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Over the past decades, an ever growing body of literature has explored the anatomy,

connections, and functions of the habenula (Hb). It has been postulated that the Hb

plays a central role in the control of the monoaminergic system, thus influencing a wide

range of behavioral responses, and participating in the pathophysiology of a number

of psychiatric disorders and neuropsychiatric symptoms, such as aggressive behaviors.

Aggressive behaviors are frequently accompanied by restlessness and agitation, and are

commonly observed in patients with psychiatric disorders, intellectual disabilities, and

neurodegenerative diseases of aging. Recently, the Hb has been explored as a new target

for neuromodulation therapies, such as deep brain stimulation, with promising results.

Here we review the anatomical organization of the habenula and discuss several distinct

mechanisms by which the Hb is involved in the modulation of aggressive behaviors,

and propose new investigations for the development of novel treatments targeting the

habenula to reduce aggressive behaviors.
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INTRODUCTION

The habenula (Hb) is an epithalamic structure that presents rich connections with several cortical
and subcortical structures, including the limbic system, and areas responsible for the production
and regulation of monoamines (i.e., raphe nuclei for serotonin, ventral tegmental area and
substantia nigra for dopamine, and locus coeruleus for noradrenaline) (1–5). These connections
place the Hb in a central position for the regulation of motivated behaviors, and thus has been
implicated in the pathophysiology of several disorders, such as autism spectrum disorder (ASD) (6),
depression (7, 8), bipolar disorder (8–10), and schizophrenia (10, 11), as well as neuropsychiatric
symptoms, such as aggressive behaviors (12, 13).

Aggressive behaviors can be verbal and physical insults directed toward oneself (i.e., self-injury
behavior), others, or objects (14), and are highly correlated with restlessness and excessive motor
agitation (15, 16). Several distinct classifications of human aggressive behavior have been proposed,
with the classification in proactive (also known as premeditated aggression) or reactive (also known
as impulsive aggression) being widely accepted (17–21). While proactive aggression is believed to
involve planned behaviors to achieve a specific goal, reactive aggression is unrelated to a specific
goal, being mainly associated with frustration, provocation or stress. Another important difference
between these two types of aggressive behavior, is the association with high levels of autonomic
arousal and impulsivity in subjects presenting with reactive aggression, that is absence in the
proactive aggression (17–21). Aggressive behaviors, mainly reactive aggression, are frequent among
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patients with psychiatric conditions, especially in those suffering
from intermittent explosive disorder, borderline/antisocial
personality disorders, patients with neurodevelopmental
conditions, such as ASD (17, 22), and those with
neurodegenerative diseases of aging (e.g., Alzheimer’s
disease) (23–25).

The neurocircuitry underlying aggressive behaviors include
prefrontal cortical regions and areas of the mesolimbic system,
especially the hypothalamus, amygdala and periaqueductal gray
matter (14–17, 26). It is believed that decreased serotonergic
transmission in the prefrontal cortex reduces the top-down
inhibitory control over the limbic system, resulting in motor
activation and hormonal production, preparing the organism
for a fight-or-flight situation (17, 21, 26). However, simplistic
this mechanism might seem, there are several distinct neural-
pathways involved in the association of external and internal
stimuli that will result in the expression of an appropriate
or inappropriate aggressive behavioral response. As such, the
mechanisms by which the Hb is involved in the modulation of
aggressive behaviors are numerous and still not fully understood.

In this review, we explore the anatomical organization of the
habenula, describe the relevant literature on the involvement of
the Hb in the modulation of aggressive behaviors and discuss
future perspectives and novel therapies.

Anatomical Organization of the Habenula
The Hb is a bilateral, phylogenetically old, epithalamic structure
surrounded by the third ventricle and the thalamus (lateral
and dorsal borders), the posterior commissure (ventral and
posterior borders), and the stria medullaris of the thalamus
(anterior limit, Figure 1A) (1, 4, 9). In mammals, the Hb is
divided into two sub-regions—the medial habenula (MHb) and
the lateral habenula (LHb)—based on their cellular and genetic
profiles, neuroanatomical connectivity, and associated functions
(Figure 1B) (1, 4, 5). Through the fasciculus retroflexus, both
MHb and LHb project to distinct brain areas. MHb efferents
form the core of the fiber bundle that reaches the interpeduncular
nucleus (IP) in a 90◦ rotation pattern, with dorsal projections
reaching the lateral aspect of the IP, medial projections to the
ventral aspect of IP and the lateral projections ending on the
dorsal aspect of IP (2). Projections from the IP then reaches the
periaqueductal gray matter (27), an area critically involved in
the neural network of aggressive behavior (17, 21, 26). Discrete
projections from the MHb can also be found in the LHb,
supra-commissural septum and median raphe nucleus (2, 28).
Inputs form the medial, lateral and triangular septal nuclei and
septofimbrial nucleus, via the medial stria medullaris comprise
the main afferent projections to the MHb (2, 5, 29). LHb efferents
forms the mantle portion of the fasciculus retroflexus, that
reaches the ventral tegmental area, hypothalamus (i.e., lateral,
posterior and dorsomedial hypothalamic nuclei, lateral preoptic
area), ventromedial thalamic nucleus, substantia innominata,
ventrolateral septum, substantia nigra pars compacta, medial
and dorsal raphe nuclei, and tegmental reticular formation (2).
Discrete additional projections can be found in the pretectal
area, superior colliculus, nucleus reticularis tegmenti pontis,
parabrachial nuclei, and locus coeruleus (2). Afferent projections

from limbic regions are mainly found in the more medial aspect
of the LHb while projections from the globus pallidus reach the
lateral aspect of the LHb (Figure 1C) (2).

Medial Habenula
The MHb can be further divided into five subregions, namely
superior (MHbS), inferior (MHbI), central (MHbC), lateral
(MHbL), and commissural (MHbCo) parts (Figure 1B). The
MHbS consists exclusively of densely packed glutamatergic
neurons that strongly express interleukin-18, with nuclei on
a typical triangular appearance, thin dendrites and tightly
packed synaptic vesicles in axon terminals (3, 30). The cell
characteristics of neurons in the MHbI are similar to the one
in the MHbS, however the nuclei are typically round and
the proximal dendrites are thicker. Also, these neurons are
not exclusively glutamatergic as they co-transmits acetylcholine
from the axonal terminals (3, 30). Likewise, the MHbL is also
composed of cholinergic and glutamatergic neurons, however
these are smaller, with oval nuclei and nuclear membrane
surrounded by nucleoli or chromatin plaques (3, 30). The MHbC
can be viewed as a transition area, as it is composed of a
combination of cell clusters composed of the diverse cell types
observed in the adjacent regions, that are separated from each-
other by the terminal fiber bundles of the stria medullaris.
While the dorsal region of the MHbC is composed of neurons
that co-express substance-P and glutamate, the ventral region is
both cholinergic and glutamatergic (3, 30). Finally, the MHbCo
displays the largest glutamatergic neurons in the MHb area, with
unusual nuclei in a semilunar shape (3, 30).

Lateral Habenula
The LHb is significantly larger than the MHb and is subdivided
into medial (LHbM) and lateral (LHbL) parts (Figure 1B). Each
of these aspects are further subdivided resulting in a total of
ten LHb subregions (3). Irrespective of cell morphology and
location, neurons in the LHb are predominantly glutamatergic
(30), however it has recently been shown that a very discrete
population of GABAergic neurons are present in the medial
part of the LHb (31, 32). The LHbM is divided in anterior
(LHbMA), superior (LHbMS), parvocellular (LHbMPc), central
(LHbMC), and marginal (LHbMMg) subregions. Small neurons
are found in the LHbMA, LHbMMg and LHbMPc parts,
with LHbMA showing round multipolar cells with heavily
folded nuclei, LHbMMg having an elongated version of the
LHbMA cells, and LHbMPc presenting a spindle-shaped cell
with deeply invaginated nucleus. Greatly larger neurons are
found in the LHbMS and LHbMC subregions, however LHbMS
neurons are characterized by an oval perikarya, and LHbMC
cell nuclei are often invaginated and display a brighter and
finer karyoplasm (3). The LHbL is divided into parvocellular
(LHbLPc), magnocellular (LHbLMc), oval (LHbLO), basal
(LHbLB), and marginal (LHbLMg) subregions (3). Neurons in
the LHbLPc and LHbLMg parts are predominantly small to
medium-sized. Cells in the LHbLMc, and LHbLO are large, and
while neurons in the LHbLMc and LHbLB parts present thick and
long dendrites, neurons in the LHbLO extend thin ones (3).
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FIGURE 1 | Anatomical organization of the habenula. (A) Magnetic resonance imaging (coronal plane) showing the human and mouse habenula (https://openneuro.

org/datasets/ds002179/versions/1.1.0). (B) Anatomical parcellation of the medial (MHb) and lateral habenula (LHb). (C) Main habenula connections. MHbS, medial

habenula superior part; MHbI, medial habenula inferior part; MHbC, medial habenula central part; MHbL, medial habenula lateral part; MHbCo, medial habenula

commissural part; LHbMA, lateral habenula medial part anterior subregion; LHbMS, lateral habenula medial part superior subregion; LHbMPc, lateral habenula medial

part parvocellular subregion; LHbMC, lateral habenula medial part central subregion; LHbMMg, lateral habenula medial part marginal subregion; LHbLPc, lateral

habenula lateral part parvocellular subregion; LHbLMc, lateral habenula lateral part magnocellular subregion; LHbLO, lateral habenula lateral part oval subregion;

LHbLB, lateral habenula lateral part basal subregion; LHbLMg, lateral habenula lateral part marginal subregion; PAG, periaqueductal gray matter; VTA, ventral

tegmental area.

Habenula as a Key Relay for Aggressive
Behavior
Several clinical and preclinical studies have investigated the
involvement of the Hb in the modulation of aggressive
behaviors. Studies using transgenic models have provided further
evidence of the involvement of the Hb in the regulation
of aggressive behaviors. Using double and triple transgenic
zebrafish, Chou et al. (33) demonstrated that the dorsal
habenula–interpeduncular nucleus pathway [homologous to the
mammalian MHb-IP pathway (34)], is key for the modulation
of aggressive behaviors, with connectivity between the medial
subregion of dHb and IP being associated with increase

aggression (33). GPR3 is an G-protein-coupled-receptor broadly
expressed in the central nervous system, withmaximal expression

in the Hb, that has been implicated in the regulation of cAMP

signaling and, consequently, modulation of emotional behavior.

Knockout Gpr3−/− mice present null expression of GPR3 in

the Hb, high levels of aggressive behavior and accentuated

reduction of serotonin, noradrenaline and its metabolites in

the hypothalamus and frontal cortex (35). The Disrupted-In-
Schizophrenia-1 (DISC1-Q31L) mouse model of depression,
bipolar disorder and schizophrenia, presents heightened inter-
male aggressive behavior along with increased neuronal density
in both the LHb and MHb (36). On the other hand, male
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Mecp2− mice (i.e., knockout of the X-linked methyl-CpG-
binding protein 2, gene associated to Rett syndrome) present
absence of aggressive behavior and accentuated reduction in
oxytocinergic innervation in the lateral habenula (37). It is
important to highlight, however, that transgenic animals may
also present with additional brain alterations in function and
connection and, thus, the altered behavior observed in these
studies may be the result of the sum of all these changes and not
rely solely on alterations observed in the habenula.

In lactating females, aggressive behaviors toward an intruder
are mediated by the medial prefrontal cortex-LHb-dorsal raphe
nucleus pathway, as demonstrated by increased co-labeling
of c-Fos- and Fluorogold-positive neurons in the mPFC and
LHb following aggressive encounters (38). Pharmacological
manipulation of NMDA and AMPA/kainate receptors via
microinjection of receptor antagonists in the dorsal raphe
nucleus of lactating females is capable of inhibiting this behavior
(38). Interestingly, injection of arginine-vasopressin V1a receptor
antagonists in the LHb or dorsal raphe nucleus, of both
male and female mice, is not sufficient to alter aggressive
behaviors, suggesting that the arginine-vasopressin system does
not play a crucial role in this neurocircuitry (39). Tear fluid
is rich in pheromones capable of eliciting several context-
specific behavioral responses in both males and females rodents
(40). It has been shown that female mouse tears suppress
aggressive behaviors in males and induce a great increase in c-Fos
immunoreactivity in the medial aspect of the LHb (41).

A study investigating habenula resting-state functional
connectivity in highly reactive aggressive men showed an
association between high levels of trait aggression to lower global
efficiency of the left habenula and atypical habenula-prefrontal
connectivity (42). In a recent work from our group, we showed
that the Hb—along with the dorsal raphe nuclei, substantia
nigra, ventral tegmental area, and locus coeruleus—is part of the
functional connectivity map associated with symptom alleviation
in a patient treated with deep brain stimulation of the posterior
hypothalamus for reduction of severe and treatment refractory
aggressive behavior (43).

Reward Value of Aggressive Behavior
Another line of evidence is based on the well-known involvement
of the LHb in reward-related behaviors. The suppression
of midbrain dopaminergic neurons, via GABAergic indirect
connections, is thought to be the main mechanism by which
the LHb drives reinforcement learning (1). The LHb is active
in response to the negative value of a stimulus, unexpected
reward omissions, and cues associated with these stimuli (44, 45),
such as in situations of drug withdrawal (46–48). Moreover, the
functional integrity of the LHb is necessary to integrate proactive
and retroactive information to guide behavioral flexibility when
the reward contingencies change (49). Golden et al. (50)
investigated the involvement of basal forebrain projections to the
LHb in themodulation of aggression reward. Using a conditioned
place preference (CPP) or place aversion (CPA) paradigm, the
authors have shown that aggressive mice presented CPP for
the chamber where aggressive encounters occurred, while non-
aggressive mice developed a CPA to the same chamber. Using

optogenetic techniques to stimulate or inhibit the basal forebrain
projections to the LHb, it was found that the stimulation of
these terminals promotes CPP and reduces LHb firing, and
the inhibition results in CPA and increases LHb firing (50).
These results are in line with previous findings indicating that
decreased LHb activity is associated with rewarding components
of behavior. Flanigan et al. (32) showed that optogenetic
stimulation of orexin terminals located in GABAergic neurons
within the LHb promotes inter-male aggressive behavior and
CPP for aggression-paired contexts.

The reward value of aggressive behaviors is also mediated
via the LHb-ventral tegmental area (VTA)-nucleus accumbens
(nAcc) network that results in increased dopamine release in
the nAcc when animals are expecting a conditioned aggressive
encounter (51). Moreover, antagonism of both dopamine
receptor types 1 and 2 in the nAcc have been described as
reducing the rewarding value of aggressive behaviors (52–54).
In line with these findings, two case reports (55, 56) and one
case series (57) reporting on patients treated with deep brain
stimulation of the nAcc for severe refractory aggressive behaviors,
have shown long lasting positive results (58).

The Circadian Cycle and Aggressive Behavior
There is a strong body of evidence on the role of the Hb
in regulating the circadian cycle, thus influencing internal
physiology, brain activity patterns and day-night behavioral
rhythm (59–62). Anatomically, the Hb shares the epithalamus
with the pineal gland, a brain structure responsible for the
production of the hormone melatonin, that serves among others,
as a major regulator of the sleep-wake cycle (5, 63). Similar to
the pineal gland, the Hb expresses mRNA for arylalkylamine-
N-acetyltransferase, the enzyme responsible for melatonin
synthesis, thus being implicated as a supplementary location
for melatonin biosynthesis (63). Dysregulations of the circadian
cycle are known to negatively influence cognition, emotions
and behavior, and is associated with worsening of symptoms in
several neuropsychiatric disorders (64, 65). Poor sleep routines
(i.e., short sleep duration, inadequate sleep quality) in children
and adolescents is associated with increased irritability, conduct
problems, anxiety, and hyperactivity (66–68), and in adults, is
associated with increased hostility, anger, aggression and suicidal
ideation (49–52). However, it is important to highlight that the
Hb circadian clock is independent of the suprachiasmatic nucleus
(60), and although disruption of the Hb circadian clock does
not disrupt the sleep cycle, it is capable of altering the subjects
response to stressors, suggesting that a sleep-independent effect
on aggression may exist (69).

Among the various neurotransmitters, neuropeptides, and
neurohormones involved in the modulation of the circadian
cycle, dysfunctions in serotonin transmission are thought to be
central in the association between poor sleep and aggressiveness.
Via GABAergic interneurons, the LHb modulates the activity
of serotonergic neurons in the dorsal raphe nucleus (70, 71),
that have an increased activity during wakefulness, along with
brain-wide increase in serotonin levels (72, 73). The prolonged
exposure to high serotonin levels caused by reduced sleep time
causes gradual desensitization of serotonin receptors (74), thus

Frontiers in Psychiatry | www.frontiersin.org 4 February 2022 | Volume 13 | Article 817302

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Gouveia and Ibrahim Habenula and Aggressive Behavior

contributing to a reduced serotonergic effective transmission in
the prefrontal cortex and consequently reduction in the top-
down inhibitory control of emotions described above.

DISCUSSION

Excessive aggressive behaviors are highly prevalent, particularly
among patients with psychiatric disorders and presents a
major obstacle for patient care, increasing institutionalization
rates and reducing patients’ quality of life (15, 17). The
clinical and preclinical studies described here show evidence
of the involvement of the habenula in the neuro-circuitry of
aggressive behavior, and suggest that the modulation of neurons
in this area could result in symptom alleviation in patients
presenting psychiatric disorders associated with aggressive
behavior. Furthermore, typical and atypical antipsychotics and
antidepressants are commonly used for the treatment of
aggressive behaviors via antagonizing dopaminergic receptors
or selectively inhibiting serotonin reuptake enzymes (17).
As described above, the Hb is highly connected with areas
responsible for the production and regulation of monoamines
(e.g., dopamine and serotonin) and thus, involved in the response
to standard treatments (1–5). However, the chronic systemic
exposure to these compounds is associated with refractoriness
to treatment, and may produce severe side effects that can
escalate to the point of being impeditive of treatment (14, 16,
75, 76). Thus, further studies are necessary to better understand
the brain mechanisms associated with aggressive behaviors and
develop novel treatments that are tailored to safely and effectively
improve patient outcomes.

Focused ultrasound is being intensively investigated as a
novel non-invasive tool for neuromodulation that could be
used to deliver pharmacological agents to localized brain areas,
without the need of a systemic distribution (77). By repurposing
a commercially available ultrasound contrast, Lea-Banks and
colleagues fabricated an ultrasound-sensitive nanodroplet loaded
with or without anesthetic drug, that was injected intravenously
and then vaporized in a discrete brain target using focused
ultrasound (78, 79). The authors showed that the use of the
unloaded nanodroplets increased local neuronal activity, while
drug-loaded nanodroplets suppressed (78, 79). Considering that

the Hb is involved in the regulation of monoamines, such as

those modulated by drug therapy, and the current evidence on
the possibility of reducing the reward value of aggressive behavior
by increasing neuronal firing in the LHb, one could envision
further exploring this innovative technique to selectively deliver
nanodroplets to the LHb and modulate its activity, to reduce
aggressive behavior in patients with psychiatric disorders that do
not present adequate response to conventional therapy.

Deep brain stimulation is a neuromodulation therapy that
involves the precise placement of electrodes into deep brain
structures to modulate neuronal activity via the application of
an electrical current that can be precisely titrated (80). Although
only a few case studies on Hb deep brain stimulation have
been published, they report beneficial outcomes in patients
suffering from schizophrenia (81), depression (82, 83), obsessive-
compulsive disorder (84), and bipolar disorder (85). New clinical
trials are currently being performed, demonstrating a growing
interest to target this region for the treatment of psychiatric
disorders [for a review on deep brain stimulation of the habenula
see (86)]. Considering the strong evidence on the involvement
of the Hb in the pathophysiology of aggressive behaviors and
the possibility of safely targeting this area with deep brain
stimulation, it would be interesting to investigate Hb deep brain
stimulation in the context of aggressive behaviors.

In this article we provide a detailed review of the anatomical
organization of the Hb, by describing cell characteristics and
connections of the lateral and medial aspects of the Hb and
its subdivisions. We discussed several distinct mechanisms
by which the Hb modulates aggressive behavior, detailing
studies investigating transgenic models, neuronal modulation
and neuroimaging, and the literature about the involvement of
the Hb in reward-related behaviors and regulation of circadian
cycle. We concluded this review discussing how innovative
neuromodulatory techniques could be investigated in the context
of Hb and aggressive behaviors to improve patient outcome.
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