A GFBLUP model must consider the combined action of a 
specific set of SNP being evaluated. The SNP used in Gf matri-
ces are supposed to be the SNP known to have an effect on the 
trait of concern. In our case, the selection of SNP was very sim-
ple because we only considered the most significant SNP. Thus, 
sometimes, depending on the genetic architecture of a specific 
trait, we might have included only one or two genomic regions 
in a Gf matrix. We could have employed different approaches, 
such as utilizing GO term. In that case, all the regions associated 
with a significant GO term could have been considered in the Gf 
matrix. For example, in a dairy cattle study, Fang et al. (2017) 
showed a significant increase in predictive accuracy for milk, fat 
and protein yields and mastitis when preselecting SNP based on 
GO for GFBLUP model. This approach could be a way to add 
prior biological information to the evaluation model to maxi-
mize an improvement in predictive accuracy. Another strategy 
could be to utilizing QTLs already reported in the literature.

4.4  |  Implementation of such models in 
breeding programme

Because evaluation models that incorporate the genetic ar-
chitecture of traits, such as GFBLUP and WGBLUP mod-
els, are useful for increasing predictive ability of breeding 
values in broilers, breeding companies could use these ap-
proaches to improve predictive ability. However, several 
barriers could limit implementation of such models in breed-
ing programmes. One of the barriers is the selective geno-
typing strategy that is often done in breeding programme 
using genomic selection because of the large number of 
candidates. Integrating phenotypes of non-genotyped with 
weighted genomic matrix is possible with WssGBLUP 
(Wang et  al.,  2012) and lead to gain in accuracy (Liu 
et al., 2020; Teissier et al., 2018; Zhang et al., 2016). Such 
models might also help to reduce computation time, since 
it will estimate at the same time weight of the SNP within 
ssGBLUP. However, single-step approach might lead to a 
bias estimation of VC when selective genotyping is carried 
on (Wang et  al.,  2020). Moreover, a good representation 
of the QTL segregating in the population might be needed. 
Those two last arguments involve a change towards a ran-
dom genotyping strategy should be done. Finally, it would 
be important for the poultry industry to determine for how 
many generations the SNP weights or the sets of SNP (Gf 
and Gr) could be used. In other words, how long would it 
take to break the LD between causal mutations and the set 
of SNP identified to be included in the genomic feature.
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5  |   CONCLUSION

Considering the genetic architecture of traits, improve 
the accuracy of predicting breeding values for traits in-
fluenced by highly significant SNP. To ensure that this 
gain in predictive ability can be exploited in commercial 
breeding programmes, conservative criteria for model 
comparisons should be used. An accurate estimate of SNP 
effects is needed to maximize gain in accuracy of predic-
tion in models exploiting genetic architecture of traits. Use 
of GFBLUP showed less inflation of predicted breeding 
values relative to the WGBLUP model, but the predictive 
ability of the two methods was quite similar. The GFBLUP 
model requires determining the optimum set of SNP that 
should be included in a genomic feature matrix, whereas 
this criterion is not needed for the WGBLUP model. If 
enough data are available to a broiler-breeding programme 
to estimate SNP effects (and hence the genetic architecture 
of its breeding animals), the data could potentially be used 
to improve its breeding programme by increasing predic-
tive ability when selecting for desired traits.
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