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1  |  INTRODUC TION, RESULTS AND 
DISCUSSION

Hypothalamic dysfunction increasingly is recognized as an import-
ant contributor to systemic aging (Chellappa et al., 2019; Debarba 

et al., 2022; Sadagurski et al., 2017; Sadagurski, Landeryou, Cady, 
Bartke, et al.,  2015; Sadagurski, Landeryou, Cady, Kopchick, 
et al., 2015; Wang et al., 2021; Zhang et al., 2013; Zhang et al., 2017). 
In male mice, systemic aging was accelerated by dysregulated hy-
pothalamic secretion of gonadotropin releasing hormone (GnRH) 
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Abstract
Hypothalamic integrity increasingly is being recognized as a marker of healthy longev-
ity in rodent models. Insight into hypothalamic function in humans with exceptional 
longevity can be gained via investigation of the hypothalamic–pituitary-testicular 
(HPT) axis in men with exceptional longevity. This study aimed to characterize the 
HPT axis function, defined by levels of testosterone (T) and luteinizing hormone 
(LH), in 84 Ashkenazi Jewish men aged 90–106 years. We found that 94% of men 
exhibited preserved hypothalamic–pituitary function, as evidenced by either normal 
testosterone and LH levels (25%) or an appropriate rise in LH in response to aging-
related primary testicular dysfunction (69%), a hormone pattern mirroring female 
menopause. Total T level was not associated with metabolic parameters or survival. 
These results demonstrate a high prevalence of testicular dysfunction with preserved 
hypothalamic–pituitary function in men with exceptional longevity. Thus, the role of 
hypothalamic integrity and HPT axis in healthy aging warrants further investigation.
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(Wang et al., 2021). Hypothalamic GnRH controls the hypothalamic–
pituitary-testicular (HPT) axis, whereby GnRH secreted from the 
hypothalamus stimulates the pituitary gland to make luteinizing 
hormone (LH), which in turn stimulates the testes to produce tes-
tosterone (T). T acts on the hypothalamus and pituitary via nega-
tive feedback to inhibit GnRH and LH production, respectively 
(Handelsman,  2000). A drop in T results in loss of negative feed-
back and elevations in GnRH and LH. Although hypothalamic 
GnRH cannot be measured in humans directly, due to its pulsatile 
secretion and low circulating levels, its production can be inferred 
from measurements of circulating LH and T. Low T level that is not 
accompanied by compensatory secretion of GnRH and LH (Tajar 
et al., 2010) is indicative of hypothalamic dysfunction. In contrast, 
a compensatory rise in LH in response to age-related testicular 
dysfunction is indicative of preserved hypothalamic function. This 
compensatory hypothalamic–pituitary response may be sufficient 
to maintain normal T levels in men with age-related testicular dys-
function, manifesting as compensated testicular dysfunction, or may 
be insufficient, resulting in overt testicular dysfunction, similar to 
female menopause (Tajar et al., 2010). Studying the integrity of the 
HPT axis in men with exceptional longevity, who delay the onset of 
age-related diseases, can offer insight into the role that the hypo-
thalamus plays in resilience to aging in humans. We hypothesized 
that healthy longevity in men will be associated with a preserved 
hypothalamic response to age-related testicular dysfunction. Thus, 
we performed the largest study till date that evaluated the integrity 
of the HPT axis in nonagenarian and centenarian men.

The study included 84 Ashkenazi Jewish men, age 90–
106 years, from the Longevity Genes Project cohort (Atzmon 
et al., 2004); Table 1), with available sera collected at enrolment. 
Measurements included total testosterone (TT) by LC/MS, calcu-
lated free T (Vermeulen et al., 1999), LH and sex-hormone bind-
ing globulin (SHBG). In the results that follow (Figure 1), low TT 
level was defined as Centers for Disease Control (CDC)-adjusted 
TT level (Travison et al.,  2017; Appendix S1) below the 2.5th 

percentile for CDC-harmonized levels for young men (264 ng/
dl) (Bhasin et al., 2018). Elevated LH levels were defined based 
on upper reference limit (Tajar et al.,  2010) provided by Quest 
Laboratories (9.3 mIU/ml). Only 6% of men had evidence of hy-
pothalamic dysfunction (low TT and non-elevated LH). The re-
mainder of men had hormonal patterns consistent with normal 
hypothalamic regulation of the HPT axis. Twenty-five percent had 
normal TT and LH levels while the rest of the men demonstrated 
preserved hypothalamic response to testicular dysfunction: 37% 
had overt testicular dysfunction (low TT and elevated LH) and 
32% had testicular dysfunction that was compensated by an in-
creased hypothalamic–pituitary response (normal TT and elevated 
LH). To discern between longevity vs. end-of-life phenotypes, we 
performed a sensitivity analysis by excluding men who died within 
1 year of enrolment and found a similar distribution of sex hor-
mone phenotypes (Table S1).

Multivariable linear regression model that included age and a 
priori selected metabolic variables did not show significant associa-
tions between TT levels and body mass index (BMI) (p = 0.83), serum 
triglycerides (p = 0.87), HDL cholesterol (p = 0.78), LDL cholesterol 
(p = 0.20) or random glucose levels (p = 0.59) (Table S2). Adjustment 
for SHBG, a carrier protein for T whose concentrations increase with 
age (Yeap et al., 2007), did not meaningfully affect the associations 
(Table S3). Cox proportional hazard analysis in men with known vital 
status (n  =  78) demonstrated that TT was not statistically signifi-
cantly associated with survival after adjusting for age (HR = 1.00, 
95% CI: 0.87–1.17, per 100 ng/dl difference in TT).

Evidence from male rodents (Gruenewald et al.,  2000; Wang 
et al.,  2021) and men (Takahashi et al.,  2005) demonstrates that 
aging is associated with dysregulation of hypothalamic GnRH pulses. 
While it remains challenging to directly evaluate disruption of hy-
pothalamic GnRH pulses in humans, there is abundant epidemio-
logic evidence that metabolically unhealthy aging, characterized 
by obesity (Travison et al.,  2007) and diabetes mellitus (Dhindsa 
et al.,  2010), exacerbates hypothalamic dysregulation of the HPT 
axis. Clinically, these changes manifest as low T without compen-
satory LH response, indicative of hypothalamic dysfunction and are 
present in 11% of men from the general population age 40–79 years 
(Tajar et al., 2010). By contrast, only 6% of men in this study exhibited 
the absence of hypothalamic response to low T, despite being mark-
edly older than the previously studied cohorts (Tajar et al., 2010). A 
decline in T observed in men with exceptional longevity in our co-
hort predominantly resulted from testicular dysfunction, which has 
been attributed to the loss of Leydig cell mass (Neaves et al., 1984), 
reduced steroidogenic capacity (Luo et al., 2001) and impairments in 
testicular microenvironment (Curley et al., 2019). Our findings indi-
cate that sex hormone patterns resembling menopause are common 
in men with exceptional longevity, but these changes occur decades 
later than in women.

Whether impaired testicular function with preserved hypotha-
lamic response impacts health at extreme age is yet to be fully eluci-
dated in longitudinal studies. Nonetheless, our results indicate that 
low TT may not be associated with unfavourable metabolic profile 

TA B L E  1 Participant characteristics (n = 84)

Age, years 97.2 ± 3.1

Community dwelling, % 67

BMI, kg/m2 (n = 72) 23.4 ± 3.0

Total testosterone, ng/dl 279 ± 176

CDC-adjusted to5tal testosterone, ng/dl 287 ± 181

Free testosterone, ng/dl 3.3 ± 2.1

LH, mIU/ml (n = 81) 14.7 (7.3–25.5)

SHBG, nmol/L 72 ± 23

Total cholesterol, mg/dl (n = 82) 174 ± 42

Triglycerides, mg/dl (n = 82) 130 ± 66

LDL cholesterol, mg/dl (n = 82) 98 ± 36

HDL cholesterol, mg/dl (n = 82) 50 ± 14

Random plasma glucose, mg/dl (n = 83) 100 ± 2

Note: Data are mean ± SD, except for LH (median [IQR]). Number in 
parenthesis (n) indicates men with available data when data are missing.
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or mortality in men with exceptional longevity, who predominantly 
preserve the neuroendocrine response to age-related testicular 
dysfunction. The role of the neuroendocrine system and its main 
regulator, the hypothalamus, in healthy aging is being increasingly 
recognized. In rodents, hypothalamic inflammation and suppressed 
GnRH secretion resulted in accelerated aging, whereas inhibition of 
hypothalamic inflammation and treatment with GnRH delayed aging 
(Zhang et al., 2013). In humans, disruptions in structural integrity of 
the hypothalamus have been implicated in insulin resistance (Schur 
et al., 2015), obesity (Thomas et al., 2019) and male hypogonadism 
(Berkseth et al., 2018).

Extrapolation of our findings to the general population is lim-
ited by survivor bias; however, the focus of this study was on the 
phenotype of exceptional longevity. Observed sex hormone phe-
notypes may be a feature of exceptional longevity or a harbinger 
of impending death; however, we observed similar distribution of 
sex hormone phenotypes when men who died in the first year of 
follow-up were excluded, suggesting that the observed phenotypes 
are features of longevity. While experimental dynamic testing may 
provide more nuanced assessment of hypothalamic function, such 
invasive testing would not be practical in men with exceptional lon-
gevity; therefore, we used LH response to testicular dysfunction as a 
surrogate of hypothalamic integrity, as has been established in clini-
cal practice. Although the samples were not collected in fasted state 
or early morning, the impact on results is likely modest since circa-
dian rhythm (Bremner et al., 1983) and prandial fluctuations (Van 
de Velde et al.,  2020) of T secretion are attenuated in older men. 
Furthermore, LH does not display significant circadian variation 
(Brambilla et al.,  2009); thus, the rise in LH coupled with reduced 
T levels was indicative of true low T with reciprocal hypothalamic–
pituitary compensation. A major strength of the study is that it in-
cluded the largest number of nonagenarians and centenarians of any 

study to date that evaluated the HPT axis, thus providing a window 
into the integrity of the HPT axis in exceptionally long-lived men.

In conclusion, our study demonstrated a high prevalence of 
testicular dysfunction accompanied by a preserved hypothalamic–
pituitary response in men with exceptional longevity, indicative of 
preserved hypothalamic integrity. Future longitudinal studies are 
warranted to establish the role of the HPT axis as a biomarker for 
healthy longevity.
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