
BBA Clinical 5 (2016) 25–28

Contents lists available at ScienceDirect

BBA Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /bbac l in
Targeted lipidomics distinguishes patient subgroups in mild cognitive
impairment (MCI) and late onset Alzheimer's disease (LOAD)
Paul L. Wood a,⁎, Victoria A. Locke a, Patrick Herling a, Angelina Passaro b, Giovanni B. Vigna b, Stefano Volpato b,
Giuseppe Valacchi c, Carlo Cervellati d, Giovanni Zuliani b

a Metabolomics Unit, Dept. of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752,
United States
b Medical Science Dept., Cardiopulmonary and Internal Medicine, University of Ferrara, Ferrara, Italy
c Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
d Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy
⁎ Corresponding author.
E-mail address: paul.wood@lmunet.edu (P.L. Wood).

http://dx.doi.org/10.1016/j.bbacli.2015.11.004
2214-6474/© 2015 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 15 September 2015
Received in revised form 3 November 2015
Accepted 11 November 2015
Available online 14 November 2015
Background:Diverse research approaches support the concept that a clinical diagnosis of Late-Onset Alzheimer's
Disease (LOAD) does not distinguish between subpopulations with differing neuropathologies, including
dementia patients with amyloid deposition and dementia patients without amyloid deposition but with cortical
thinning. Mild cognitive impairment (MCI) is generally considered the prodromal phase for LOAD, however,
while a number of studies have attempted to define plasma biomarkers for the conversion of MCI to LOAD,
these studies have not taken into account the heterogeneity of patient cohorts within a clinical phenotype.
Methods: Studies of MCI and LOAD in several laboratories have demonstrated decrements in ethanolamine
plasmalogen levels in plasma and brain and increased levels of diacylglycerols in plasma and brain. To further
extend these studies and to address the issue of heterogeneity in MCI and LOAD patient groups we investigated
the levels of diacylglycerols and ethanolamine plasmalogens in larger cohorts of patients utilizing, high-
resolution (0.2 to 2 ppm mass error) mass spectrometry.
Results: For the first time, our lipidomics data clearly stratify bothMCI and LOAD subjects into 3 different patient
cohorts within each clinical diagnosis. These include i) patients with lower circulating ethanolamine
plasmalogen levels; ii) patients with augmented plasma diacylglycerol levels; and iii) patients with neither of
these lipid alterations.
Conclusions: These represent the first serum biochemical data to stratify MCI and LOAD patients, advancing
efforts to biochemically define patient heterogeneity in cognitive disorders.
General significance: Lipidomics offers a new approach for identifying biomarkers and biological targets in cognitive
disorders.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Since cognitive testing lacks the sensitivity required to detect the
pre-symptomatic stages of LOAD, researchers continue to search for bio-
markers of pre-MCI, MCI, and LOAD [1]. However, there currently are no
validated biomarkers for the early detection of MCI or LOAD [2]. In the
search for biomarkers of cognitive dysfunction it is essential for
researchers to address the complex issue of patient heterogeneity in
clinically defined MCI and LOAD patient populations [3–5]. Lipidomics
is a powerful analytical platform that is being utilized to address this
. This is an open access article under
complexity [6–17]. While a number of lipid alterations have been
reported in LOAD, significant discrepancies between laboratories need
to be resolved and a number of reported lipid changes require further
validation. This literature has been reviewed a number of times but is
restricted to LOAD with minimal available lipidomics data for MCI
subjects [1,6,14–15,18–19]. However, previous studies of LOAD have
consistently demonstrated decrements in ethanolamine plasmalogen
(PlsEs) levels in plasma [7–11] and brain [11–16] and increased levels
of diacylglycerols (DAGs) in plasma [10–11,17] and brain [11–15].
Pilot studies of MCI plasma and brain also have detected elevated levels
of DAGs [10–11], suggesting a role early in the disease process. To
extend these observations we performed a targeted high-resolution
mass spectrometric analysis of plasma DAGs and PlsEs in larger cohorts
of MCI and LOAD subjects.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2. Materials and methods

2.1. Study participants

This study conforms to The Code of Ethics of the World Medical As-
sociation (Declaration of Helsinki) and was conducted accordingly to
the guidelines for Good Clinical Practice (European Medicines Agency).
Signed informed consent which was written in compliance with local
and national ethical guidelines was obtained from each patient or
from relatives or a legal guardian prior to patient inclusion in the
study [20]. Cognitive function was evaluated with the Mini-Mental
State Exam (MMSE) and the Babcock Story Recall Test (BSRT) [20–23].
Serum was collected and stored at -80 °C for biochemical analyses.

2.2. Study participants: elderly controls (Table 1)

Elderly controls with no evidence of cognitive declinewere included
in the study.

2.3. Study participants: mild cognitive impairment (MCI, Table 1)

The diagnosis of MCIwasmade by trained geriatricians based on the
presence of short/long-term memory impairment, with/without im-
pairment in other single or multiple cognitive domains, in an individual
who didn't meet the standardized criteria for dementia [22]. MMSE
along with a battery of neuropsychological tests was used to evaluate
the degree of cognitive impairment [23]. Patients with MCI due to
known causes (e.g. depression, extensive white matter pathology,
vitamin B12 deficiency)were excluded. Subjects affected by severe con-
gestive heart failure (New York Heart Association class III-IV), severe
liver or kidney disease, severe chronic obstructive pulmonary disease,
and cancer, and those taking NSAIDS, antibiotics or steroids at the
time of recruitment were also excluded. Only patients still independent
in the activities of daily living (ADLs) were included in the study [20].

2.4. Study participants: late onset Alzheimer's Disease (LOAD, Table 1)

A diagnosis of LOAD was made by trained geriatricians according to
the NINCDS-ADRDA criteria [22]. All patients (controls, MCI, and LOAD)
underwent a brain Computer Tomography (CT) scan at baseline
performed with a third-generation scanner at 10 mm thickness
(SOMATOM HQ, Siemens Healthcare, Milan, Italy). The CT information
was used to support the clinical diagnosis and to diagnose possible
brain pathologies associated with secondary cognitive impairment.

2.5. Lipid extraction and analysis

Lipids were extracted from 100 μL of serum with methy-tert-butyl
ether and methanol containing [2H8]arachidonic acid, [13C18]stearic acid,
[13C3]DAG 36:2, [2H31]phosphatidylethanolamine 34:1, and bromocrip-
tine as internal standards [10–11,22]. Extracts were dried by centrifugal
vacuum evaporation and dissolved in isopropanol:methanol:chloroform
(4:2:1) containing 15 mM ammonium acetate. Constant infusion
lipidomics (5 μL per min) were performed utilizing high-resolution
Table 1
Patient demographics for the clinical cohorts.

Parameter Controls MCI-1

MMSE 25–30 19–24
N 51 64
Age 76 ± 0.8 78.2 ± 0.062
Gender (% Male) 35.3 23.4
Glucose (mg/dL) 95.3 ± 2.1 95.8 ± 1.5
Total Cholesterol (mg/dL) 207.4 ± 4.1 212.8 ± 4.4
HDL/LDL Ratio 0.55 ± 4.1 0.52 ± 0.022
Triglycerides (mg/dL) 109.9 ± 7.7 115.7 ± 6.4
(140,000 at 200 amu; 0.2–2 ppm mass error) data acquisition [24–25]
on an orbitrapmass spectrometer (Thermo Q Exactive). The spray volt-
age was 3.3 kV, the sheath gas was 10, the capillary temperature was
320 °C, and the S lens RF was 50. Washes (500 μL) with methanol
followed by hexane/ethyl acetate (3:2), between samples, were used
to minimize ghost effects. In positive ion electrospray ionization (ESI),
the ammonium adducts of diacylglycerols (DAG) were quantitated.
The cation of bromocriptine was used to monitor for potential mass
axis drift. Relative DAG levels were obtained by determining the ratio
of the endogenous DAG peak area to the peak area of 1 nanomole if
the internal standard [13C3]DAG 36:2. In negative ion ESI, the anions
of phosphatidylethanolamines (PtdE) were quantitated. The anion of
bromocriptine was used to monitor for potential mass axis drift.
Relative PtdE levels were obtained by determining the ratio of the en-
dogenous PtdE peak area to the peak area of 1 nanomole of the internal
standard [2H31]PtdE 34:1.

2.6. Statistical analysis

R values (ratio of endogenous lipid peak area to the peak area of an
appropriate internal standard) were calculated. Data are presented as
mean±SEM. Datawere analyzedwith the Kruskal–Wallis test, followed
by the Dunn's t test to compare MCI and LOAD groups to the controls
[10–11].

3. Results and discussion

3.1. Diacylglycerols (DAGs)

For the current targeted lipidomics study we stratified the MCI and
AD patient groups (Table 1) based upon their Mini-Mental State Exam
(MMSE) score as we have previously reported [10]. In addition, the
Babcock Story Recall Test (BSRT) [20–21] was utilized to support the
MMSE scores with regard to evaluation of decline in cognitive function
for individual patients (Table 2). Utilizing this stratified design our
targeted lipidomics analyses detected a number of DAGs that were
elevated in the serum of MCI and LOAD patients as we [10–11] and
others [14] have previously reported. DAG 34:2 and DAG 36:2 were ro-
bust biomarkers being elevated in both MCI and LOAD patients with an
MMSE score of 10 to 18 while DAG 36:2 also was elevated in MCI and
LOAD patients with an MMSE score of 19 to 24 (Table 2). Our previous
studies have shown that DAG 34:2 is comprised mainly of DAG 16:0/
18:2 while DAG 36:2 is 66% DAG 18:1/18:1 and 33% DAG 18:0/18:2,
with no differences in fatty acid composition of these DAGs between
aged-matched control, MCI and LOAD subjects [14]. Elevations in
these lipid levels, which are normally tightly regulated [26–27], is of
significant clinical interest considering the diverse roles of DAGs as
precursors of structural glycerophospholipids and neutral lipids,
as structural components of nuclear and endoplasmic reticular
membranes, asmediators of signal transduction, asmediators of nuclear
signal transduction, and in Golgi transport carrier biogenesis [26–27].
Alterations in any or all of these DAG-dependent functions could
contribute to the development of neuronal dysfunction and ultimately
to cognitive decline in MCI and LOAD patients.
MCI-2 LOAD-1 LOAD-2

10–18 19–24 10–18
13 57 33
77 ± 1.3 78 ± 0.7 78.2 ± 0.7
38.5 22.8 30.3
93.4 ± 2.5 96.5 ± 2.5 95.3 ± 3.3
210.8 ± 15.6 213.8 ± 4.7 218.3 ± 6.6
0.44 ± 0.057 0.53 ± 0.023 0.51 ± 0.031
150.4 ± 29.1 110.7 ± 6.0 110.5 ± 7.8



Table 2
Mini-Mental Status Exam (MMSE) bracketed scores, Babcock Story Recall Test (BSRT) scores for memory, diacylglycerol (DAG) levels, and ethanolamine plasmalogen (PlsE) levels in
control,Mild Cognitive Impairment (MCI), and Late Onset Alzheimer's Disease (LOAD) patients. The DAG and PlsE values are presented as the ratio (R) of the peak area of the endogenous
lipid to the peak area of a stable isotope internal standard. Data are presented as mean ± SEM. *, p b 0.05 vs. control. $, [M + NH4]+; #, [M–H]−.

Parameter Control MCI-1 MCI-2 LOAD-1 LOAD-2

MMSE (bracketed range) 25–30 19–24 10–18 19–24 10–18
BRST — immediate (score) 5.1 ± 0.23 3.8 ± 0.29* 4.3 ± 0.90 2.9 ± 0.32* 2.2 ± 0.40*
BRST — delayed (score) 6.0 ± 0.23 3.8 ± 0.34* 2.3 ± 0.86* 2.0 ± 0.30* 1.0 ± 0.35*
DAG 34:2 (R) 610.54105$ 4.43 ± 0.22 5.04 ± 0.19 5.63 ± 0.32* 5.00 ± 0.20 5.56 ± 0.42*
DAG 36:2 (R) 638.57235$ 2.77 ± 0.13 3.45 ± 0.12* 3.94 ± 0.19* 3.52 ± 0.12* 3.84 ± 0.26*
PlsE 38:6 (R) 746.51301# 2.66 ± 0.14 2.06 ± 0.12* 1.97 ± 0.18 2.04 ± 0.11* 2.11 ± 0.19
PlsE 40:6 (R) 774.54431# 2.17 ± 0.12 1.58 ± 0.10* 1.41 ± 0.12* 1.53 ± 0.09* 1.51 ± 0.15*
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3.2. Ethanolamine plasmalogens (PlsEs)

In the case of serum levels of PlsEs, PlsEs with polyunsaturated fatty
acid substitutions were most dramatically affected in both MCI and
LOAD patients, as we previously reported for LOAD patients [7–8]. For
example, PlsE 38:6 (16:0/22:6) was decreased in theMCI and LOAD co-
hortswith anMMSE in the range of 19 to 24while PlsE 40:6 (18:0/22:6)
were decreased in both MCI and both LOAD cohorts (Table 2). The
decrements in circulating plasmalogen levels monitored in the current
study are in contrast with our previous negative findings in a smaller
MCI patient cohort [10] and demonstrate the dangers of pilot biomarker
evaluations in small patient cohorts. These data also support published
observations of decreased peroxisomal function in the liver [28] and
brain [29] of LOAD subjects and plasmalogen deficits in LOAD brain
[10–16], further suggesting that peroxisomal dysfunction may occur
early in the disease process in a subset of patients. Decrements in perox-
isomal function and the resulting decreases in circulating and brain
plasmalogens may represent a critical biochemical alteration that
could lead to cognitive deficits. Plasmalogens are major components
of membrane lipid rafts and are essential for neurotransmitter vesicular
fusion [6,30]. Alterations in these functions could result in both
decreased acetylcholine release and altered postsynaptic signal
transduction thereby negatively altering the function of cholinergic
pathways involved in cognition [6].
3.3. Patient stratification

To further investigate potential heterogeneity within our patient
cohorts, we calculated the percentage of patients with DAG levels
greater than one standard deviation above the control group mean
and the percentage of patients with PlsE levels more than one standard
deviation below the control group mean (Table 3). These analyses re-
vealed that as would be expected: i) patient cohorts with the greatest
cognitive deficit (MMSE of 10 to 18) had a larger number of patients
with alterations in one of these lipid biomarkers relative to patients
with less cognitive deficit (MMSE of 19 to 24) and ii) that there was a
greater degree of heterogeneity in lipid alterations in the MCI cohorts
Table 3
Demonstration of heterogeneity in the patient cohorts via analysis of subjects with DAG
levels elevated more than one standard deviation above control values and subjects with
ethanolamine plasmalogen (PlsE) levels decreased by more than one standard deviation
below control values.

Group MMSE ↑ DAG1 ↓ PlsE2 ↔DAG or PlsE3

MCI-1 19–24 25.5% 17.3% 57.2
MCI-2 10–18 30.0% 45.1% 24.9
LOAD-1 19–24 45.5% 29.6% 24.9
LOAD-2 10–18 40.0% 44.8% 15.2

1 % of group with DAG levels N1 SD above the control group levels.
2 % of group with PlsE levels N1 SD below the control group levels.
3 % of group with no increase in DAG or decrease in PlsE levels. There was no overlap

between the subjects with elevated DAG levels and the subjects with lowered
plasmalogen levels.
relative to the LOAD cohorts. More significantly, we noted thatwhen in-
dividual patients with elevated DAGs or decreased PlsEs were assessed
there were no patients that possessed both lipid alterations (Table 3).
These data clearly demonstrate, at the biochemical level, that there are
at least 3 potential subsets of patients within each of the clinical groups
in our study: i) patients with lower circulating ethanolamine
plasmalogen levels; ii) patients with augmented plasma DAG levels;
and iii) patients with neither of these lipid alterations. However, these
data do not preclude that analyses of an even larger patient cohort
might identify patients possessing both elevated DAG and decreased
PlsE levels. This caution is of significant clinical relevance since in our
pilot study of a small patient cohort we only monitored an increase of
DAG levels in MCI patients but failed to detect any patients with
plasmalogen deficits [10], indicating that by chance, our patient cohorts
failed to include any of the subset of patients with deficits in circulating
ethanolamine plasmalogen levels. The potential role of ApoE phenotype
in our observed lipid changes remains to be fully explored since the
phenotype of patients in this study was not determined. However,
previous studies of decreased circulating PlsEs [8] and increased plasma
DAGs [10–11] found no correlation with ApoE phenotype.

4. Conclusion

These are exciting new observations which constitute initial efforts
to define, at the biochemical level, the heterogeneity of disease process-
es that can ultimately result in cognitive impairment. Our observations
may also be of value in the design of future clinical dementia trials. In-
clusion of multiple biochemical parameters to define the heterogeneity
of patient groups will aid in avoiding errors such as occurred in clinical
evaluations of anti-amyloid therapies in dementia patients with no
amyloid deposition [5]. Integration of lipidomics with other omics tech-
nologies has the potential to define different pathological mechanisms
that lead to cognitive impairment and to distinguish patients at risk
for dementia from Non-Demented individuals who possess significant
Alzheimer's Disease Neuropathology (NDAN subjects) [31–35]. Ulti-
mately lipidomics may offer an avenue to increase our understanding
of the biochemical basis for the cognitive reserve or resistance factors
in these NDAN subjects.

In summary, our data differentiate subsets of patients within clini-
cally defined MCI and LOAD groups. The next steps will be to expand
the investigation of these lipid biomarkers to larger patient cohorts
which are monitored longitudinally with regard to both cognitive and
lipidomics parameters, and ultimately brain pathology. Evaluation of
these biochemical alterations in MCI and LOAD has the potential to
define diverse biochemical pathologies that can ultimately lead to
clinical cognitive deficits. Such analyses alsowill significantly contribute
to defining new molecular targets for cognitive disorders and in the
design of future therapeutic trials in dementia patients.
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