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Abstract

Genome annotation is the process of identifying the location and function of a genome’s

encoded features. Improving the biological accuracy of annotation is a complex and iterative

process requiring researchers to review and incorporate multiple sources of information

such as transcriptome alignments, predictive models based on sequence profiles, and com-

parisons to features found in related organisms. Because rapidly decreasing costs are

enabling an ever-growing number of scientists to incorporate sequencing as a routine labo-

ratory technique, there is widespread demand for tools that can assist in the deliberative

analytical review of genomic information. To this end, we present Apollo, an open source

software package that enables researchers to efficiently inspect and refine the precise struc-

ture and role of genomic features in a graphical browser-based platform. Some of Apollo’s

newer user interface features include support for real-time collaboration, allowing distributed

users to simultaneously edit the same encoded features while also instantly seeing the

updates made by other researchers on the same region in a manner similar to Google Docs.

Its technical architecture enables Apollo to be integrated into multiple existing genomic anal-

ysis pipelines and heterogeneous laboratory workflow platforms. Finally, we consider the

implications that Apollo and related applications may have on how the results of genome

research are published and made accessible.

This is a PLOS Computational Biology Software paper.

Introduction

Apollo’s design is based on the premise that the best genomic descriptions (‘annotations’) can

be produced by starting with automatically-generated sequence features and then providing

expert researchers with interactive editing tools to examine these multiple sources of evidence

and collaboratively refine the genomic annotations. The first version of Apollo was a stand-

alone desktop application [1]. As software technologies advanced, each new generation of

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006790 February 6, 2019 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dunn NA, Unni DR, Diesh C, Munoz-

Torres M, Harris NL, Yao E, et al. (2019) Apollo:

Democratizing genome annotation. PLoS Comput

Biol 15(2): e1006790. https://doi.org/10.1371/

journal.pcbi.1006790

Editor: Aaron E. Darling, University of Technology

Sydney, AUSTRALIA

Received: November 30, 2018

Accepted: January 10, 2019

Published: February 6, 2019

Copyright: © 2019 Dunn et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Apollo (https://

github.com/GMOD/Apollo) is licensed under BSD-

3. It can be built from source, and is also available

via docker (https://github.com/GMOD/docker-

apollo). It requires a Java Development Kit (JDK)

1.8 and Node.js 6 or better. We also provide a User

Guide, a public demo (http://genomearchitect.org)

and information about joining our mailing list

(apollo@lists.lbl.gov).

Funding: This work was funded by R01-

GM080203 from the National Institute of General

Medicine Sciences (https://www.nigms.nih.gov/)

http://orcid.org/0000-0002-4862-3181
http://orcid.org/0000-0002-3583-7340
http://orcid.org/0000-0001-8430-6039
http://orcid.org/0000-0001-6315-3707
http://orcid.org/0000-0002-1472-1832
http://orcid.org/0000-0001-9760-8992
http://orcid.org/0000-0002-4248-7713
https://doi.org/10.1371/journal.pcbi.1006790
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006790&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006790&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006790&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006790&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006790&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006790&domain=pdf&date_stamp=2019-02-19
https://doi.org/10.1371/journal.pcbi.1006790
https://doi.org/10.1371/journal.pcbi.1006790
http://creativecommons.org/licenses/by/4.0/
https://github.com/GMOD/Apollo
https://github.com/GMOD/Apollo
https://github.com/GMOD/docker-apollo
https://github.com/GMOD/docker-apollo
http://genomearchitect.org
mailto:apollo@lists.lbl.gov
https://www.nigms.nih.gov/


Apollo took advantage of these to improve the user experience. The most fundamental change

occurred circa 2010 when Apollo transitioned to running inside a web browser [2]. Once

Apollo became a web-based application that permits real-time collaboration, the user base

grew to include research and teaching environments studying a wide variety of species. Our

most recent version of Apollo [3] offers a broad range of researchers an accessible way to

improve the biological precision of their genomic feature descriptions.

Organizations that use Apollo include Echinobase [4], Hymenoptera Genome Database [5],

i5k Workspace [6], PhytoPath [7], TreeGenes [8], Vectorbase [9] and XenBase [10]. To date,

the i5K Workspace has supported publication of seven insect genomes that were manually

curated with Apollo [11–17]. Other projects that have used Apollo include genomes of addi-

tional insects [18–20], human parasites [21–23], birds [24,25], the sea lamprey [26], plants

[27–29], fungi [30–35] and a plant pathogenic nematode [36]. Projects such as the re-annota-

tion of the whipworm genome by hundreds of high school students in the UK, supported by

the Institute for Research in Schools (IRIS) [37], and the curation of 33,044 gene loci in the

kiwifruit genome by 93 annotators, are evidence of Apollo’s robust support for large dispersed

projects.

The ease of setting up Apollo makes it appealing to small projects as well as large. For exam-

ple, one small group used Apollo to annotate 14 genes of a fungal mitochondrial genome [32].

Other reported Apollo use cases include annotating gene loci that pose challenges in auto-

mated gene prediction, such as the MHC-B region in the genome of the Mikado pheasant [25]

and the effector complement of the flax rust pathogen Melampsora lini [33]. Through the pro-

cess of gene model curation, the use of Apollo can reveal species-specific genome characteris-

tics that can be used to improve automated gene prediction. For example, curation of some

gene models of the yellow potato cyst nematode, Globodera rostochiensis, using RNAseq align-

ments as evidence, revealed a high frequency of non-canonical splice sites. Subsequent use of

these manually curated genes as a training set markedly improved the automated gene predic-

tions [36].

Thanks to its ability to simplify and accelerate annotation efforts for both large and small

projects, Apollo’s user base continues to grow. Since 2015, Apollo has had an annual growth

rate of roughly 70% for returning users, peaking at over 2,700 unique users one day in late

2017, with a current average of around 1,000 unique users per month.

Apollo’s integrated graphical environment allows users to browse and modify the location

(s) and other information for a variety of feature types and streamlines common editing tasks

by providing built-in calculations for features such as predicted proteins, splice sites, and gene

set membership. An overview of the interface is shown in Fig 1.

To briefly describe the basic capabilities, Apollo’s Genomic Editing Workspace (bottom left

of Fig 1) displays tracks of information gathered from upstream pipelines and individual users’

analyses. These provide the evidence (predictions and alignment) for refining genomic anno-

tations. Any combination of features can be dragged from the evidence area into the editable

area, where researchers carry out their edits without affecting the features from the evidence

area. When evidence features are dropped into the editable track, they are assigned a default

feature type of “protein coding transcript” and the longest open reading frame is automatically

calculated, as well as its gene membership based on overlap with the CDS in the same reading

frame as existing transcripts. Exon boundaries can be set either by dragging them upstream or

downstream, or by using a menu option to set them to the nearest upstream or downstream

splice junction (these are automatically calculated based on the configured donor and acceptor

dinucleotides).

Apollo provides several ways to customize the display. From the track tab, in the informa-

tion and administration panel on the right, users can select the specific evidence tracks they
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want to view, categorize and filter tracks, and change the track order. The annotation tab lists

every annotation across the genome, and can be searched by scaffold, identifier, researcher, or

biological type. Information such as the gene symbol, description, cross-references, Gene

Ontology functional class, links to publications, or general comments on each annotation may

also be added from this tab. The reference sequence tab provides a sortable and searchable list

of every scaffold, including the length, name, and number of annotations on each, for naviga-

tion across the genome.

Design and implementation

Apollo’s design has always been driven by its users; their engagement in the development pro-

cess has been a critical factor in Apollo’s success. Over time the demographic of Apollo users

has changed, with concomitant changes to Apollo’s requirements. Notably, as sequencing

costs have fallen, there are now a burgeoning number of projects targeting specific organisms,

clades, or populations that frequently lack the funds or expertise to create their own software

tools from scratch and are therefore reliant on available open source applications. Because

members of these projects may be geographically distributed, they need tools that enable real-

time collaborative editing. Additionally, annotating the effects different variants have on

known genes has become a high priority research focus. And finally, particularly for

Fig 1. The Apollo Genome Editor has two main panels: A Genomic Editing Workspace and a closeable Information and Administration Panel

which contains a range of configurable tabs. Within the Genomic Editing Workspace, the Navigation Area offers several ways to move to a region of

interest. A user may: move upstream or downstream in fixed units; zoom in or out; or enter the coordinates or feature identifier to center on an exact

genomic location. The Evidence Area contains data imported from local or remote files. In the Editing Area users can create annotations by dragging up

evidence to create editable features of various types: coding and non-coding transcripts, pseudogenes, repeat regions, transposons, variant calls,

transcription and translation start sites, and others. In the above example, the evidence area shows that there are reads spanning across exons that belong

to two separate, previously known transcripts—NM_001192578.2 and XM_002689480.4. In the editing area, we add these known transcripts as

annotations and then merge the two transcripts to create a single transcript. This newly created annotation then goes through additional refinements, to

ensure that the transcript is a faithful representation of the evidence observed.

https://doi.org/10.1371/journal.pcbi.1006790.g001
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collaborative projects, tracking the complete annotation history is crucial, not only for undo/

redo operations but also to review the changes that have been made over time by different

individuals.

Real-time collaborative editing

Apollo was designed with a standard client-server architecture (Fig 2) that can be run within a

servlet container (e.g., Tomcat) and works with most relational database engines (e.g., Post-

greSQL). The architecture provides a uniform authorization layer for external applications

using its web services. For example, the i5K’s project management software leverages Apollo

web services to register new users and set appropriate user and group membership. The newly

added users then have the necessary credentials to perform manual edits or utilize the same

web services, allowing them to perform operations such as uploading bulk annotations.

Apollo’s client interface is built as a JBrowse [38] plugin, a popular genome browser written

in JavaScript. It provides the ability to import and export standard genomic data formats, flexi-

ble display of multiple types of genomic features, and fast scrolling and zooming. The primary

editing client is a single-page application that embeds JBrowse. The server is built using Grails

[39], an open source framework for developing web applications using Groovy [40] and other

JVM languages. The Grails framework enables us to leverage well established technologies

such as Spring (https://spring.io) for event control, the Grails Object Relational Mapper

(GORM), Hibernate (http://hibernate.org) for efficiently mapping data objects to a backend

persistent store, Ivy and Maven for build and plugin dependencies, and Grails plugins for secu-

rity and navigation. Communication between the client and the server is provided through a

REST API secured by the Apache Shiro library (https://shiro.apache.org/). To support integra-

tion into larger workflows, the web services that support user-interface functionality are fully

exposed.

Concurrent editing by multiple users is implemented via WebSockets. WebSockets are

well-supported in most recent web browsers and are an ideal technology to support push oper-

ations to all connected clients efficiently in real-time. Once a user’s client connects to the

server, WebSockets keep the line open for subsequent communication, including any struc-

tural and functional editing operations. This makes every annotation update in one client

instantaneously visible in every other client. Apollo uses the STOMP (Streaming Text Oriented

Messaging Protocol) protocol which uses a publish and subscribe communication style, mini-

mizing communication overhead. WebSockets provide a robust and performant solution for

pushing updates to multiple web clients that can fall back to a more traditional long-polling

approach when client support is lacking as in older browsers.

Variants

In addition to allowing genomic features to be viewed and edited, Apollo provides the ability

to annotate alterations in the underlying genomic sequence and visualize their impact (Fig 3).

These may be assembly error corrections, to correct errors introduced in the sequencing and/

or assembly process (a common issue when dealing with low-coverage genome sequences). Or

these may be naturally occurring variants, genomic differences found among different mem-

bers of a population. The effect of the annotated variants are reflected within the annotated

genomic features they intersect with.

Annotation history

As researchers progressively refine the sequence features on a genomic region, information is

automatically recorded for every change they make: what change was made; the time and date
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Fig 2. Apollo’s client-server architecture. The server is built over the Grails framework using a relational database backend (RDBMS), for example PostgreSQL,

MySQL or H2. Genomic evidence is provided by pointing to existing JBrowse directories that contain processed biological data. The Apollo Genome Editor and Web

Services clients communicate with the server via REST and WebSockets.

https://doi.org/10.1371/journal.pcbi.1006790.g002
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of the change; and the username (or email) of the editor. This edit history was a key design

requirement, ensuring that all changes made are captured in a revertible, visual history of

structural edits (Fig 4), which lets users graphically navigate through the different versions and

roll back if necessary.

Results

Apollo’s wide appeal across research projects of various sizes that focus on various organisms

owes much to the many years of engagement between Apollo developers and its user commu-

nity. In working with its users to maximize Apollo’s utility for their breadth of organisms and

purposes, it became clear to the development team that successful widespread uptake of Apollo

depends on ensuring 1) reliable scalability so it can transparently handle very large genomes,

a large number of genomes, and multiple users; 2) smooth integration into each group’s tech-

nical environment; 3) a range of customization to accommodate different biological situations

Fig 3. Example of variant annotation in Apollo. A) AMPD2-223, an isoform of gene AMPD2 as seen from the Evidence Area (truncated for space).

From AMPD2-223, an isoform is dragged into the Editing Area. B) The deletion variant rs1085307727, from the ‘Homo sapiens Clinically associated

variants’ track, overlaps with AMPD2-223-00001. Creating a corresponding deletion in the Editing Area of the Sequence Track allows visualization

of the effect of the variant on transcript AMPD2-223-00001. Here, the transcription start site has moved further downstream, as indicated by the red

dashed line. In this case, the altered form of the transcript recapitulates other alternate isoforms for this gene (AMDP2-218 and AMPD2-222), which

are circled and starred for clarity.

https://doi.org/10.1371/journal.pcbi.1006790.g003
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and project arrangements; and 4) direct engagement with users to encourage feedback and

support community contributions.

Scalability

One of the major objectives when designing the architecture of the current version of Apollo

was the ability for a single server to handle different dimensions of scale, whether it is thou-

sands of genomes or large numbers of simultaneous users. We have encountered situations

where a research group is studying many species in a particular clade; large, geographically dis-

tributed teams focused on a particular genomic region; and many students in a class working

on team projects. Minimal requirements for Apollo are at least 500 MB of memory, or as

much as several GB for optimal performance. However, with that allocation, we have opti-

mized Apollo such that a single server can be successfully scaled to support several hundred

genome projects and researchers. We tested and improved Apollo’s performance and reliabil-

ity via a combination of improved algorithms, optimized I/O requests, and more efficient data-

base queries. As part of the testing process, we used a test suite that utilized the Apache JMeter

load test tool, allowing the tool to simulate extraordinarily heavy read and write load over a

sustained period. Additionally, we were able to scale up by modeling all organisms and users

in a single database instance.

Ease of integration

Biological data and tools do not exist in a vacuum. To enjoy wide use, bioinformatics environ-

ments such as Apollo need to be able to smoothly integrate with multiple analysis tools and

user interfaces.

Web services

Documented and secure web services are key to integrating any software into different bioin-

formatics ecosystems. Apollo exposes the methods used to drive the user interface as a web ser-

vice, as well as providing services that support integration into different laboratories’ existing

environments. All methods are secured and require the same user permissions they would

from the interactive browser application. Web services documentation is automatically gener-

ated from annotations within the software. There are many workflow environments that

Apollo has been integrated into, typically after multiple alignment, filtering, and automated

Fig 4. The history navigator allows visual navigation of genomic edits as well as the ability to return to previous

versions. The current version is indicated with a bookmark icon (in the Revert column). Users can select any version

from the history, and make edits starting from that version if desired. The orange circles with an exclamation point

indicate non-canonical splice sites.

https://doi.org/10.1371/journal.pcbi.1006790.g004
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genome annotation steps. These environments include Galaxy [41] via the G-OnRamp project

[42], GenSAS [43,44], DNA Subway [45], and the i5K workspace [6]. The i5K project leverages

the user registration services, and the Galaxy Genome Annotation (GGA) project [46] auto-

matically generates new projects in Apollo from data created via its biological workflow. The

GGA project also provides a Python library for interacting with the Apollo API [47] and is

used by projects such as BioInformatics Platform for Agroecosystem Arthropods (BIPAA)

[48] and Texas A&M University Center for Phage Technology (TAMU-CPT) [49].

Import and export

Importing new information as it becomes available is essential for revealing additional geno-

mic insights. Likewise, exporting the curated annotations provides corrected information for

downstream analysis, such as protein motif profiling. In either direction, a variety of standard

genomic data formats, such as GFF3, BAM, GTF, GVF, GenBank, VCF, BED, BigWig, or the

Chado database [50] are supported. These import/export capabilities are also available via a

REST endpoint for direct programmatic use in other applications. Additionally, JBrowse has a

large number of other input/output plugins, and associated visualization widgets, (https://

gmod.github.io/jbrowse-registry/), which can be made available within Apollo.

Customization

Apollo’s collection of configuration options enable it to meet the unique biological and organi-

zational needs of individual projects. Options include: which organism genomes the server

will host; the appropriate codon translation table to use for each genome; organism-specific

acceptor and donor sites; how deep the ‘undo’ stack should be; which algorithm to use when

determining if transcripts are isoforms of the same gene; and many others.

In addition to the particular biological configuration, each project can specify the permis-

sions granted to specific users or user-groups that may correspond, for example, to a labora-

tory or organism within a larger project. For more information about configuring Apollo, see

http://genomearchitect.org/users-guide/.

Community contributions

As it has evolved, Apollo has greatly benefited from community contributions via bug reports,

comments, feature suggestions, as well as directly from code changes submitted by external

developers via pull requests. Many of Apollo’s newer features are based on contributions from

or joint development projects with members of the bioinformatics community. One recent

example was the creation of the Genome Feature Widget (https://www.npmjs.com/package/

genomefeaturecomponent) to provide a lightweight overview of genomic features in order to

embed them within a web page. Working with external developers at the Human Phenotype

Ontology [51] the Mouse Genome Database [52] and Wormbase [53], we expanded the Apollo

web services to serve pieces of genomic evidence as JSON snippets that can be digested by the

widget. The Genome Feature Widget is now being used by the Monarch Initiative [54] and the

Alliance of Genome Resources (AGR) [55] in some of their web pages (Fig 5A, Fig 5B), as well

as to embed Apollo visualizations in other platforms such as Jupyter Notebooks (Fig 5C).

Other examples of community contributions include addition of an "Instructor" administrator

role to allow a teacher who does not handle the administration of the the project to more easily

use Apollo in classes. Additionally, users have added web services, the ability to select tracks,

and numerous build improvements.
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Availability and future directions

Availability

Apollo is freely available (https://github.com/GMOD/Apollo) under the BSD-3 license. A User

Guide and demo are provided at http://genomearchitect.org/, while numerous configuration

directions are documented (https://genomearchitect.readthedocs.io/en/latest/). We welcome

improvements submitted as GitHub pull requests by the community.

Fig 5. Three demonstrations of the Genome Feature Component npm widget (https://www.npmjs.com/package/genomefeaturecomponent) show

examples that leverage Apollo’s web services by consuming snippets of data for particular regions. A) The Alliance for Genome Resources web page

(https://www.alliancegenome.org/gene/HGNC:1100) visualizes the Human BRCA1 gene. B) the Monarch Initiative (https://monarchinitiative.org/) web

page visualizes the human IL2 gene. C) We embed the npm widget within a Jupyter Notebook widget to be called directly from a Python command-line

script.

https://doi.org/10.1371/journal.pcbi.1006790.g005
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• A local installation of Apollo requires Java JDK 1.8+ and Node.js 6+. Installing, running,

and testing are all accomplished using a provided bash script. We also provide a complete

Docker implementation [56]. Additionally, after every Apollo release, an Amazon Web Ser-

vices EC2 public image is provided.

Future directions

As we work to increase Apollo’s repertoire of visual exploration and visual analytics tools, sev-

eral major enhancements are currently under development. First is improving the visualiza-

tion of variants and their predicted effects to help in identifying disease-causing variants

across diverse groups. Second is sequence coordinate transforms, which will combine different

sequence regions into a single, synthetic region. This will allow the visualization of two or

more genomic regions, from the length of entire chromosomes to just a few exons, within a

single artificially constructed genomic region. Artificially joining scaffolds facilitates annota-

tion of genomic features that were split in a fragmented assembly, or it can hide intra- and

intergenic regions to provide a more densely information-rich visualization of the genome.

Additionally, we plan to simplify the annotation workflow by eliminating the need for manual

server-side preprocessing of genomes and genomic evidence during initial installation and

allowing all configuration to be done via the web interface. Finally, we are hoping to further

improve Apollo’s performance by using graph databases.

Graph databases for performance improvement. Apollo relies on a traditional relational

database, a well-established and performant technology that provides schema enforcement

and transaction support, which are both requirements for a reliable curation tool. Genomic

features are represented using a nested data model similar to Chado [50] and thus require mul-

tiple joins in order to retrieve them from the database, which is inherently inefficient, espe-

cially over larger sections of the genome. This is problematic if a user wants to promote an

entire evidence track to the editing window, an operation which vastly simplifies downstream

merging of evidence. While denormalization is possible, the data is constantly changing due to

edits, requiring a cascade of changes to ensure consistency. A coming solution, and one which

improves the modeling of the data, will be to replace the relational database with a graph data-

base. Experiments have suggested that they offer an order of magnitude speedup while still

providing schema enforcement, transaction support, and a more adaptive schema.

Genome publication. The plummeting price of sequencing is leading to an explosion of

genomic sequencing. This in turn is producing a growing trove of information from which to

gain insights into each new genome’s encoded features. Projects such as the joint Wellcome

Trust Sanger Centre and Beijing Genome Institute project to sequence every vertebrate

genome [57] are the tip of the iceberg. While large genomic resource centers may have funding

for staff members to maintain genome curation efforts for a handful of organisms, this will not

scale to the annotation effort needed to cover the rapidly accumulating genomes of other

organisms or strains. Annotation on this larger scale requires contributions from a much

wider community of researchers, who have the biological expertise to improve annotations,

but require an efficient user interface that is collaborative and accessible through a web

browser. Apollo provides a free, open source annotation platform that these researchers can

integrate into their workflow, thereby helping to democratize the process of genome

annotation.

Frequently, when a genome analysis project is completed, gene annotations and metadata

generated during the life of the project become inaccessible to other researchers unless they

are integrated into a stably supported central resource [58]. To overcome this, annotations

could be saved to a central track hub registry (such as Ensembl or UCSC), as a read-only
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JBrowse snapshot of the annotations. This would not only preserve the data in a GFF3 file, but

would also offer a means of viewing it. A JBrowse registry hub, where indexed snapshots are

listed, would ensure the long-term preservation of the evidence trail that supports each annota-

tion and its micro-attribution. This archive methodology has been shown to be successful

within the G-OnRamp group’s Galaxy workflow (https://github.com/goeckslab/jbrowse-

archive-creator).

Expanding on the idea of the track hub ‘publication’ of a genome, Apollo establishes a new

data capture and dissemination paradigm that can benefit the individual researcher as well as

the wider community. By recording their genome annotations precisely, Apollo makes it possi-

ble for researchers to claim professional credit for their work when it is utilized in subsequent

research. Citable contributions could derive from creation, structural changes, and for enrich-

ing an annotation with additional information such as the biological function associated with

a gene. The annotations produced by a particular author, identified in Apollo by their Open

Researcher and Contributor ID (ORCID, https://orcid.org/), would become citable micro-

publications, and could be included in data exports to show the provenance of the annotations.

A ‘genome press release’ in which the contributors release a summary of their genome annota-

tion set findings would bring the annotations of new organisms and clades to the attention of

the wider community and provide appropriate credit to the authors.
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