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Fibronectin (Fn) 1 is a 440,000-dalton glycoprotein found in plasma at a concentra- 
tion of - 300 /~g /ml  (1). The structure of the molecule has been carefully examined, 
and domains that bind gelatin, heparin, and Staphylococcus aureus have been described 
(2). Fibronectin also mediates the binding of gelatin-coated particles to Kupffer cells 
in vivo and in vitro (3), and it has been alleged to be an important component in the 
optimal function of the reticuloendothelial system (RES) (4). However, the role of Fn 
in normal host phagocytic function remains unclear. While some investigators have 
gathered evidence that Fn is an opsonin (5, 6), others have been unable to show that 
Fn-coated particles will be phagoeytosed (7, 8). In the experiments reported here, we 
have discovered that  Fn binding to particles is not required for Fn to affect their 
ingestion by human peripheral blood monocytes. Fn enables monocytes to phagocy- 
tose erythrocytes bearing C3b molecules and increases the phagocytosis of IgG- 
sensitized erythrocytes without binding to the opsonized particles. Thus, Fn may be 
important  in host defense in the development and maintenance of an optimally 
phagocytic state in the mononuclear phagocytes of the RES. 

Mate r i a l s  a n d  M e t h o d s  
Buffers. Isotonic Veronal-buffered saline (VBS), VBS containing 0.1% gelatin, 0.15 mM 

Ca ++, and 1 mM Mg ++ (GVB++), low ionic strength isosmotic Veronal-buffered saline with 
dextrose, gelatin, Ca ++, and Mg ++ (DGVB), and VBS containing gelatin and 10 mM ethyl- 
enediaminetetraacetate (EDTA-GVB) were all prepared as previously described (9). RPMI 
1640 was obtained from the Media Unit, National Institutes of Health. 

Purification of Fn. Human plasma Fn was purified by a modification of the method of 
Vuento and Vaheri (10). Briefly, 1 U of plasma was diluted while stirred with a buffered 
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inhibitor solution containing 1 M KH2PO4, 0.2 M Na2EDTA, and 0.2 M benzamidine HC1, 
pH 7.4 (20 parts plasma to 1 part inhibitor). Phenylmethyl sulfonyl fluoride (PMSF) was then 
added to a final concentration of 1 raM. The inhibitor-treated plasma was then made 5% wt /  
vol in polyethylene glycol 3350 (PEG) (J.T. Baker Chemical Co., Phillipsburg, NJ). The 
precipitate that formed after 1 h at 4°C was resuspended in 150 mM NaC1, 50 mM KH2PO4/ 
K2HPO,, and 10 mM EDTA, p H  7.4, and snap frozen by adding approximate 20-/zl drops 
directly to liquid N~. The pellets thus formed were stored at - 7 0 ° C  until further use. 
Approximate 15-ml aliquots of this 5% PEG precipitate were thawed and passed over a 5-ml 
column of Sepharose 4B. The protein-containing fractions were pooled and passed over gelatin- 
Sepharose prepared as described (10). The column was then thoroughly washed and eluted as 
described. The protein-containing fractions were pooled, dialyzed vs. 0.05 M Tris-HC1 to 
remove arginine, centrifuged for 20 rain at 12,000 g, and passed over arginine-Sepharose. The 
retained material was eluted with a buffer of 0.1 M NaC1, 0.05 M Tris, pH 7.5. All buffers used 
for the chromatography on Sepharose, gelatin-Sepharose, and arginine-Sepharose contained 5 
mM benzamidine and/or  1 mM PMSF to inhibit the possible activity of contaminating 
proteases on Fn. The purified Fn showed a single line on immunoelectrophoresis vs. anti-whole 
human serum and a single major band at 440,000 dahons on sodium dodecyl sulfate-polyacryl- 
amide gel electrophoresis (SDS-PAGE). Overloaded gels showed trace bands at 210,000 dahons 
and 230,000 daltons as well as the 440,000-dalton protein. On reduction of disulfide bonds, a 
closely spaced doublet was seen at 220,000 daltons as has been previously reported for human 
plasma Fn (1, 2). With increased sample size, the doublet was obliterated, but these heavily 
loaded gels showed no lower molecular weight bands even when developed with a sensitive 
silver stain (Bio-Rad Laboratories, Richmond, CA) (Fig, 1). Antibody prepared against this 
antigen in a rabbit gave a monospecific response on immunoelectrophoresis and Ouchterlony 
double diffusion against whole human plasma. 

Monocyte Preparation. Peripheral blood mononuclear cell.s were separated from the buffy coat 
from 500 ml of blood of normal volunteers on Ficoll-Hypaque gradients. Monocytes were 
isolated using a J2-21 centrifuge (Beckman Instruments, Palo Alto, CA) equipped with a JE-6 
elutriator rotor with two Sanderson's separation chambers following a procedure modified from 
Lionetti et al. (11). The purity of the monocytes was >95% as determined by both morphology 
and nonspecific esterase staining (Technicon Instruments Corp., Tarrytown, NY). 

Antibody and Complement Components. C1, C4, and C2 were purchased from Cordis Laborato- 
ries Inc., Miami, FL. Rabbit  IgG and IgM anti-Forssman (12) and human C3 were prepared 
as previously described (13). C3b was prepared by trypsin incubation of purified C3 followed 
by Biogel A 0.5-m chromatography as previously described (14). 

Opsonized Sheep Erythrocytes. Sheep erythrocytes (E) were collected, washed, and stored using 
standard methods (12). For preparation of C3b-opsonized particles, E were sensitized with IgM 
anti-Forssman antibody (EAxgM); C1, C4, C2, and C3 were then added sequentially as previously 
described (15). The concentration of C4 was limited to prevent interaction of EAIgM C14 with 
C3b receptors. E A I ~  C14 were incubated with 5 U of C3 to yield 100-200 C3 molecules per 
cell. Following sensitization with C3, EAIgM C1423b were incubated for 1 h in EDTA-GVB to 
remove C 1 and to allow C2 to decay, and then washed twice in GVB ++ (EAIgM C43b). For 
preparation of EAI,o, 1 × l0 s E/ml were incubated for 30 min at 37°C with a 1:2,000-dilution 
of IgG anti-Forssman antibody. The cells were then washed twice in GVB ÷+ (EA~) .  

Rosetting and Phagocytosis Assay. For assay of leukocytes in suspension, 50/zl of cells at 2 × 
108/ml in RPMI 1640, supplemented with 5 mM MgCI2, were incubated for 30 min in a 5% 
CO2/95% air incubator at 37°C with Fn or as a control, Fn passed over gelatin-Sepharose 
immediately before the experiment. Except where noted, the cells were then mixed with 50/zl 
of EAIgM C43b, or EA~,o at 1.5 × l0 s E/ml without washing. The cells and indicator particles 
were sedimented by centrifugation for 5 min at 50 g, incubated for a further 30 min in a 5% 
CO2/95% air incubator at 37°C without mixing, and then gently resuspended and examined 
under light microscopy. In assays of monocyte monolayers, monocytes were suspended at 2 × 
10 ~ cells/ml in RPMI 1640 without added protein; 250/~1 was added to each chamber of an 
eight-chamber tissue culture plate (Lab-Tek Div. Miles Laboratories Inc., Naperville, IL); and 
the cells were allowed to adhere to glass during a 45-min incubation in a 5% CO2, 37°C 
incubator. The cells were then washed in RPMI 1640. Various concentrations of Fn, buffer, or 
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FIo. 1. SDS-PAGE of purified fibronectin (fn). 5 ~g of the purified Fn preparation was electro- 
phoresed in 4-10% SDS-PAGE gels both in the presence (/eft lane) or the absence (middle lane) orS0 
mM dithiothreitol. The right lane contains Bio-Rad high molecular weight standards (myosin, Mr 
200,000; fl-galactosidase, Mr 130,000; phosphorylase B, Mr 93,000; bovine serum albumin; Mr 
68,000; and ovalbumin, Mr 43,000). After eleetrophoresis, the gel was stained with the Bio-Rad 
silver stain. 

the supernatant of an absorption of  the Fn preparation with gelatin-Sepharose (done immedi- 
ately before the experiment) were added to the cells, and incubation was allowed to proceed for 
a further 30 min. After incubation, indicator particles were added to the wells, the plates 
centrifuged at 50 g for 5 rain, and an additional incubation was carried out as described for 
fluid phase cells. After this incubation, chambers were washed two times, fixed with 0.5% 
glutaraldehyde, and stained with Giemsa stain. To quanti tate phagocytosis, assays were carried 
out exactly as described, except that an erythrocyte lysis step 0aypotonic lysis, in 1 part 
phosphate-buffered saline [PBS] and 4 parts HzO, with vigorous mixing for several seconds) 
was added before fixing, staining, and counting. In all experiments, at least 200 leukocytes were 
counted to quant i ta te  erythrocyte rosetting and /o r  ingestion. Three or more erythrocytes bound 
to a leukocyte was considered a rosette. Total  intracellular erythrocytes were counted as a 
function of the number  of  monocytes observed. 

Preincubation of Monocytes or Indicator Particles with Fn. In some experiments, monocytes or 
E A I ~  C43b were incubated with Fn and washed before mixing for assays of  particle ingestion. 
For these studies, fluid phase monocytes were incubated for 30 rain at 37°C with varying 
concentrations of Fn in R P M I / M g  ++ buffer or with buffer alone and then washed in warm 
buffer. This wash removed >95% of the Fn as determined by inclusion of 125I-Fn in "the 
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incubation mixture. Thereafter, monocytes and EAI~ C43b, which had been incubated with 
buffer, were mixed, and ingestion was quantitated as described. Parallel sets of experiments 
were performed in which EAtl~t C43b were preincubated with Fn and then mixed with 
monocytes which had been incubated in buffer. 

Determination of Fc Receptor Number. The binding of 125I-labeled monomeric myeloma IgG 1 
was used to determine the number of IgG receptors present on monocytes before and after 
incubation with Fn. For these experiments, monocytes were incubated with RPMI 1640 
supplemented with 5 mM MgClz or this buffer containing 20 #g/ml Fn for 30 min at 37°C 
before performance of the binding studies, which were then carried out exactly as previously 
described (16), 

Results 
Effect of Fn on Monocyte Rosetting and Ingestion of E A ~  The ability of fluid phase Fn 

to affect monocyte  rosett ing a nd  ingestion of EAigo was examined.  In  pre l iminary  
experiments,  IgG ant i -Forssman was t i t rated so that  in the absence of Fn,  rosetting 
was less t han  m a x i m u m .  Incuba t i on  of  monocytes with Fn  in concentra t ions  of 40-  
160/~g/ml caused a modest  increase in the n u m b e r  of monocyte  rosettes. Fn  caused 
a dose-related increase in rosett ing for both  fluid phase a nd  monolayer  monocytes 
from 13% to a m a x i m u m  of 55%. Monoeytes did not  form rosettes with E or E A I ~  
with or wi thout  Fn. 

F ibronec t in  caused a marked increase in the n u m b e r  of E A i ~  ingested by monocytes 
(Fig. 2A), As with rosetting, Fn  caused a dose-related increase in ingestion for both  
fluid phase and  monolayer  monocytes. For fluid phase monocytes the n u m b e r  of 
EAIgG ingested increased from 113 :t: 15.9 to 250 + 44.4 with 160/~g F n / m l  (P < 
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Fro. 2. The effect of fibronectin (Fn) on monocyte phagocytosis. In A the phagocytosis of EA~ 
by fluid phase (1) and glass adherent (I[]) monocytes is shown as a function of Fn concentration. E 
(A) and E A ~  (A) are not ingested by monocytes in the presence or absence of Fn. In B the same 
data are shown for the ingestion of E A ~  C43b. EA~M (A) and EAIsM C4 (&) are not ingested. 
When the number of monocytes ingesting EAx~ is compared for 0 and 160/zg/ml Fn, the increase 
is only from 48% to 61%. (Inset) Most of the increased phagocytosis occurs because of increased 
ingestion by a subpopulation of the monocytes. 
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0.001). For monolayer monocytes, a plateau was reached at a lower concentration of 
Fn than for fluid phase monocytes with a maximum of 296 :t: 24.5 EAIgo ingested per 
100 monocytes at 40/~g/ml Fn. When the percentage of monocytes ingesting EAI~ 
was quantitated with and without Fn, only a small increase, from 48% to 61%, was 
observed (Fig. 2, inset). Thus, most of the increased ingestion of the antibody-sensitized 
erythrocytes resulted from more avid phagocytosis by a portion of the monocytes in 
the presence of Fn. As was the case in every experiment, gelatin-Sepharose absorption 
of the Fn abolished its effect on monocyte phagocytosis of EAIgo. When fluid phase 
monocytes were incubated under identical conditions with equivalent amounts of 
C3b, human serum albumin (HSA), and Fn, Fn caused a twofold increase in total 
ingestion of EAts ;  neither HSA nor C3b affected the ability of monocytes to bind or 
ingest EAI~. 

Effect of Fn on Monocyte Rosetting and Ingestion of EAIgM C43b. The effect of Fn on 
rosette formation and ingestion by monocytes with EAI~  C43b was examined in 
experiments analogous to those performed with EAI~. As in the case of IgG, a C3 
input was chosen in the preparation of EAxgM C43b that was less than that which 
would produce optimal rosetting with monocytes. Fn caused a dose-related increase 
in the percentage of monocytes forming rosettes from 15% to 32% with fluid phase 
monocytes, and from 18% to 40% with monolayer monocytes. No phagocytosis of 
these E bearing C3b as the only opsonin was seen in the absence of Fn for either fluid 
phase or monolayer monocytes. The inability of monocytes to ingest C3b-coated 
erythrocytes in these experiments is in agreement with previous observations (17). 
However, incubation of monocytes with Fn led to phagocytosis of EAIgM C43b by 
both fluid phase and monolayer cells. The extent of ingestion was dependent on the 
Fn input (Fig. 2B). As had been observed with EAtgG ingestion, C3b-mediated 
ingestion by Fn-treated monocytes was quantitatively greater for monolayer mono- 
cytes, and the Fn close response reached a plateau at lower concentrations of Fn. For 
both EAIgo and EAIgM C43b, addition of 0.1% gelatin to the buffer did not affect the 
Fn enhancement of phagocytosis. 

To examine whether Fn was interacting with the monocyte or the opsonized 
particle to cause ingestion, Fn was preincubated with EAIgM C43b or with monocytes 
alone and removed by washing as described in Materials and Methods. Complement- 
sensitized erythrocytes that had been preincubated with varying doses of Fn were 
mixed with monocytes that had been incubated in buffer. In other tubes, monocytes 
that had been preincubated with Fn were mixed with EAigu C43b that had been 
incubated in buffer. As a positive control, some monocytes were incubated with Fn, 
and indicator particles were added without washing, exactly as in the usual protocol. 
The results are shown in Fig. 3. Phagocytosis of EAIgM C43b occurred when monocytes 
were preincubated with Fn or when Fn was present throughout the assay. Signif- 
icantly, no phagocytosis occurred when only EAIgM C43b had been incubated with 
Fn. Thus, a direct interaction of Fn with monocytes, but not with opsonized particles, 
was required for ingestion of EAIgM C43b. 

Several experiments were performed to ensure that the biologic activity of the Fn 
preparation on monocytes was not caused by a trace contaminant in the preparation. 
The ability of gelatin-Sepharose to remove the phagocytosis-promoting activity from 
Fn preparations was examined and compared to protein-A Sepharose (because IgG 
may be a contaminant of Fn preparations [18]) (Table I). Absorption with 1 ml of 



POMMIER ET AL. 1849 

I -  >-  
L.) 
O 

g 

B 
I..- 

(,.,9 
Z 

6£ 

40 

20 

0 20 40 

f 
w 

8O 160 

FIBRONECTIN ADDED (~g/rnl) 

FIG. 3. Preincubatlon of monocytes and target cells with fibronectin (Fn). Fluid phase monocytes 
(A) or EAtgM C43b (&) were incubated with Fn for 30 rain at 37°C, washed, and then mixed with 
buffer-incubated EAIsM C43b or monocytes. As a positive control monocytes were incubated with 
Fn and then with EA~M C43b without washing (Q). Phagocytosis is plotted as a function of Fn 
concentration. Only when monocytes were exposed to Fn does erythrophagocytosis occur. 

TA~X.E I 

Effect of Affinity Absorption on the Phagocytosis-Enhancing Effect of 

Absorption 

Fibronectin (Fn)* 

Erythrocytes ingested/100 
monocytes 

EAr~ EAtc~t e4~b 

None 203 69 
Sepharose 4B-CL 210 ND* 
Protein A-Sepharose 215 72 
Gelatin Sepharose 106 0 
No Fn added 114 0 

* 200-#g aliquots of Fn, purified as described, were incubated with 1 ml of 
Sepharose 4B-CL, with protein A Sepharose, or with gelatin Sepharose. The 
absorbed supernatant was then assayed for phagocytosis-promoting activity 
using EAx~ or EA~M c4sb. Gelatin-Sepharose absorbed all phagocytosis 
promoting activity, but protein A Sepharose or Sepharose alone did not 
affect the biologic activity of the Fn preparation. 

* ND, not done. 

gelatin-Sepharose entirely removed the phagocytosis-promoting activity of 200 #g of 
the Fn preparation for EAIgG, but the activity was unaffected by passage over similar 
amounts of protein-A Sepharose or Sepharose 4B-CI alone. In fact, supernatants from 
gelatin-Sepharose-absorbed Fn were routinely used as a negative control in all 
experiments on Fn-enhanced phagocytosis of EAI~ and EAIgM C43b; rosetting and 
ingestion in these tubes never exceeded binding and phagocytosis in tubes containing 
buffer alone. 

Because of a report that the phagocytosis-enhancing effect of Fn preparations for 
alternative pathway activators resides in a 180,000-dalton co-purifying protein (19- 
21), our Fn preparation was chromatographed on a calibrated Biogel A 1.5-M column 
(Fig. 4). If  the phagocytosis-promoting activity were smaller than the Fn protein, 
fractions lighter than the main protein peak should have contained biologic activity. 
However, the biologic activity of the preparation exactly co-chromatographed with 
the 440,000-dalton protein peak. 

Because many investigators use 4 M urea to elute Fn from gelatin Sepharose (1), 
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FIo. 4. Biogel A 1.5m chromatography of purified fibronectin (Fn) and ofphagocytosis-promoting 
activity. Fn, pur i fed  as in Materials and  Methods,  was chromatographed on a calibrated Biogel A 
1.5m column. Fractions were assayed for protein concentration by absorbance at 280 nm (0) and 
for phagocytosis-promoting activity by ingestion of EAI~ after incubation of  1 × i0 s monocytes 
with 50 #1 of  the various column fractions (&). The  phagocytosis-enhancing activity coincides with 
the Fn protein peak. 
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Fro. 5. Binding o f  IgO to monocytes, x25I-IgO binding was assessed to monocytes which had been 
incubated in buffer (0) or with 20 #g /ml  Fn (A). The  binding curves for the Fn- and buffer- 
incubated cells overlie one another. Scatchard transformations of the binding curves show that the 
control cells showed an average of 28,700 IgO-binding sites per cell with Ka = 4.03 X 10 s M-l~ while 
Fn-incubated cells showed 31,900 I g ~  binding sites per cell with KI = 3.57 X 10 s M -1. These values 
for Fn- and  buffer-incubated cells are not statistically significantly different. 

this procedure was used to purify Fn, and the eluted material was examined for 
biologic activity. Although slightly less effective on a weight basis than Fn purified as 
described above, this urea-eluted material also promoted ingestion of EAI~ and 
EAI~ C43b. 
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Enumeration of Fc receptors on Fn-Treated Monocytes. To examine the possibility that 
Fn augmented EAI~ phagocytosis by increasing the expression of Fc receptors on 
monocytes, Fc receptors were enumerated in a well-characterized quantitative assay 
for the binding of monomeric monoclonal IgG1 (Fig. 5). Monocytes that had been 
incubated with 20 #g/ml  Fn for 30 min at 37°C showed no difference in IgG receptor 
number (30 × 10S/cell) or affinity (3.8 × l0 s M -x) compared to monocytes incubated 
with buffer. 

Discussion 

In 1969 Saba and DiLuzio (22) suggested that depletion of a plasma protein could 
be responsible for RES dysfunction in experimental RES blockade. This opsonie 
protein could mediate the binding of gelatin-coated particles to Kupffer cells in vivo 
and in vitro (23). Subsequent work from several laboratories showed that this protein, 
a2 opsonic surface-binding glycoprotein, was identical to cold insoluble globulin, or 
Fn (4). Recent work by Bevilacqua et al. (8) demonstrated a receptor for Fn on 
human monocytes. Taken together, these data suggested that Fn might play an 
important role in monocyte and macrophage phagocytosis. Our initial experiments 
using E showed that Fn could markedly affect monocyte binding and phagocytosis 
but  only when the erythrocytes were already opsonized. This suggested that Fn acted 
directly on the monocyte without binding to the phagocytic target, unlike conven- 
tional opsonins such as IgG or complement. In support of this hypothesis we found 
that incubation of erythrocyte targets with Fn had no effect on subsequent monocyte 
phagocytosis. 

The  process of particle phagocytosis may be divided into phases of adherence and 
ingestion. In our experiments, adherence of both IgG- and C3b-opsonized E to 
monocytes was somewhat increased by Fn, which was in agreement with the work of 
Bevilacqua et al. The more marked effect in our experiments, however, was on the 
ingestion of opsonized particles. This was particularly true for E A t ~  C43b, which 
were not ingested in the absence of Fn, but whicb were phagocytosed to the same 
extent as EAI~ when Fn was present during the incubation. Although this increase 
in phagocytosis was not found by Bevilacqua et al., the complement-coated particles 
used in their experiments were less well characterized than in ours since they used 
mouse serum rather than purified human components as a source of complement. 
Under  the conditions of incubation, it is probable that most of the C3 on their cells 
was in the form of C3bi or C3d, rather than C3b. 

A number of experiments were done to examine whether the biologically active 
molecule in our Fn preparations was native Fn. Great care was taken during 
purification of the Fn, particularly during plasma collection, to inhibit enzymatic 
degradation of native Fn. The use of denaturing buffers containing urea or guanidine 
was deliberately avoided in order to attempt to preserve the native configuration of 
plasma Fn. The biological activity of the Fn preparation was not a trace contaminant 
such as endotoxin or IgG since the activity was absorbed by gelatin Sepharose but not 
by protein A-Sepharose. Moreover, the biologic activity co-chromatographed with the 
native protein on a sieving column. These facts led us to conclude that the biologic 
activity resided in the 440,000-dalton native Fn. However, our data do not exclude 
the possibility that the tertiary structure of the Fn molecule is changed without 
cleavage during purification or that a cleavage is made that does not significantly 
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affect the mobility of the molecule on SDS-PAGE or molecular sieving, as has recently 
been suggested (24). 

Several experiments were done to characterize the mechanism by which Fn 
enhances phagocytosis. These experiments showed that fluid phase Fn influenced 
monocyte binding and phagocytosis of opsonized particles through interaction with 
the monocyte and did not require the concomitant presence of the phagocytic target 
for its effect. This presumably was mediated via a cell membrane receptor for the Fn 
molecule (8). One possible explanation for the mechanism of the Fn effect on 
monocytes is that incubation with Fn increases the membrane expression of Fc and 
C3b receptors. This hypothesis was tested in an experiment in which Fc receptors 
were enumerated, and their affinity measured, on monocytes with and without Fn 
preincubation. Fn had no effect on the number or affinity of monocyte receptors for 
monomeric IgG. Thus, by this assay, membrane expression of phagocytic receptors 
was not changed by Fn incubation. Although Fn incubation did increase the number 
of rosettes formed with EAI~, monocyte Fc receptor number does not correlate well 
with rosette formation (Fries, L., S. Inada and M. Frank, unpublished data). Griffin 
et al. (25) have presented evidence that a lymphokine causes ingestion of complement- 
coated erythrocytes by increasing the mobility of the C3 receptor in the macrophage 
membrane. It is tempting to speculate that this may also be the mechanism of action 
of Fn. Increased Fc and C3b receptor mobility in the monocyte membrane after 
incubation with Fn could explain both the observed increase in rosetting without 
increase in Fc receptor number and the increased ingestion of opsonized particles. 
Details of the mechanism by which Fn affects monocyte membranes await further 
study. 

S u m m a r y  

We have investigated the effect of plasma fibronectin (Fn) on binding and phago- 
cytosis of sheep erythrocytes (E) by human peripheral blood monocytes. Unopsonized 
E were not phagocytosed in the absence or presence of Fn, but Fn enhanced the 
phagocytosis of E bearing IgG. Sheep erythrocytes sensitized with IgM and C3b were 
ingested only when monocytes were exposed to Fn. The Fn enhancement of phago- 
cytosis occurred for both fluid-phase and glass-adherent monocytes. Experiments in 
which Fn was washed out before mixing monoeytes with opsonized E demonstrated 
that the Fn effect occurred because of interaction with the monocytes and not the 
opsonized particles. Chromatography of the Fn on Biogel A 1.5m showed that the 
phagocytosis-enhancing activity exactly co-chromatographed with the Fn protein. Fn 
did not increase the number of monocyte membrane receptors for the Fc fragment of 
monomeric IgG. We conclude that Fn enhances monocyte phagocytosis, not by 
binding to particles as a conventional opsonin, but by stimulating monocytes to ingest 
already opsonized particles more avidly. 

The authors wish to thank Karen Leighty for excellent editorial assistance. 
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