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Abstract
Mechanically mediated joint degeneration and cartilage dyshomeostasis is implicated in highly prevalent diseases such as 
osteoarthritis. Increasingly, MicroRNAs are being associated with maintaining the normal state of cartilage, making them 
an exciting and potentially key contributor to joint health and disease onset. Here, we present a summary of current in vitro 
and in vivo models which can be used to study the role of mechanical load and MicroRNAs in joint degeneration, including: 
non-invasive murine models of PTOA, surgical models which involve ligament transection, and unloading models based 
around immobilisation of joints or removal of load from the joint through suspension. We also discuss how zebrafish could 
be used to advance this field, namely through the availability of transgenic lines relevant to cartilage homeostasis and the 
ability to accurately map strain through the cartilage, enabling the response of downstream MicroRNA targets to be followed 
dynamically at a cellular level in areas of high and low strain.
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Introduction

Skeletal homeostasis is intrinsically linked to mechanical 
loading, with physiological loading promoting cartilage 
health (Lee and Bader 1997; Otterness et al. 1998; Soltz 
et al. 2000; Manninen 2001; Galois et al. 2003; Shelton, 
Bader and Lee 2003; Sharma, Saxena and Mishra 2007) and 
maintenance of bone mass (Russo 2009). Abnormal loading 
of joints, particularly the hip (Croft et al. 1992) and knee 
(Felson et al. 1991; Coggon et al. 2000), is associated with 
joint degeneration and osteoarthritis (OA) onset. OA is the 
most common joint disease globally, with up to 50% of peo-
ple over the age of 65 estimated to suffer from the disease 
(Lawrence et al. 2008; Murphy et al. 2008). During OA, the 
articular cartilage of joints is degraded leading to ectopic 
bone formation, joint inflammation and severe pain in suffer-
ers, with almost 75% of people living with OA experiencing 

constant pain and 12.5% describing their pain as frequently 
unbearable (Arthritis Research UK 2017).

Although changes to mechanical loading have been 
identified as a major risk factor for OA (Kujala et al. 1995; 
Lane et al. 1999; McAlindon et al. 1999), the full mecha-
nism by which mechanically mediated joint degeneration 
occurs during OA onset is not fully understood. It has been 
suggested that expression of short non-coding MicroRNAs 
(miRs) which can regulate gene expression and are key in 
cartilage homeostasis could be key to disease onset. miRs 
have an average length of 22 nucleotides (O’Brien et al. 
2018) and are able to interact with mRNAs, mostly via the 
3’ untranslated region (UTR), to modify their expression 
(Fig. 1a) (Ha and Kim 2014). Alterations in articular car-
tilage miR expression are associated with joint degenera-
tion and OA pathogenesis (Araldi and Schipani 2010; Gol-
dring and Marcu 2012; Swingler et al. 2012); importantly, 
miRs are reported to be mechanically regulated in cartilage 
chondrocytes.
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Mechano‑regulation of miRs and their 
downstream targets in chondrocytes

Early evidence of mechanically induced epigenetic reg-
ulation in articular cartilage was reported in stifle joint 
medial femoral condyles with increased expression of 
miR-221 and miR-222 in anterior weight-bearing com-
pared to posterior non-weight-bearing regions (Dunn et al. 
2009). Putative gene targets for miR-221 and miR-222 
(contains conserved seed site) include histone deacetylase 
4 (HDAC4) and matrix metalloproteinase 13 (MMP13) 
(Song et al. 2015). miR-221 expression inversely corre-
lates with expression of chondrogenic markers including 

type II collagen and the transcription factor SOX9 in 
mesenchymal stem cells (Lolli et  al. 2014)); thus, it 
may have relevance in regulating load-induced cartilage 
homeostasis.

Significant elevation of miR-365 has previously been 
observed after application of tensile strain to 3D-sponge 
scaffolds seeded with chick chondrocytes (Guan et al. 2011) 
and human chondrocytes isolated from macroscopically nor-
mal regions of OA cartilage (Yang et al. 2016). A direct tar-
get gene is HDAC4 which regulates downstream molecules 
including MMP13 and type X collagen (Yang et al. 2016).

Significant induction of miR-27a/b, miR-140 and miR-
146a/b with a concomitant reduction in miR-365 was 
observed in OA chondrocytes exposed to hydrostatic 

Fig. 1   a Schematic overview of miR interaction with mRNA. b Sum-
mary of miRs known to respond to specific stimuli in chondrocytes, 
and the genes which are affected by changes to these miR expres-
sion levels. The mechanical stimulus found to alter miR expression 

is listed on the left, the miR and how its expression is altered is dis-
played in the central column and the downstream gene targets of each 
miR are shown in the right column. (1)Dunn et al. 2009, (2)Guan et al. 
2011, (3)Cheleschi et al. 2017
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pressure (Cheleschi et al. 2017). Other studies have cor-
roborated the mechano-regulation of miR-146a in chondro-
cytes (Jin et al. 2014; Guan et al. 2018) and miR-27 (Blain, 
unpublished observations). WNT signalling molecules e.g. 
dickkopf-2 (DKK2) and secreted frizzled-related protein 1 
(sFRP1) have been identified as miR-27 target genes (Wu 
et al. 2019), and more recently, the TNF receptor-associated 
factor-6 (TRAF-6)-mediated NFκB signalling pathway has 
been shown to be targeted by miR-146 (Shao et al. 2020). 
miR-140, a key regulator of chondrogenesis and cartilage 
homeostasis (Miyaki et al. 2010), has many putative tar-
get genes, but of relevance to this perspective is its known 
modulation of HDAC4, insulin growth factor-binding pro-
tein 5 (IGFBP5) and a disintegrin and metalloproteinase 
with thrombospondin motif 5 (ADAMTS-5) (Tuddenham 
et al. 2006; Cheleschi et al. 2017), all of which are molecules 
important in maintaining cartilage homeostasis. A summary 
of mechano-regulated miRs and their downstream targets in 
chondrocytes can be found in Fig. 1b.

Existing model systems for investigating 
involvement of mechanical load in joint 
degeneration

Many models have been developed, involving both in vitro 
and in vivo systems, to investigate the role of abnormal/
altered mechanical load in mediating degeneration of the 
synovial joint tissues that results in initiation and progres-
sion of OA.

In vitro loading models

Development of in  vitro systems for mechanobiology 
research has utilised isolated cells derived from several 
species typically including human, mouse, bovine and 
porcine as either primary or cell lines; mechanical load 
is subsequently applied to these cells following culture as 
either a monolayer (Millward-Sadler et al. 2000; Ikenoue 
et al. 2003) or in 3D constructs (Buschmann et al. 1995; 
Roberts et al. 2001), or as a co-culture system with at least 
two different joint cell populations (McCorry, Puetzer and 
Bonassar 2016). Explant tissues, using only articular car-
tilage (Guilak et al. 1994) or alternatively an osteochon-
dral plug (cartilage–bone unit) have also been utilised to 
investigate mechanobiological pathways (Blain et al. 2001; 
Patwari et al. 2003). There are distinct advantages to using 
in vitro culture systems to characterise cell behaviour in 
response to mechanical stimuli. Key amongst these is the 
ability to accrue a large cell population for experimentation, 
as well as co-culturing cells of different origins to investi-
gate communication and interplay in response to loading. 
Use of explant tissue provides an in-situ environment which 

partially recapitulates an in vivo system due to the presence 
of an extensive, native extracellular matrix (ECM), facili-
tating cell–matrix communication, known to be critical in 
mechano-signalling (Guilak et al. 2006).

Utilisation of these in vitro models has contributed sig-
nificantly to our understanding of how cells respond to 
mechanical stimuli and have facilitated characterisation of 
the molecular pathways that initiate tissue degeneration; 
however, what they cannot do is recapitulate the complex 
interactions that exist within the joint tissues, i.e. articular 
cartilage, bone, meniscus, synovium and associated vascu-
lature. Furthermore, the interplay of mechanical responses 
with other biological stimuli, e.g. inflammation, or the longi-
tudinal effects of mechanical stimuli on cell/tissue behaviour 
can only be comprehensively analysed in an in vivo model 
system.

In vivo loading models

In vivo loading models have been developed to replicate 
the pathological features resulting from a joint injury or 
mechanical insult, often referred to as a model of post-
traumatic OA (secondary OA). Such mechanical insult can 
either be administered surgically, e.g. via damage of the liga-
ments or meniscus, or via non-invasive means, e.g. applica-
tion of external loads to the joint.

Surgical loading models

One of the earliest models that demonstrated the involve-
ment of mechanical injury in induction of joint degenera-
tion and OA pathology was the Pond–Nuki model (Pond 
and Nuki 1973); transection of the canine anterior cruciate 
ligament (ACL) altered the stability and biomechanics of 
the joint resulting in progression of OA. Subsequent studies 
involving ACL transection in other species including rabbits 
(Batiste et al. 2004), cats (Herzog et al. 1993) and sheep 
(Beveridge et al. 2013) have also been performed. Since 
then, ACL transection in rodent models has been reported 
with induction of tissue degeneration in response to altered 
joint biomechanics (Kamekura et al. 2005; Okamura et al. 
2010).

Another common surgical approach to studying how 
joint tissue components respond to altered loading patterns 
is via meniscal destabilisation involving either partial or 
complete removal of the medial meniscus, with early stud-
ies performed in rabbits (Shapiro and Glimcher 1980) and 
guinea pigs (Meacock, Bodmer and Billingham 1990), and 
subsequently in mice (Glasson, Blanchet and Morris 2007). 
Although these models induce tissue degeneration due to 
altered joint biomechanics, the procedures themselves are 
invasive and require opening of the joint capsule; this in 
itself can initiate an inflammatory response impacting the 
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local environment and may not be completely representative 
of the mechanical insult alone, thus necessitating increased 
animal numbers to provide “sham” controls (incision only 
surgeries).

Non‑invasive loading models

In recent years, there has been an emergence in non-invasive 
mouse models of post-traumatic OA (PTOA). Such models 
are believed to more accurately recapitulate the mechanisms 
involved in mechanically induced injuries in humans, initiat-
ing joint degeneration through direct damage to the tissue 
components of the joint. These non-invasive models rely on 
the external application of a mechanical load to the tibia, 
either as a single traumatic insult or a defined period of load-
ing, without any surgical intervention.

Utilisation of a single compressive load (12 N) has been 
previously demonstrated to rupture the ACL initiating patho-
logical changes in murine articular cartilage and underlying 
subchondral bone (Christiansen et al. 2012). Pathologically 
distinct phases with an early inflammatory phase and a 
later degenerative component are evident in the non-inva-
sive murine PTOA model (Gilbert et al. 2018); this proves 
advantageous as a model system as it provides a ‘therapeu-
tic window’ following mechanical insult in which to assess 
treatments to delay or halt joint degeneration.

Tibial compression, via the application of cyclic axial 
compressive load transmitted through the natural articula-
tion of the murine knee joint, induces articular cartilage 
overloading and tissue damage, following multiple loading 
episodes (Poulet et al. 2011). These non-invasive loading 
models have also been used to investigate the interplay of 
mechanical load and genetics, with use of genetically engi-
neered mice (gene knockouts and transgenic overexpression) 
to more clearly delineate the importance of these risk fac-
tors in joint degeneration. Overall, the non-invasive loading 
models obviate the need for technically challenging surgi-
cal techniques, but more importantly avoid any confounding 
effects induced by the trauma of the surgical procedure and 
are more translatable to mechanical trauma experienced by 
humans.

Models of unloading

The absence of weight-bearing is equally detrimental to the 
health of the joint tissues demonstrating that a physiologi-
cal range of mechanical load is essential for maintenance of 
homeostasis. Numerous in vivo models of joint ‘unloading’ 
or immobilisation have been utilised to characterise how the 
absence of loading affects tissue behaviour, particularly in 
articular cartilage. Seminal early studies induced knee joint 
immobilisation using casts or surgery (limb amputation), 
typically in canine models (Palmoski, Perricone and Brandt 

1979; Palmoski, Colyer and Brandt 1980), rabbits (Sood 
1971; Langenskiöld, Michelsson and Videman 1979) and 
later in rodents (Hagiwara et al. 2009). An alternative model 
involving suspension of rodents by the tail has also been 
used to recapitulate hindlimb unloading (Tomiya et al. 2009; 
Nomura et al. 2017). Joint unloading inhibited expression of 
key ECM components, e.g. proteoglycans, reduced cartilage 
thickness and induced surface fibrillations, resulting in dis-
ruption of articular cartilage integrity. Interestingly, effects 
were reversible following joint ‘reuse’ and the reintroduction 
of weight-bearing (Palmoski, Perricone and Brandt 1979; 
Behrens, Kraft and Oegema 1989), demonstrating the highly 
adaptive nature of articular cartilage.

Prospects for using zebrafish as a model 
for mechanically mediated joint 
degeneration to investigate miR 
dysregulation

Increasingly, the freshwater teleost zebrafish is used as a 
laboratory model for disease with the low cost of housing, 
ease of genetic manipulation, rapid development (which 
has been carefully staged (Kimmel et al. 1995)) and genetic 
tractability among the major advantages of this model. 
Although zebrafish are more remote from humans than 
other animal models (last common ancestor was 445 mil-
lion years ago compared to 96 million years ago for rodents 
(Ali et al. 2011)) and the fact they have undergone genome 
duplication (Meyer and Schartl 1999): many genes are con-
served (Dodd et al. 2000; Taylor et al. 2003) with around 
70% of human genes found to have at least one orthologue 
(Howe et al. 2013) and 85% of disease-related genes being 
conserved (Wellcome Trust 2013) in zebrafish. Generally, 
zebrafish are ideal model organisms for studying disease as 
they have transparent larvae which enable dynamic longi-
tudinal in vivo imaging in the same fish throughout matura-
tion. They have high fecundity with the eggs developing 
externally, meaning the mother does not have to be killed 
to study early development, thus reducing animal costs and 
complying with the 3Rs principles of reduction and replace-
ment (Russell and Burch 1959). In addition to these more 
general advantages, a number of specific factors are dis-
cussed below which make zebrafish an attractive prospect 
for studies into the role of miRs in mechanically mediated 
joint degeneration.

Zebrafish cartilage contains components also found 
in human articular cartilage. Loading of cartilage 
can be manipulated in zebrafish

At 5 days post fertilisation (dpf) the zebrafish craniofa-
cial skeleton is made up of distinct cartilaginous elements 
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(Fig. 2a) derived from the migratory neural crest (Schilling 
and Kimmel 1994). This cartilage contains all the key com-
ponents of human cartilage including chondrocytes which 
undergo hypertrophy (Mitchell et al. 2013; Askary et al. 
2016), collagens and proteoglycans (Fig. 2b–f).

As with human cartilage, the craniofacial cartilages of lar-
val zebrafish have been shown to be mechanically sensitive 
(Brunt et al. 2016). The biomechanical load exerted on the 
craniofacial cartilages and joint can be controlled in larvae 
genetically or pharmacologically to induce paralysis (either 
flaccid or rigid) to reduce load, or the induction of hyperac-
tivity to induce excessive loading conditions (Shwartz et al. 
2012; Brunt et al. 2016). Strains in the zebrafish skeleton, 
as in other systems, can be modelled computationally using 
Finite Element Analysis (FEA) (Fig. 3h), a computational 

technique that predicts deformation, stress and strain in a 
structure when subjected to external loading conditions 
(Bright and Rayfield 2011). FEA can be used to visualise 
patterns of strain by displaying them with colours to show 
areas of high and low strain, or degree of tissue deforma-
tion. Finite element models for the developing zebrafish jaw 
have been published for wild-type fish (Brunt et al. 2016; 
Brunt et al. 2016), mutants (Lawrence et al. 2018) and lar-
vae exposed to different gravitational fields (Lawrence et al. 
2020). Cartilage material properties change during devel-
opment, in response to mutations to chondrocyte genes or 
changes to gravitational force, and can be tested ex vivo by 
atomic force microscopy (AFM) or nanoindentation (Law-
rence et al. 2018, 2020), to provide further information and 
accuracy to FE models.

Fig. 2   Zebrafish craniofacial cartilage has key components found in 
human articular cartilage. a Schematic representation of the cartilage 
elements which make up the zebrafish craniofacial skeleton at 5 dpf. 
Orientation compass included in bottom right, with A anterior and P 
posterior. b, c Ventral view confocal image stacks of 5 dpf craniofa-
cial skeleton immunostained for type II collagen (b) and type I col-
lagen (c) in the ECM surrounding chondrocytes. Inset shows zoom of 
jaw joint. Scale bar = 100 μm. Images in b and c previously published 

in (Lawrence et al. 2018). d–f Ventral paraffin sections of 5 dpf crani-
ofacial skeleton stained with Safranin O (d) to show proteoglycans, 
Masson’s trichrome (e) to show the presence of collagen, and alcian 
blue (f) to show the presence of glycosaminoglycans in the chondro-
cyte ECM which makes up the cartilage. MC Meckel’s cartilage, JJ 
jaw joint, PQ palatoquadrate, C ceratohyal, Ch example of a chondro-
cyte surrounded by ECM, EP ethmoid plate
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Cavitation of the jaw joint between the Meckel’s carti-
lage and the palatoquadrate to form a fluid-filled synovium 
(as opposed to a cellular interzone) occurs late in zebrafish 
(around 14 dpf) relative to onset of joint movement; this 

joint continues to mature, eventually forming a synovial 
joint with all of the tissues observed in a human synovial 
joint (Askary et al. 2016). As the cartilaginous craniofacial 
skeleton forms early in development and many elements are 
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retained into adulthood, it is a valuable model to investigate 
at a cellular level how the cartilage is affected by different 
genetic mutations, such as those to downstream miR targets, 
and environmental factors, such as mechanical loading.

The presence of lower jaw cartilages in which loading 
can be manipulated allows miRs which are responsive to 
mechanical load to be isolated (Chen et al. 2005) and identi-
fied so that specific pathways can be dysregulated through 
CRISPR/cas9-induced mutation of miR signalling pathway 
components or through immersion in miR agonists/antago-
nists and the effect on chondrocytes studied. Other skeletal 
elements in zebrafish, such as the vertebral centra, have 
also been demonstrated to be mechanically sensitive, and to 
undergo remodelling in response to load (Fiaz et al. 2012; 
Ofer et al. 2019), which could be regulated by miRs. Finite 
element models also exist for the zebrafish vertebral column 
(Newham et al. 2019; Ofer et al. 2019). However, as pattern-
ing and mineralisation of the vertebral column occur some-
what later than that of the jaw (from 8dpf onwards) (Wopat 
et al. 2018), testing the role of specific miRs in the vertebral 
column is likely to be more technically challenging.

Tools available in zebrafish which allow for cellular 
changes to be observed in the context of the whole 
tissue

A major advantage to zebrafish as a model is the possi-
bility to dynamically image cellular events which could 
be impacted by miR dysregulation such as chondrocyte 
behaviour, ECM production and the expression of targets 
downstream of the mechanically regulated miR in the liv-
ing zebrafish. This can be achieved through high-resolution 
confocal or lightsheet imaging of transgenic reporter lines.

Many transgenic lines (listed in full in Table 1) relevant 
to the study of cartilage homeostasis and degeneration exist, 
including lines which facilitate the study of chondrocyte 
behaviour and expression of important ECM components 
such as the sox9:eGFP, sox10:eGFP, col2:mCherry and 
colx:citrine lines. As discussed, these molecules have been 
implicated as downstream miR targets. In the context of 
zebrafish, they enable chondrocyte morphology and migra-
tion within the cartilage to be tracked throughout maturation 
from immature stages when sox9 and sox10 are predomi-
nantly expressed (Fig. 3a), to hypertrophic stages just prior 
to ossification when chondrocytes express colX (Schmid 
et al. 1991; Mitchell et al. 2013);(Fig. 3b). In later larval 
stages, the impact of load on osteogenesis can be studied 
dynamically, for example with the GTIIC:eGFP line which 
shows Yap/Taz – TEAD activity (Fig. 3c). Photoconvert-
ible transgenics such as sox10:kaede offer the opportunity to 
track single cells (Fig. 3d’–e’’) to study how their migration 
and maturation are affected depending on their location in 
the cartilage and the forces they are exposed to.

Zebrafish represent a model in which the spatiotemporal 
response of both cells and genes to a mechanical stimuli 
can be measured simultaneously. Finite Element model-
ling can be used to measure the response of specific cell 
populations, with areas of altered strain having been mapped 
previously (Fig. 3h) and changes to chondrocyte morphol-
ogy and ECM composition in these regions analysed (Law-
rence et al. 2020). Live imaging of transgenic reporter lines 
such as the wnt:GFP or the BMP:GFP reporter (Fig. 3f, g) 
also enables the response of specific genes to be tracked in 
regions of abnormal strain. This technique was used to cor-
relate regions of high strain in joint morphogenesis with Wnt 
reporter expression, leading to the identification of Wnt16 as 
a mechanoresponsive gene that controls joint cell behaviour 
(Brunt et al. 2017). This allows the effects of a genetic muta-
tion or pharmacological intervention to be mapped accord-
ing to where in the cartilage a chondrocyte is, for example 
at the joint or at a muscle attachment site, to see if some 
populations of cells react differently to stimuli.

In addition to the transgenic lines available, there is also 
good availability of miR tools in zebrafish to enable study 
of joint degeneration in the context of mechanically medi-
ated miRs. miRs have been shown to play a role in cartilage 
development and homeostasis in zebrafish. Zebrafish of 
the dicer1 mutant line, which lacks the Dicer miR process-
ing enzyme, have abnormal craniofacial development and 
increased expression of sox10 (Weiner et al. 2019), confirm-
ing that miRs are essential for normal development (Wie-
nholds et al. 2003). A number of miRs such as miR-140 
and miR-29 are regulated by sox9 in zebrafish, and in turn 
control aspects of chondrocyte behaviour (Nakamura et al. 
2012; Le et al. 2016), while others such as miR-92a maintain 
BMP signalling in cartilage. The spatiotemporal expression 

Fig. 3   Tools available in zebrafish to facilitate spatiotemporal study 
of miRNA targets at a cellular level. a–c Ventral view confocal 
images of the craniofacial cartilages of Tg(4.9Sox10:EGFP;col2a
1aBAC:mcherry) (a), Tg(col2a1aBAC:mcherry;col10a1aBAC:citr
ine)hu7050 (b), Tg(- 4.9Sox10:EGFP; 4xGTIIC:eGFP) (c) imaged 
live. Scale bar = 100  μm. d’, d’’ Ventral view confocal images of 
the craniofacial cartilages of Tg(Sox10:GAL4- VP16; UAS:Kaede) 
with photoconverted chondrocytes shown in magenta and annotated 
with a white arrowhead in the same fish at 4 dpf (d’) and 5dpf (d’’). 
Scale bar = 100 μm. e’–e’’ Confocal images of the lower jaw joint in 
Tg(Sox10:GAL4- VP16; UAS:Kaede) with photoconverted chondro-
cytes shown in magenta and annotated with a white arrowhead in the 
same fish at 3 dpf (e’) and 5dpf (e’’). Scale bar = 50 μm, images in e’ 
and e’’ previously published in (Brunt et al. 2017). f, g Ventral view 
confocal images of the craniofacial cartilages of Tg(5xBMPRE-Xla.
Id3:GFP; col2a1aBAC:mCherry) (f) and Tg(7xTCF.XlaSiam:nlsGFP
;col2a1aBAC:mCherry) (g) imaged live. Scale bar = 100 μm. h Finite 
element model of maximum principal (E. max) strains in 5dpf wild-
type zebrafish viewed from a dorsal orientation. E. max represents 
tensional strains with cooler colours (blue) on the scale correspond-
ing to lower strain and red corresponding to higher strain values. MC 
Meckel’s cartilage, JJ jaw joint, PQ palatoquadrate, C ceratohyal

◂
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of a number of miRs in zebrafish has also been determined 
using techniques such as in-situ hybridisation and microar-
rays (Wienholds et al. 2005). This includes the mapping of 
115 miRs which are conserved from vertebrates (Wienholds 
et al. 2005).

Synthetic miRs have successfully been used to downregu-
late genes of interest in zebrafish (Giacomotto, Rinkwitz and 
Becker 2015), indicating that this model system is tolerant to 
miR injection to target downstream molecules. This would 
enable specific miR signalling pathways to be inhibited in 
existing transgenic lines and the resulting changes to cells in 
areas of known strain to be studied dynamically.

We conclude that despite the existence of several model 
systems to study the role of mechanical loading in joint 
degeneration, and the emergence of non-invasive mouse 
models of PTOA, zebrafish offer the advantage of live deep 
skeletal tissue imaging in response to changes in load or 
inhibition of miR signalling.

Acknowledgements  The authors would like to acknowledge the 
Biomechanics and Bioengineering Research Centre Versus Arthritis 
(510390) at Cardiff University and the Wolfson Bioimaging Facility at 
the University of Bristol. They would also like to thank Roddy Skinner 
for the image in Fig. 3c and Jessye Aggleton for the Finite Element 
models shown in Fig. 3h.

Funding  EL is funded by Wellcome Trust Dynamic Molecular Cell 
Biology Doctoral training studentship. CH is funded by Versus Arthri-
tis Senior Fellowship 21937.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Alexander C et al (2011) Combinatorial roles for BMPs and endothelin 
1 in patterning the dorsal-ventral axis of the craniofacial skel-
eton. Development 138(23):5135–5146. https​://doi.org/10.1242/
dev.06780​1

Ali S et al (2011) Zebrafish embryos and larvae: a new generation of 
disease models and drug screens. Birth Defects Res C Embryo 
Today 93(2):115–133. https​://doi.org/10.1002/bdrc.20206​

Araldi E, Schipani E (2010) MicroRNA-140 and the silencing of osteo-
arthritis. Genes Dev 24(11):1075–1080. https​://doi.org/10.1101/
gad.19393​10

Arthritis Research UK (2017) State of Musculoskeletal Health 2017.
Askary A et al (2016) Ancient origin of lubricated joints in bony ver-

tebrates. Elife 5:e16415. https​://doi.org/10.7554/eLife​.16415​
Batiste DL et al (2004) Ex vivo characterization of articular cartilage 

and bone lesions in a rabbit ACL transection model of osteo-
arthritis using MRI and micro-CT. Osteoarthritis Cartilage 
12(12):986–996. https​://doi.org/10.1016/j.joca.2004.08.010

Behrens F, Kraft EL, Oegema TR (1989) Biochemical changes in 
articular cartilage after joint immobilization by casting or 
external fixation. J Orthop Res 7(3):335–343. https​://doi.
org/10.1002/jor.11000​70305​

Beveridge JE et al (2013) Tibiofemoral centroid velocity correlates 
more consistently with cartilage damage than does contact 
path length in two ovine models of stifle injury. J Orthop Res 
31(11):1745–1756. https​://doi.org/10.1002/jor.22429​

Blain EJ et al (2001) Up-regulation of matrix metalloproteinase 
expression and activation following cyclical compressive 
loading of articular cartilage in vitro. Arch Biochem Biophys 
396(1):49–55. https​://doi.org/10.1006/abbi.2001.2575

Bright JA, Rayfield EJ (2011) The response of cranial biomechanical 
finite element models to variations in mesh density. Anat Rec 
294(4):610–620. https​://doi.org/10.1002/ar.21358​

Brunt L et  al (2016) Building finite element models to investi-
gate zebrafish jaw biomechanics. J Vis Exp. https​://doi.
org/10.3791/54811​

Brunt LH et al (2016) Differential effects of altered patterns of move-
ment and strain on joint cell behaviour and skeletal morpho-
genesis. Osteoarthritis Cartilage 24(11):1940–1950. https​://
doi.org/10.1016/J.JOCA.2016.06.015

Brunt LH et  al (2017) Wnt signalling controls the response to 
mechanical loading during zebrafish joint development. Devel-
opment 144(15):2798–2809. https​://doi.org/10.1242/dev.15352​
8

Buschmann MD et al (1995) Mechanical compression modulates 
matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 
108(4):1497–1508

Table 1   Full nomenclature of 
transgenic lines important for 
study of mechanically mediated 
joint degeneration

Text reference Full transgenic name References

sox9:eGFP Tg(− 2421/ + 29sox9b:EGFPuw2) Garcia et al. (Garcia et al. 2017)
sox10:eGFP Tg(- 4.9Sox10:EGFP) Wada et al. (Wada et al. 2005)
col2:mCherry Tg(col2a1aBAC:mcherry) Hammond and Schulte-Merker (Hammond and 

Schulte-Merker 2009)
colx:citrine Tg(col10a1aBAC:citrine)hu7050 Mitchell et al. (Mitchell et al. 2013)
GTIIC:eGFP Tg(4xGTIIC:EGFP) Miesfield and Link 2014 (Miesfeld and Link 2014)
sox10:kaede Tg(Sox10:GAL4- VP16;UAS:Kaede) Hatta et al. (Hatta, Tsujii and Omura 2006)
wnt:GFP Tg(7xTCF.XlaSiam:nlsGFP) Moro et al. (Moro et al. 2012)
BMP:GFP Tg(5xBMPRE-Xla.Id3:GFP) Alexander et al. (Alexander et al. 2011)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1242/dev.067801
https://doi.org/10.1242/dev.067801
https://doi.org/10.1002/bdrc.20206
https://doi.org/10.1101/gad.1939310
https://doi.org/10.1101/gad.1939310
https://doi.org/10.7554/eLife.16415
https://doi.org/10.1016/j.joca.2004.08.010
https://doi.org/10.1002/jor.1100070305
https://doi.org/10.1002/jor.1100070305
https://doi.org/10.1002/jor.22429
https://doi.org/10.1006/abbi.2001.2575
https://doi.org/10.1002/ar.21358
https://doi.org/10.3791/54811
https://doi.org/10.3791/54811
https://doi.org/10.1016/J.JOCA.2016.06.015
https://doi.org/10.1016/J.JOCA.2016.06.015
https://doi.org/10.1242/dev.153528
https://doi.org/10.1242/dev.153528


529Histochemistry and Cell Biology (2020) 154:521–531	

1 3

Cheleschi S et al (2017) Hydrostatic pressure regulates MicroRNA 
expression levels in osteoarthritic chondrocyte cultures via the 
Wnt/β-catenin pathway. Int J Mol Sci 18(1):133. https​://doi.
org/10.3390/ijms1​80101​33

Chen PY et  al (2005) The developmental miRNA profiles of 
zebrafish as determined by small RNA cloning. Genes Dev 
19(11):1288–1293. https​://doi.org/10.1101/gad.13106​05

Christiansen BA et al (2012) Musculoskeletal changes following 
non-invasive knee injury using a novel mouse model of post-
traumatic osteoarthritis. Osteoarthritis Cartilage 20(7):773–
782. https​://doi.org/10.1016/j.joca.2012.04.014

Coggon D et al (2000) Occupational physical activities and osteoar-
thritis of the knee. Arthritis Rheum 43(7):1443–1449. https​://
doi.org/10.1002/1529-0131(20000​7)43:7

Croft P et al (1992) Osteoarthritis of the hip and occupational activ-
ity. Scand J Work Environ Health 18(1):59–63. https​://doi.
org/10.5271/sjweh​.1608

Dodd A et al (2000) Zebrafish: bridging the gap between develop-
ment and disease. Hum Mol Genet 9(16):2443–2449. https​://
doi.org/10.1093/hmg/9.16.2443

Dunn W, DuRaine G, Reddi AH (2009) Profiling microRNA expres-
sion in bovine articular cartilage and implications for mecha-
notransduction. Arthritis Rheum 60(8):2333–2339. https​://doi.
org/10.1002/art.24678​

Felson DT et al (1991) Occupational physical demands, knee bend-
ing, and knee osteoarthritis: results from the Framingham 
Study. J Rheumatol 18(10):1587–1592

Fiaz AW et al (2012) Swim-training changes the spatio-temporal 
dynamics of skeletogenesis in zebrafish larvae (danio rerio). 
PLoS ONE 7(4):e34072. https​://doi.org/10.1371/journ​
al.pone.00340​72

Galois L et al (2003) Moderate-impact exercise is associated with 
decreased severity of experimental osteoarthritis in rats. Rheu-
matology 42(5):692–693. https​://doi.org/10.1093/rheum​atolo​
gy/keg09​4

Garcia GR et al (2017) In vivo characterization of an AHR-depend-
ent long noncoding RNA required for proper Sox9b expres-
sion. Mol Pharmacol 91(6):609–619. https​://doi.org/10.1124/
mol.117.10823​3

Giacomotto J, Rinkwitz S, Becker TS (2015) Effective heritable gene 
knockdown in zebrafish using synthetic microRNAs. Nat Com-
mun 6(1):1–11. https​://doi.org/10.1038/ncomm​s8378​

Gilbert SJ et  al (2018) Inflammatory and degenerative phases 
resulting from anterior cruciate rupture in a non-invasive 
murine model of post-traumatic osteoarthritis. J Orthop Res 
36(8):2118–2127. https​://doi.org/10.1002/jor.23872​

Glasson SS, Blanchet TJ, Morris EA (2007) The surgical destabili-
zation of the medial meniscus (DMM) model of osteoarthritis 
in the 129/SvEv mouse. Osteoarthritis Cartilage 15(9):1061–
1069. https​://doi.org/10.1016/j.joca.2007.03.006

Goldring MB, Marcu KB (2012) Epigenomic and microRNA-medi-
ated regulation in cartilage development, homeostasis, and 
osteoarthritis. Trends Mol Med 18(2):109–118. https​://doi.
org/10.1016/j.molme​d.2011.11.005

Guan Y et  al (2011) MiR-365: a mechanosensitive microRNA 
stimulates chondrocyte differentiation through targeting his-
tone deacetylase 4. FASEB J 25(12):4457–4466. https​://doi.
org/10.1096/fj.11-18513​2

Guan YJ et al (2018) Evidence that miR-146a attenuates aging- and 
trauma-induced osteoarthritis by inhibiting Notch 1, IL-6, and 
IL-1 mediated catabolism. Aging Cell 17(3):e12752. https​://
doi.org/10.1111/acel.12752​

Guilak F et al (1994) The effects of matrix compression on pro-
teoglycan metabolism in articular cartilage explants. Osteoar-
thritis Cartilage 2(2):91–101. https​://doi.org/10.1016/S1063​
-4584(05)80059​-7

Guilak F et al (2006) The pericellular matrix as a transducer of bio-
mechanical and biochemical signals in articular cartilage. Ann 
N Y Acad Sci 1068:498–512

Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev 
Mol Cell Biol 15(8):509–524. https​://doi.org/10.1038/nrm38​38

Hagiwara Y et al (2009) Changes of articular cartilage after immo-
bilization in a rat knee contracture model. J Orthop Res 
27(2):236–242. https​://doi.org/10.1002/jor.20724​

Hammond CL, Schulte-Merker S (2009) Two populations of endo-
chondral osteoblasts with differential sensitivity to Hedgehog 
signalling. Development 136(23):3991–4000. https​://doi.
org/10.1242/dev.04215​0

Hatta K, Tsujii H, Omura T (2006) Cell tracking using a photoconvert-
ible fluorescent protein. Nat Protoc 1(2):960–967. https​://doi.
org/10.1038/nprot​.2006.96

Herzog W et al (1993) Hindlimb loading, morphology and biochem-
istry of articular cartilage in the ACL-deficient cat knee. Osteo-
arthritis Cartilage 1(4):243–251. https​://doi.org/10.1016/S1063​
-4584(05)80330​-9

Howe K et al (2013) The zebrafish reference genome sequence and its 
relationship to the human genome. Nature 496(7446):498–503. 
https​://doi.org/10.1038/natur​e1211​1

Ikenoue T et al (2003) Mechanoregulation of human articular chon-
drocyte aggrecan and type II collagen expression by intermittent 
hydrostatic pressure in vitro. J Orthop Res 21(1):110–116. https​
://doi.org/10.1016/S0736​-0266(02)00091​-8

Jin L et al (2014) Role of miR-146a in human chondrocyte apoptosis 
in response to mechanical pressure injury in vitro. Int J Mol Med 
34(2):451–463. https​://doi.org/10.3892/ijmm.2014.1808

Kamekura S et al (2005) Osteoarthritis development in novel experi-
mental mouse models induced by knee joint instability. Osteo-
arthritis Cartilage 13(7):632–641. https​://doi.org/10.1016/j.
joca.2005.03.004

Kimmel CB et al (1995) Stages of embryonic development of the 
zebrafish. Dev Dyn 203(3):253–310. https​://doi.org/10.1002/
aja.10020​30302​

Kujala UM et al (1995) Knee osteoarthritis in former runners, soccer 
players, weight lifters, and shooters. Arthritis Rheum 38(4):539–
546. https​://doi.org/10.1002/art.17803​80413​

Lane NE et  al (1999) Recreational physical activity and the risk 
of osteoarthritis of the hip in elderly women. J Rheumatol 
26(4):849–854

Langenskiöld A, Michelsson JE, Videman T (1979) Osteoarthritis of 
the knee in the rabbit produced by immobilization: attempts to 
achieve a reproducible model for studies on pathogenesis and 
therapy. Acta Orthop 50(1):1–14. https​://doi.org/10.3109/17453​
67790​90240​83

Lawrence EA et al (2018) The mechanical impact of col11a2 loss on 
joints; col11a2 mutant zebrafish show changes to joint devel-
opment and function, which leads to early-onset osteoarthritis. 
Philos Trans R Soc B Biol Sci 373(1759):20170335. https​://doi.
org/10.1098/rstb.2017.0335

Lawrence EA et al (2020) Exposure to hypergravity during zebrafish 
development alters cartilage material properties and strain dis-
tribution. bioRxiv. https​://doi.org/10.1101/2020.05.26.11604​6

Lawrence RC et al (2008) Estimates of the prevalence of arthritis and 
other rheumatic conditions in the United States. Part II. Arthritis 
Rheum 58(1):26–35. https​://doi.org/10.1002/art.23176​

Le LTT et al (2016) The microRNA-29 family in cartilage homeo-
stasis and osteoarthritis. J Mol Med 94(5):583–596. https​://doi.
org/10.1007/s0010​9-015-1374-z

Lee DA, Bader DL (1997) Compressive strains at physiological fre-
quencies influence the metabolism of chondrocytes seeded in 
agarose. J Orthop Res 15(2):181–188. https​://doi.org/10.1002/
jor.11001​50205​

https://doi.org/10.3390/ijms18010133
https://doi.org/10.3390/ijms18010133
https://doi.org/10.1101/gad.1310605
https://doi.org/10.1016/j.joca.2012.04.014
https://doi.org/10.1002/1529-0131(200007)43:7
https://doi.org/10.1002/1529-0131(200007)43:7
https://doi.org/10.5271/sjweh.1608
https://doi.org/10.5271/sjweh.1608
https://doi.org/10.1093/hmg/9.16.2443
https://doi.org/10.1093/hmg/9.16.2443
https://doi.org/10.1002/art.24678
https://doi.org/10.1002/art.24678
https://doi.org/10.1371/journal.pone.0034072
https://doi.org/10.1371/journal.pone.0034072
https://doi.org/10.1093/rheumatology/keg094
https://doi.org/10.1093/rheumatology/keg094
https://doi.org/10.1124/mol.117.108233
https://doi.org/10.1124/mol.117.108233
https://doi.org/10.1038/ncomms8378
https://doi.org/10.1002/jor.23872
https://doi.org/10.1016/j.joca.2007.03.006
https://doi.org/10.1016/j.molmed.2011.11.005
https://doi.org/10.1016/j.molmed.2011.11.005
https://doi.org/10.1096/fj.11-185132
https://doi.org/10.1096/fj.11-185132
https://doi.org/10.1111/acel.12752
https://doi.org/10.1111/acel.12752
https://doi.org/10.1016/S1063-4584(05)80059-7
https://doi.org/10.1016/S1063-4584(05)80059-7
https://doi.org/10.1038/nrm3838
https://doi.org/10.1002/jor.20724
https://doi.org/10.1242/dev.042150
https://doi.org/10.1242/dev.042150
https://doi.org/10.1038/nprot.2006.96
https://doi.org/10.1038/nprot.2006.96
https://doi.org/10.1016/S1063-4584(05)80330-9
https://doi.org/10.1016/S1063-4584(05)80330-9
https://doi.org/10.1038/nature12111
https://doi.org/10.1016/S0736-0266(02)00091-8
https://doi.org/10.1016/S0736-0266(02)00091-8
https://doi.org/10.3892/ijmm.2014.1808
https://doi.org/10.1016/j.joca.2005.03.004
https://doi.org/10.1016/j.joca.2005.03.004
https://doi.org/10.1002/aja.1002030302
https://doi.org/10.1002/aja.1002030302
https://doi.org/10.1002/art.1780380413
https://doi.org/10.3109/17453677909024083
https://doi.org/10.3109/17453677909024083
https://doi.org/10.1098/rstb.2017.0335
https://doi.org/10.1098/rstb.2017.0335
https://doi.org/10.1101/2020.05.26.116046
https://doi.org/10.1002/art.23176
https://doi.org/10.1007/s00109-015-1374-z
https://doi.org/10.1007/s00109-015-1374-z
https://doi.org/10.1002/jor.1100150205
https://doi.org/10.1002/jor.1100150205


530	 Histochemistry and Cell Biology (2020) 154:521–531

1 3

Lolli A et al (2014) Pro-chondrogenic effect of miR-221 and slug 
depletion in human MSCs. Stem Cell Rev Rep 10(6):841–855. 
https​://doi.org/10.1007/s1201​5-014-9532-1

Manninen P (2001) Physical exercise and risk of severe knee osteo-
arthritis requiring arthroplasty. Rheumatology 40(4):432–437. 
https​://doi.org/10.1093/rheum​atolo​gy/40.4.432

McAlindon TE et al (1999) Level of physical activity and the risk of 
radiographic and symptomatic knee osteoarthritis in the elderly: 
the Framingham study. Am J Med 106(2):151–157. https​://doi.
org/10.1016/s0002​-9343(98)00413​-6

McCorry MC, Puetzer JL, Bonassar LJ (2016) Characterization of 
mesenchymal stem cells and fibrochondrocytes in three-dimen-
sional co-culture: analysis of cell shape, matrix production, and 
mechanical performance. Stem Cell Res Ther 7(1):39. https​://
doi.org/10.1186/s1328​7-016-0301-8

Meacock SC, Bodmer JL, Billingham ME (1990) Experimental osteo-
arthritis in guinea-pigs. J Exp Pathol 71(2):279–293

Meyer A, Schartl M (1999) Gene and genome duplications in verte-
brates: the one-to-four (-to-eight in fish) rule and the evolution of 
novel gene functions. Curr Opin Cell Biol 11(6):699–704. https​
://doi.org/10.1016/s0955​-0674(99)00039​-3

Miesfeld JB, Link BA (2014) Establishment of transgenic lines to 
monitor and manipulate Yap/Taz-Tead activity in zebrafish 
reveals both evolutionarily conserved and divergent functions 
of the Hippo pathway. Mech Dev 133:177–188. https​://doi.
org/10.1016/j.mod.2014.02.003

Mitchell RE et al (2013) New tools for studying osteoarthritis genetics 
in zebrafish. Osteoarthritis Cartilage 21(2):269–278. https​://doi.
org/10.1016/j.joca.2012.11.004

Miyaki S et al (2010) MicroRNA-140 plays dual roles in both cartilage 
development and homeostasis. Genes Dev 24(11):1173–1185. 
https​://doi.org/10.1101/gad.19155​10

Moro E et al (2012) In vivo Wnt signaling tracing through a trans-
genic biosensor fish reveals novel activity domains. Dev Biol 
366(2):327–340. https​://doi.org/10.1016/j.ydbio​.2012.03.023

Murphy L et al (2008) Lifetime risk of symptomatic knee osteoarthri-
tis. Arthritis Care Res 59(9):1207–1213. https​://doi.org/10.1002/
art.24021​

Nakamura Y et al (2012) Sox9 is upstream of microRNA-140 in car-
tilage. Appl Biochem Biotechnol 166(1):64–71. https​://doi.
org/10.1007/s1201​0-011-9404-y

Newham E et al (2019) Finite element and deformation analyses predict 
pattern of bone failure in loaded zebrafish spines. J R Soc Inter-
face 16(160):20190430. https​://doi.org/10.1098/rsif.2019.0430

Nomura M et al (2017) Thinning of articular cartilage after joint 
unloading or immobilization. An experimental investigation of 
the pathogenesis in mice. Osteoarthritis Cartilage 25(5):727–
736. https​://doi.org/10.1016/j.joca.2016.11.013

O’Brien J et al (2018) Overview of microRNA biogenesis, mecha-
nisms of actions, and circulation. Front Endocrinol. https​://doi.
org/10.3389/fendo​.2018.00402​

Ofer L et al (2019) A novel nonosteocytic regulatory mechanism 
of bone modeling. PLoS Biol 17(2):e3000140. https​://doi.
org/10.1371/journ​al.pbio.30001​40

Okamura N et al (2010) Deficiency of tenascin-C delays articular carti-
lage repair in mice. Osteoarthritis Cartilage 18(6):839–848. https​
://doi.org/10.1016/j.joca.2009.08.013

Otterness IG et al (1998) Exercise protects against articular cartilage 
degeneration in the hamster. Arthritis Rheum 41(11):2068–2076. 
https​://doi.org/10.1002/1529-0131(19981​1)41:11<2068:AID-
ART23​>3.0.CO;2-L

Palmoski MJ, Colyer RA, Brandt KD (1980) Joint motion in the 
absence of normal loading does not maintain normal articu-
lar cartilage. Arthritis Rheum 23(3):325–334. https​://doi.
org/10.1002/art.17802​30310​

Palmoski M, Perricone E, Brandt KD (1979) Development and rever-
sal of a proteoglycan aggregation defect in normal canine knee 
cartilage after immobilization. Arthritis Rheum 22(5):508–517. 
https​://doi.org/10.1002/art.17802​20511​

Patwari P et al (2003) Proteoglycan degradation after injurious com-
pression of bovine and human articular cartilage in vitro: inter-
action with exogenous cytokines. Arthritis Rheum 48(5):1292–
1301. https​://doi.org/10.1002/art.10892​

Pond MJ, Nuki G (1973) Experimentally-induced osteoarthritis in the 
dog. Ann Rheum Dis 32(4):387–388. https​://doi.org/10.1136/
ard.32.4.387

Poulet B et al (2011) Characterizing a novel and adjustable noninvasive 
murine joint loading model. Arthritis Rheum 63(1):137–147. 
https​://doi.org/10.1002/art.27765​

Roberts SR et al (2001) Mechanical compression influences intra-
cellular Ca2+ signaling in chondrocytes seeded in agarose 
constructs. J Appl Physiol 90(4):1385–1391. https​://doi.
org/10.1152/jappl​.2001.90.4.1385

Russell W, Burch R (1959) The principles of humane experimental 
technique. Methuen & Co., London

Russo CR (2009) The effects of exercise on bone basic concepts and 
implications for the prevention of fractures. Clin Cases Miner 
Bone Metab 6(3):223–228

Schilling TF, Kimmel CB (1994) Segment and cell type line-
age restrictions during pharyngeal arch development in the 
zebrafish embryo. Development 120(3):483–494

Schmid TM et al (1991) Late events in chondrocyte differentiation: 
hypertrophy, type X collagen synthesis and matrix calcifica-
tion. In Vivo 5(5):533–540

Shao J et al (2020) MiR-146a-5p promotes IL-1β-induced chondro-
cyte apoptosis through the TRAF6-mediated NF-kB pathway. 
Inflamm Res 69(6):619–630. https​://doi.org/10.1007/s0001​
1-020-01346​-w

Shapiro F, Glimcher MJ (1980) Induction of osteoarthrosis in the 
rabbit knee joint. Clin Orthop Relat Res 147:287–295

Sharma G, Saxena RK, Mishra P (2007) Differential effects of 
cyclic and static pressure on biochemical and morphologi-
cal properties of chondrocytes from articular cartilage. Clin 
Biomech 22(2):248–255. https​://doi.org/10.1016/j.clinb​iomec​
h.2006.09.008

Shelton JC, Bader DL, Lee DA (2003) Mechanical condition-
ing influences the metabolic response of cell-seeded con-
structs. Cells Tissues Organs 175(3):140–150. https​://doi.
org/10.1159/00007​4630

Shwartz Y et al (2012) Muscle contraction controls skeletal morpho-
genesis through regulation of chondrocyte convergent exten-
sion. Dev Biol 370(1):154–163. https​://doi.org/10.1016/j.ydbio​
.2012.07.026

Millward-Sadler SJ et al (2000) Mechanotransduction via integrins 
and interleukin-4 results in altered aggrecan and matrix metal-
loproteinase 3 gene expression in normal, but not osteoarthritic, 
human articular chondrocytes. Arthritis Rheu 43(9):2091–2099. 
https​://doi.org/10.1002/1529-0131(20000​9)43:9<2091:AID-
ANR21​>3.0.CO;2-C

Soltz MA et al (2000) Functional tissue engineering of articular car-
tilage through dynamic loading of chondrocyte-seeded agarose 
gels. J Biomech Eng 122(3):252. https​://doi.org/10.1115/1.42965​
6

Song J et al (2015) MicroRNA-222 regulates MMP-13 via targeting 
HDAC-4 during osteoarthritis pathogenesis. BBA Clin 3(1):79–
89. https​://doi.org/10.1016/j.bbacl​i.2014.11.009

Sood SC (1971) A study of the effects of experimental immobilisation 
on rabbit articular cartilage. J Anat 108(Pt 3):497–507

Swingler TE et al (2012) The expression and function of microRNAs in 
chondrogenesis and osteoarthritis. Arthritis Rheum 64(6):1909–
1919. https​://doi.org/10.1002/art.34314​

https://doi.org/10.1007/s12015-014-9532-1
https://doi.org/10.1093/rheumatology/40.4.432
https://doi.org/10.1016/s0002-9343(98)00413-6
https://doi.org/10.1016/s0002-9343(98)00413-6
https://doi.org/10.1186/s13287-016-0301-8
https://doi.org/10.1186/s13287-016-0301-8
https://doi.org/10.1016/s0955-0674(99)00039-3
https://doi.org/10.1016/s0955-0674(99)00039-3
https://doi.org/10.1016/j.mod.2014.02.003
https://doi.org/10.1016/j.mod.2014.02.003
https://doi.org/10.1016/j.joca.2012.11.004
https://doi.org/10.1016/j.joca.2012.11.004
https://doi.org/10.1101/gad.1915510
https://doi.org/10.1016/j.ydbio.2012.03.023
https://doi.org/10.1002/art.24021
https://doi.org/10.1002/art.24021
https://doi.org/10.1007/s12010-011-9404-y
https://doi.org/10.1007/s12010-011-9404-y
https://doi.org/10.1098/rsif.2019.0430
https://doi.org/10.1016/j.joca.2016.11.013
https://doi.org/10.3389/fendo.2018.00402
https://doi.org/10.3389/fendo.2018.00402
https://doi.org/10.1371/journal.pbio.3000140
https://doi.org/10.1371/journal.pbio.3000140
https://doi.org/10.1016/j.joca.2009.08.013
https://doi.org/10.1016/j.joca.2009.08.013
https://doi.org/10.1002/1529-0131(199811)41:11<2068:AID-ART23>3.0.CO;2-L
https://doi.org/10.1002/1529-0131(199811)41:11<2068:AID-ART23>3.0.CO;2-L
https://doi.org/10.1002/art.1780230310
https://doi.org/10.1002/art.1780230310
https://doi.org/10.1002/art.1780220511
https://doi.org/10.1002/art.10892
https://doi.org/10.1136/ard.32.4.387
https://doi.org/10.1136/ard.32.4.387
https://doi.org/10.1002/art.27765
https://doi.org/10.1152/jappl.2001.90.4.1385
https://doi.org/10.1152/jappl.2001.90.4.1385
https://doi.org/10.1007/s00011-020-01346-w
https://doi.org/10.1007/s00011-020-01346-w
https://doi.org/10.1016/j.clinbiomech.2006.09.008
https://doi.org/10.1016/j.clinbiomech.2006.09.008
https://doi.org/10.1159/000074630
https://doi.org/10.1159/000074630
https://doi.org/10.1016/j.ydbio.2012.07.026
https://doi.org/10.1016/j.ydbio.2012.07.026
https://doi.org/10.1002/1529-0131(200009)43:9<2091:AID-ANR21>3.0.CO;2-C
https://doi.org/10.1002/1529-0131(200009)43:9<2091:AID-ANR21>3.0.CO;2-C
https://doi.org/10.1115/1.429656
https://doi.org/10.1115/1.429656
https://doi.org/10.1016/j.bbacli.2014.11.009
https://doi.org/10.1002/art.34314


531Histochemistry and Cell Biology (2020) 154:521–531	

1 3

Taylor JS et al (2003) Genome duplication, a trait shared by 22,000 
species of ray-finned fish. Genome Res 13(3):382–390. https​://
doi.org/10.1101/gr.64030​3

Tomiya M et al (2009) Skeletal unloading induces a full-thickness 
patellar cartilage defect with increase of urinary collagen II CTx 
degradation marker in growing rats. Bone 44(2):295–305. https​
://doi.org/10.1016/j.bone.2008.10.038

Tuddenham L et al (2006) The cartilage specific microRNA-140 targets 
histone deacetylase 4 in mouse cells. FEBS Lett 580(17):4214–
4217. https​://doi.org/10.1016/j.febsl​et.2006.06.080

Wada N et al (2005) Hedgehog signaling is required for cranial neural 
crest morphogenesis and chondrogenesis at the midline in the 
zebrafish skull. Development 132(17):3977–3988. https​://doi.
org/10.1242/dev.01943​

Weiner AMJ et al (2019) Dicer1 is required for pigment cell and 
craniofacial development in zebrafish. Biochimic Biophys Acta 
Gene Regul Mech 4:472–485. https​://doi.org/10.1016/j.bbagr​
m.2019.02.005

Wellcome Trust (2013) Zebrafish genome yields significant similarity 
to human genome | Wellcome.

Wienholds E et al (2003) The microRNA-producing enzyme Dicer1 is 
essential for zebrafish development. Nat Genet 35(3):217–218. 
https​://doi.org/10.1038/ng125​1

Wienholds E et  al (2005) Cell biology: microRNA expression in 
zebrafish embryonic development. Science 309(5732):310–311. 
https​://doi.org/10.1126/scien​ce.11145​19

Wopat S et al (2018) Spine patterning is guided by segmentation of 
the notochord sheath. Cell Rep 22(8):2026–2038. https​://doi.
org/10.1016/j.celre​p.2018.01.084

Wu X et al (2019) MiR-27a targets DKK2 and SFRP1 to promote 
reosseointegration in the regenerative treatment of peri-implan-
titis. J Bone Miner Res 34(1):123–134. https​://doi.org/10.1002/
jbmr.3575

Yang X et al (2016) Mechanical and IL-1β responsive miR-365 con-
tributes to osteoarthritis development by targeting histone dea-
cetylase 4. Int J Mol Sci 17(4):436. https​://doi.org/10.3390/ijms1​
70404​36

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/gr.640303
https://doi.org/10.1101/gr.640303
https://doi.org/10.1016/j.bone.2008.10.038
https://doi.org/10.1016/j.bone.2008.10.038
https://doi.org/10.1016/j.febslet.2006.06.080
https://doi.org/10.1242/dev.01943
https://doi.org/10.1242/dev.01943
https://doi.org/10.1016/j.bbagrm.2019.02.005
https://doi.org/10.1016/j.bbagrm.2019.02.005
https://doi.org/10.1038/ng1251
https://doi.org/10.1126/science.1114519
https://doi.org/10.1016/j.celrep.2018.01.084
https://doi.org/10.1016/j.celrep.2018.01.084
https://doi.org/10.1002/jbmr.3575
https://doi.org/10.1002/jbmr.3575
https://doi.org/10.3390/ijms17040436
https://doi.org/10.3390/ijms17040436

	Potential of zebrafish as a model to characterise MicroRNA profiles in mechanically mediated joint degeneration
	Abstract
	Introduction
	Mechano-regulation of miRs and their downstream targets in chondrocytes
	Existing model systems for investigating involvement of mechanical load in joint degeneration
	In vitro loading models
	In vivo loading models
	Surgical loading models
	Non-invasive loading models

	Models of unloading

	Prospects for using zebrafish as a model for mechanically mediated joint degeneration to investigate miR dysregulation
	Zebrafish cartilage contains components also found in human articular cartilage. Loading of cartilage can be manipulated in zebrafish
	Tools available in zebrafish which allow for cellular changes to be observed in the context of the whole tissue

	Acknowledgements 
	References




