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,is study aimed to explore the influence of hesperidin on the polarization of microglia to clarify the key mechanism of regulating
the polarization of M2 microglia. C57BL/6 mice were randomly divided into middle cerebral artery occlusion model group
(MCAO group), MCAO+hesperidin treatment group (MCAO+hesperidin group), and sham group (sham operation group).
,e mice were assessed with neurological scores for their functional status. 2,3,5-Triphenyltetrazole chloride (TTC) was used to
determine the volume of cerebral infarction. Hematoxylin and eosin (H&E) staining was performed to detect brain loss. ,e
system with 1% O2, 5% CO2, and 92% N2 was applied to establish BV2 in vitro model induced by MCAO. TNF-α, IL-1β, TGF-β,
and IL-10 levels of cytokines in the supernatant were detected by ELISA. RT-qPCR was used to detect mRNA levels of M1 iNOS,
CD11b, CD32, and CD86, and mRNA levels of M2 CD206, Arg-1, and TGF-β. ,e Iba-1, iNOS, and Arg-1 of microglia and
protein levels of TLR4 and p-NF-κB related to the pathway were detected by Western blot. After treatment with hesperidin, BV2
cells induced byMCAO in vitro can reduce the proinflammatory cytokines of TNF-α and IL-1β significantly, further upregulating
anti-inflammatory cytokines of TGF-β, IL-10 while inhibiting TLR4 and p-NF-κB expression. ,e MCAO-induced BV2 cells
treated by TLR-4 inhibitor TAK-242 and NF-κB inhibitor BAY 11-7082 had similar polarization effects to those treated with
hesperidin.,is study found that hesperetin gavage treatment can improve the neurological deficit and regulate the polarization of
microglia in MCAO mice. In vitro experiments further verified that hesperidin plays a neuroprotective role by inhibiting the
TLR4-NF-κB pathway, thus providing new targets and strategies for neuroprotection and nerve repair after ischemic stroke.

1. Introduction

Ischemic stroke is the third most common cause of human
death in modern society, which may be caused by a com-
bination of many factors. A preferred effective treatment for
ischemic stroke is intravenous administration of tissue
plasminogen activator (tPA), which can only benefit patients
who receive the treatment within a time window of 4.5 h
after stroke. For patients who miss the optimal time for
thrombolysis, there is no safe and effective treatment, with

high mortality. For the surviving patients, most of them have
neurological disorders such as limb and language [1]. Recent
studies have found that inflammation and immune response
after stroke can aggravate nerve cell injury, and over-
activated inflammatory cells and cytokines cause a local
chronic inflammatory response, which is not conducive to
repairing nerve cells [2–4].

Studies have shown that microglia in the adult brain are
derived very early from primitive myeloid progenitor cells in
the yolk sac [5]. Known as the innate immune cells of the
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brain, it plays an important role in the development of the
central nervous system, the formation of the synapsis, and
immune balance. In the absence of stress, microglia are
involved in the development and pruning of synapsis [6].
Under pathological conditions, microglia are also involved
in the inflammatory response at all stages in developing
many diseases of the nervous system, including stroke,
Parkinson’s disease, and Alzheimer’s disease [7–11]. After
ischemic stroke, microglia can be driven to a “classic acti-
vated” proinflammatory (M1) phenotype and a “selective
activated” anti-inflammatory (M2) phenotype. Studies have
shown that the inflammatory factors of M1 phenotype can
be upregulated. For example, proinflammatory cytokines,
such as interleukin (IL)-1β, IL-2, and IFN-c, CXC motif
chemokine ligand 9 (CXCL9), CXCL10, inducible nitric
oxide synthase (iNOS), and cyclooxygenase 2 (COX-2), can
aggravate symptoms after stroke. Selective inhibition of
minocycline on M1 microglia can significantly improve
ischemic injury by reducing inflammatory response [12].
Furthermore, some studies have shown that, after stroke, M2
population has neuroprotective effects [3, 13–15]. M2
microglia activated after the ischemic injury can express
high levels of arginase-1 (Arg-1), interleukin-10 (IL-10),
transforming growth factor β (TGF-β), and insulin-like
growth factor-1 (IGF-1). M2 phenotypes can prolong
neuronal survival and inhibit brain injury [10, 16]. However,
microglial cells activated after cerebral ischemia show only a
transient M2 phenotype and subsequently a deleterious M1
phenotype [13].

Hesperidin (30,5,7-trihydroxy-4-methoxyhuangketone)
is a member of the flavanone subclass of flavonoids found in
citrus fruits, such as oranges and grapefruit. Previous studies
have shown that hesperidin has significant antioxidant, anti-
inflammatory, antiapoptotic, and antitumor effects [17–20].
Moreover, it inhibits inflammation in various cells by reg-
ulating extracellular signal-regulated kinase (ERK)1/2, p38
mitogen-activated protein kinase (MAPK) signaling path-
ways [21]. Hesperetin has been reported to protect the AD
rat model against memory impairment during elevated
oxygen stress [22]. ,ere are few studies on ischemic stroke.
,is study aimed to explore the regulation of hesperidin on
the polarization of microglia after cerebral ischemia, as well
as its mechanism, so as to provide new targets and strategies
for neuroprotection and nerve repair after ischemic stroke.

2. Methods

2.1. Middle Cerebral Artery Occlusion (MCAO) Model. A
total of 30 male C57BL/6 strain mice were purchased from
Nanjing Model Animal Research Institute. ,e mice were
10–12 weeks old and about 22–26 g. ,ey were acclimatized
for 3–5 d at room temperature 22–25°C in SPF class animal
rooms before the experiment. ,e mice were randomly
divided into MCAO group, MCAO+hesperidin group, and
sham group, with ten in each group. After a 3.5% pento-
barbital anesthesia, referring to Hu et al., right MCAO was
induced, and the blood flow was restored 60min after
transient focal cerebral ischemia.,e rectal temperature was
maintained at 37.0± 0.5°C with a temperature-controlled

heating pad throughout the operation. ,e hesperidin
suspension was prepared by dissolving hesperidin (≥95%,
Sigma-Aldrich, W431300) in 0.5% carboxymethyl cellulose
solution. ,e MCAO+hesperidin group was given fresh
hesperidin suspension prepared daily after MCAO opera-
tion. 30mg/kg of constant volume was administered once a
day for 7 d. All sham-operated animals received the same
surgical protocol except MCAO. ,e MCAO and sham
groups were given 0.5% carboxymethyl cellulose liquid of
the same volume, which contained only a medium solution
(0.5% carboxymethyl cellulose). According to the Longa
scoring method, neurological deficit score was evaluated on
the 1st, 3rd, 5th, and 7th d after surgery. ,e criteria were as
follows: 0, normal, no neurological deficit; 1, mild neuro-
logical deficit, cannot fully extend the left front claw; 2,
moderate neurological deficit, turn left; 3, severe neuro-
logical deficits, fall to the left; 4, no spontaneous movement,
low levels of consciousness; 5, death; only animals with
scores of 1 to 4 were used in this experiment [23]. After 14
days of operation, each group of mice was anesthetized with
apical blood and then perfused with precooled PBS, and the
fresh brain tissue of the mice was removed for a follow-up
test. All animal experiments were carried out in accordance
with the guidelines for Guidelines for the Care and Use of
Laboratory Animals (NIH, No. 85-23, 1996) and were ap-
proved by the Ethics Committee of the Second Affiliated
Hospital of Qiqihar Medical College. All surgery and sub-
sequent analyses were performed by blind method.

2.2. Analysis onVolume of Cerebral Infarction andBrain Loss.
,e volume of cerebral infarction was determined by 2-,3-,5-
triphenyl tetrazolium chloride (TTC) [24]. H&E staining
was performed to detect brain loss, which was measured by
subtracting the nonpathogenic area of the ipsilateral
hemisphere from the area of the contralateral hemisphere.
,e volume of tissue loss was calculated from the lesion area
of six parts. Image J (1.52a) software was used for calculation
and analysis.

2.3. Cell Culture. Under normal conditions (20% O2, 5%
CO2), BV2 cells were cultured with conventional high
glucose DMEM in a 37°C incubator.,en, they were divided
into normal group, MCAO group, MCAO+hesperidin
(100 μM) group, MCAO+TAK-242 group, and
MCAO+BAY group. After growing to 50% density, MCAO
was induced by transferring BV2 cells into DMEM without
glucose and serum (Life Sciences, Inc., USA) and N2 was
inflated for 5min prior to administration. ,e dishes were
then placed in an incubator at 37°C (containing 1% O2, 5%
CO2 and 92% N2) in the presence or absence of hesperidin
for 24 h before the medium was changed. After processing,
the medium containing hesperidin was removed, replaced
with the normal full medium. TAK242 (2 μM; Sigma-
Aldrich, 243984) or BAY 11-7082 (15 μM; Sigma-Aldrich,
B5556) was adopted for specific inhibition of TLR4 and NF-
κB. All chemicals/drugs were sterile and incubated at 5%
CO2 and 37°C for 24 h.
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2.4. RT-qPCR. About 5mg total RNA was extracted from the
microglial cell line or brain tissue in the affected areawith Trizol
(Qiagen, Hilden, Germany). And then, Superscript III First-
Strand Synthesis SuperMix (Invitrogen, Carlsbad, CA, US) was
applied to transcript RNA as cDNA. cDNA and SYBRGREEN
FAST mastermix (Qiagen) was adopted for RT-qPCR, as
follows: at 95°C for 3min, at 95°C for 30min, at 55°C for 1min,
for 40 cycles. Each sample was provided with three secondary
holes. All primers used in the RT-qPCR were purchased from
Sangon Biological Co., Ltd. Data were collected from the RT-
qPCR system (Bio-Rad, Hercules, CA, USA), with GAPDH as
an internal control. ,e relative quantitative value of each gene
was calculated with the comparative cycle threshold method.
All experiments were repeated three times, and the target gene
was calculated by 2−∆∆Ct. See Table 1 for primer sequences.

2.5. Western Blot. Brain samples or cultured cells were son-
icated in precooled RIPA lysate (Beyotime) for 1min, and
12,000 g was taken to centrifuge for 10min at 4°C, and the
supernatant was stored at −80°C. Protein concentration in the
sample was determined with the BCA Protein Assay Kit
(Beyotime). ,e extracted proteins were separated by 10%
SDS-polyacrylamide gel electrophoresis and transferred to
PVDF (Millipore, Bedford, MA, USA). ,e membrane was
sealed in a TBST buffer containing 5% skimmed milk for 1h
and incubated overnight at 4°C with the following primary
antibodies: anti-mouse-iba-1 (sc-32725, 1 :1000), anti-mouse-
TLR4 (sc-16240, 1 :1000), anti-mouse-p-NF-κB (sc-136548, 1 :
1000), anti-mouse-β-actin (sc-47778, 1 :1000), anti-mouse-
iNOS (BD-610329, 1 :1000), and anti-mouse- Arg-1 (sc-F0915,
1 :1000). ,e membrane was then washed with TBST and
incubated with horseradish peroxidase-labeled goat anti-
mouse IgG (Biyuntian, A0216, 1 : 5000) and secondary anti-
body at room temperature for 1 h. ,e protein bands were
detected with an enhanced chemiluminescence detection
system (Bio-Rad, Hercules, CA, USA) and quantified with
Image Lab software (Bio-Rad).

2.6. ELISA. For measuring the levels of IL-1β, IL-10, TNFα,
and TGF-β in the cell medium, the supernatants of BV2 cells in
the medium under different treatment conditions were col-
lected, and 300 g was taken to centrifuge for 10min to remove
the precipitation. According to the corresponding instructions
of the ELISA kit (UNOCI Biotechnology Co., Ltd; EK201B/3;
EK210/3; EK282/3; EK981), the test was operated, with the
sensitivity of 1.45pg/ml, 4.8 pg/ml, 1.63 pg/ml, and 3.36 pg/ml,
respectively. An enzyme marker was adopted for double
wavelength detection within 30min, to determine the maxi-
mum absorption wavelength as 450nm. ,e standard curve
was generated by regression fitting with the standard con-
centration as the abscissa andOD value as the ordinate, and the
fitting equation was generated. ,e corresponding cytokine
concentration was calculated according to the OD value.

2.7. Statistical Analysis. ,e statistical analysis was con-
ducted on all data with SPSS 17.0 software, and the mea-
surement data were expressed as mean± standard deviation

(x± sd) data. T-test was used to compare the neurological
function score, cerebral infarction volume, and brain loss
volume. ,e relative expressions of protein, mRNA relative
level, cytokine level, and so on were compared by ANOVA
and Bonferroni method. All experiments were repeated at
least 3 times. P< 0.05 was considered statistically significant.

3. Results

3.1.HesperidinCan Improve theNeural FunctionDefectwitha
Protective Role in MCAO Mice. ,e ischemic stroke was
simulated with a model of middle cerebral artery occlusion,
and the patients were given 30mg/kg hesperidin carbox-
ymethyl cellulose solution by gavage immediately after
surgery, repeated every day. For seven days, the control
group was given 0.5% carboxymethyl cellulose solution after
surgery. ,e neurological deficit symptoms of mice were
dynamically evaluated every other day, and the neurological
deficit score was recorded. ,e results showed that the
neurological deficit symptoms in the MCAO+hesperidin
group were significantly reduced compared with those in the
MCAO group (Figure 1(a)). And over time, there has been a
trend of gradual recovery of nerve function. Brain tissue was
taken 7 days after MCAO to evaluate cerebral infarction
volume and brain loss volume. It was found that the volume
of cerebral infarction and brain loss after treatment with
hesperidin was significantly lower than that in the model
group (P< 0.01; P< 0.001, as shown in Figures 1(b) and
1(c)).

3.2. Hesperidin Can Regulate the Polarization of Microglia
Cells in Brain of MCAO Mice. For further study of the
polarization state of microglial cells in MCAOmice, we used
fluorescence RT-qPCR to detect the mRNA levels of M1
microglia and M2 microglia-related cytokines and surface
molecules in infarct lateral brain tissue and found that the
mRNA levels of the molecules representing M1 microglia,
such as iNOS, CD11b, CD32, and CD86, in the infarct side
brain tissues of MCAO group were significantly higher than
those of the MCAO+hesperidin group and sham group. It
indicated that M1 microglia are significantly activated after
MCAO, and the mRNA expression of M1 microglia-related
molecules can be significantly inhibited by hesperidin
therapy (P< 0.001; P< 0.001; P< 0.001; P< 0.001), as shown
in Figures 2(a)–2(d). ,e protein level results also validated
the overactivation of microglia in the lateral brain tissue of
post-MCAO infarction. After treatment with hesperidin, the
microglia and the molecular Iba-1 and iNOS of M1
microglia were significantly inhibited, as shown in
Figures 3(a) and 3(b) (P< 0.01; P< 0.05). Instead, molecules
of M2 microglia were significantly inhibited after MCAO
(P< 0.05). As shown in Figures 2(e)–2(h), the mRNA levels
of M2 microglia-related molecular CD206, Arg-1, TGF-β
and Ym1/2 in the MCAO group were higher than those in
the sham group but significantly lower than those in the
MCAO+hesperidin group (P< 0.001; P< 0.001; P< 0.001;
P< 0.001). WB results were consistent with mRNA results
(Figures 3(a) and 3(b)), demonstrating that the therapy
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Figure 1: Hesperidin can improve the neural function defect with a protective role in MCAO mice. (a) Changes and comparison of
neurological deficit scores of mice in MCAO and MCAO+hesperidin group 7 days after surgery. (b) Evaluation and statistics of cerebral
infarct volume of mice in MCAO and MCAO+hesperidin group 7 days after surgery (n� 10). (c) Comparison and statistics of brain loss
volume of mice in MCAO and MCAO+hesperidin groups 7 days after surgery. ∗P< 0.05, ∗∗< 0.01, and ∗∗∗< 0.001.
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Figure 2: Expression of microglia-related molecules in infarcted lateral brain tissue of mice in MCAO group 7 days after surgery. (a–d) M1
microglia-related molecules of mice in sham, MCAO, and MCAO+hesperidin groups: mRNA expression levels of iNOS, CD11b, CD32,
CD86, and comparative analysis. (e–h) Microglia-related molecules of mice in sham, MCAO, and MCAO+hesperidin groups: mRNA
expression levels of CD206, Arg-1, TGF-β, and Ym1/2 and intragroup comparisons. ∗P< 0.05, ∗∗< 0.01, and ∗∗∗< 0.001.

Table 1: Primer sequence.

Gene Forward (5′⟶ 3′) Reverse (5′⟶ 3′)
iNOS CAAGCACCTTGGAAGAGGAG AAGGCCAAACACAGCATACC
CD11b CCAAGACGATCTCAGCATCA TTCTGGCTTGCTGAATCCTT
CD32 AATCCTGCCGTTCCTACTGATC GTGTCACCGTGTCTTCCTTGAG
CD86 TGATCGCCAACTTCAGTGAA CAGAACACACACAACGGTCA
CD206 TGAGCTGTTTTGGTTGGGAC CCCATCTGCAGTAACTGGTG
Arg-1 TCACCTGAGCTTTGATGTCG CTGAAAGGAGCCCTGTCTTG
TGF-β TGCGCTTGCAGAGATTAAAA CGTCAAAAGACAGCCACTCA
Ym1/2 CAGGGTAATGAGTGGGTTGG CACGGCACCTCCTAAATTGT
GAPDH CGGAGTCAACGGATTTGGTCGTAT AGCCTTCTCCATGGTGGTGAAGAC
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given to the MCAO+hesperidin group can inhibit the ac-
tivation of proinflammatory M1 microglia, upregulating the
polarization of anti-inflammatory M2 microglia.

3.3. Hesperidin Can Inhibit TLR4 and p-NF-κB Expression in
MCAO Mice. To further clarify the mechanism of how
hesperidin regulates the polarization of microglia, we used
Western blot to detect TLR4 and p-NF-κB expression in the
lateral cerebral tissue of infarcted mice 7 days after surgery,
as shown in Figures 3(a) and 3(c). TLR4 and P-NF-κB
expression in infarct side brain tissue of mice in MCAO
group were significantly higher than those in sham group
(P< 0.001). Both TLR4 and p-NF-κB were significantly
inhibited after treatment with hesperidin, and the difference
was statistically significant, P< 0.001.

3.4. Hesperetin Can Regulate Cytokine Changes in MCAO-
Induced BV2 Cells. To explore the mechanism of hesperidin
regulating microglia, we have established a BV2 MCAO in-
duction system in vitro and found that, under MCAO con-
ditions, the levels of proinflammatory cytokines TNF-α and IL-
1β and anti-inflammatory cytokines TGF-β and IL-10 in the
supernatant of BV2 cells were significantly increased compared
with those of normal cultured cells, as shown in Figures 4(a)–
4(d) (P< 0.001). Under hypoxic conditions after adding hes-
peridin, the proinflammatory cytokines were significantly
decreased, while the anti-inflammatory cytokines were further
upregulated. In animal experiments, upregulation of p-NF-κB
and TLR-4 after MCAO was found. To verify this mechanism,
we treated MCAO-induced BV2 cells in vitro with TLR-4
inhibitor TAK-242 and NF-κB inhibitor BAY 11-7082, re-
spectively. It turned out that, after treatment with these two
inhibitors, the upregulation of proinflammatory cytokines was
inhibited under MCAO conditions, while anti-inflammatory
cytokines were further upregulated, which were basically the
same as those of the MCAO+hesperidin group, as shown in
Figures 4(a)–4(d), except for IL-1β. ,ere was no statistical
difference between the other cytokines and the
MCAO+hesperidin group.

3.5. HesperidinCanRegulate Phenotypic Changes of BV2Cells
Induced by MCAO through TLR4-NF-κB Pathway. ,e ex-
pression of iBA-1 and iNOS in BV2 cells induced by MCAO
in vitro was significantly higher than that in the
MCAO+hesperidin group, while the expression of ArG-1
was significantly lower than that in the MCAO+hesperidin
group. It indicated that hesperidin can inhibit the expression
of proinflammatory type and upregulate the expression of
anti-inflammatory type in MCAO-induced BV2 cells
(Figures 5(a) and 5(b)). ,en, MCAO-induced BV2 cells
were treated with TLR-4 inhibitor TAK-242 and NF-κB
inhibitor BAY 11-7082. We found that both inhibitors can
inhibit the expression of proinflammatory and upregulate
the expression of anti-inflammatory type, similar to the
effect of hesperidin (Figures 5(a) and 5(b)). In addition, the
expression levels of TLR-4 and P-NF-κB in BV2 cells in
MCAO group were significantly lower than those in
MCAO+hesperidin group, MCAO+TAK-242 group, and
MCAO+BAY group. ,e expression levels of TLR-4 and
P-NF-κB in MCAO+hesperidin group were consistent with
those in MCAO+TLR-4 group and MCAO+NF-κB group
(Figures 5(a), 5(c), and 5(d)), suggesting that hesperidin
regulates the phenotypic changes of MCAO-induced BV2
cells through TLR4-NF-κB pathways.

4. Discussion

Ischemic stroke is the third leading cause of human death,
accounting for 9% of the world’s deaths, with high mor-
bidity, mortality, and disability. Recently, studies have found
that poststroke inflammation and immune responses ex-
acerbate neuronal injury, which runs through every stage of
ischemic stroke, varying degrees of activation from the early
stages of destructive events to the later stages of brain tissue
repair and vascular regeneration [2–4]. In further studies of
these findings, postischemic stroke autopsy results and
animal experiments strongly demonstrated the significant
role of poststroke inflammation [25–29]. After ischemic
stroke occurs, microglia can be driven to a “classic activated”
proinflammatory (M1) phenotype and a “selective activated”
anti-inflammatory (M2) phenotype. M1 microglia can
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Figure 3: Expression of microglia-related molecules and pathway proteins in infarcted lateral brain tissue of MCAO mice 7 days after
surgery. (a, b) Expression levels of iba-1, iNOS, and Arg-1 of mice in sham, MCAO, and MCAO+hesperidin groups and statistical analysis.
(c) Expression levels of p-NF-κB and TLR-4 and statistical analysis mice in sham, MCAO, and MCAO+hesperidin groups. ∗P< 0.05,
∗∗< 0.01, and ∗∗∗< 0.001.
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secrete a variety of cytokines, causing inflammatory re-
sponse, which is not conducive to the recovery of injured
nerve tissue, while M2 microglia have neuroprotective
effects.

In this study, we found that the mRNA level and iNOS
protein expression of M1 microglia-related molecules in-
creased significantly in infarcted lateral brain tissue of
MCAO of mice, while the mRNA level and Arg-1 protein
level of type M2 related molecules increased after hesperidin
treatment. ,e neurological deficit symptoms of mice im-
proved and the activation level of M1 cells decreased, which
is consistent with the study of Kobayashi et al. [12]. ,e
production of inflammatory cytokines, such as TNF, IL-1,
and IL-6, is one of the most important capabilities of
microglia/macrophages. On the one hand, proinflammatory
cytokines lead to neuronal death through direct or indirect
pathways, such as necrosis, apoptosis, and pyrophosphate
processes mediated by inflammatory corpuscles and cys-
teinase family proteins [30, 31]. On the other hand,
proinflammatory cytokines can regulate the phagocytic

activity of microglia/macrophages. Studies have shown that
TNF-α downregulates the expression of microglia CD36,
resulting in the loss of phagocytic capacity of microglia to
phagocytosis of hematoma after intracerebral hemorrhage
[32]. Similarly, higher TNF-α expression levels were found
to be consistent with higher microglial phagocytosis after
ischemic stroke [25].

Protective effects of M2 phenotypes are mediated mainly
by the ability to engulf debris and promote repair and re-
generation of brain tissue after cerebral ischemia [33]. ,e
clearance of apoptotic and necrotic cells by microglia is
particularly important for maintaining central nervous
system homeostasis in pathological conditions. Removing
injured neurons not only prevents secondary inflammatory
response, but also makes room for new neurons and re-
construct the balance of the body, which is beneficial to the
survival of new neurons [34, 35]. Moreover, the activation of
microglia contributes to the abnormal migration of newborn
neurons and may play a beneficial role in the regulation of
neurogenesis through the production of neurotrophic
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Figure 4: Levels of cytokines in the supernatant of cultured BV2 cells determined by ELISA. (a) TNF-α levels of the supernatant in normal
group, MCAO group, MCAO+hesperidin (100 μM) group, MCAO+TAK-242 group, and MCAO+BAY group. (b) IL-1β levels of the
supernatant of BV2 cells in the above five groups. (c) TGF-β levels of the supernatant of BV2 cells in the above five groups. (d) IL-10 levels of
the supernatant of BV2 cells in the above five groups. ∗P< 0.05, ∗∗< 0.01, and ∗∗∗< 0.001, and ns indicates no statistical significance.
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mediators such as IGF-1 and TGF-β [36, 37]. Other markers
M2 microglia, such as Ym1 and Arg-1, can prevent deg-
radation of extracellular matrix components [38]. In addi-
tion, microglial activation can promote regeneration by
removing disabled synapses, facilitating the formation of
functional synapses [39–41].

Recently, studies on hesperidin in microglia regulation
have found that hesperidin can strongly inhibit nitric oxide
production and inducible nitric oxide synthase expression in
LPS stimulated BV-2 microglia. ,e secretion of inflam-
matory cytokines including interleukin IL-1b and IL-6 can
also be significantly reduced by hesperidin [42]. Moreover,
hesperidin can downregulate the phosphorylation of ex-
tracellular signal-regulated kinase (ERK)1/2 and p38 mi-
togen-activated protein kinases, with an anti-inflammatory

role. Furthermore, hesperidin can inhibit the activation of
astrocytes and microglia, which participates in TLR4/NF-κB
mediated signaling pathways in the brain of LPS attacked
mice [43].

TLR is a family of innate immune receptors that play an
important role in regulating inflammation and participate in
stroke-induced neuroinflammation, and several studies have
confirmed that TLR is an important therapeutic target for
stroke treatment [44]. In a study of TLR4-deficient mice,
Sansing et al. found that the TLR4 signaling pathway leads to
inflammation and damage around post-ICH hematomas
[45] and confirmed that TLR4 activation on microglia is
triggered by heme via the MyD88/TRIF signaling pathway
[46]. TLR4 antagonists TAK242 reduce these deleterious
effects of stroke TLR4 signal transduction [47].
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Figure 5: Phenotypic changes and TLR4-NF-κB expression levels of MCAO-induced BV2 cells in vitro. (a) Expression of iNOS, iba-1, Arg-
1, TLR-4 and NF-κB of BV2 cells in MCAO group, MCAO+hesperidin group, MCAO+TAK-242 group (TLR-4 inhibitor), and
MCAO+BAY group (NF-κB inhibitor). (b) Analysis of the expression levels of inos, iba-1, and Arg-1. (c) Statistical analysis of TLR-4
expression level of BV2 cells in MCAO group, MCAO+hesperidin group, MCAO+TAK-242 group (TLR-4 inhibitor), and MCAO+BAY
group (NF-κB inhibitor). (d) Statistical analysis of p-NF-κB expression levels of BV2 cells in MCAO group, MCAO+hesperidin group,
MCAO+TAK-242 group (TLR-4 inhibitor), and MCAO+BAY group (NF-κB inhibitor). ∗P< 0.05 and ∗∗< 0.01.
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Furthermore, TLR2/TLR4 heterodimer formation may re-
sult in severe neurological deficits of mice [29]. In this study,
TLR-4 inhibitor TAK-242 and NF-κB inhibitor were used to
treat MCAO-induced BV2 cells in vitro. Both inhibitors
were found to inhibit proinflammatory expression and
upregulate proinflammatory expression, similar to the effect
of hesperidin, andmice treated with hesperidin in vivo could
inhibit TLR-4 and p-NF-κB expression levels. ,erefore, the
mechanism of hesperidin regulating phenotypic changes of
MCAO-induced BV2 cells through TLR4-NF-κB pathway
was confirmed.

5. Conclusion

In conclusion, this study found that M1 microglia were
overactivated in the infarct lateral brain tissue of MCAO
mice, accompanied by overexpression of TLR4-NF-κB in the
inflammation-related pathway. And after the administra-
tion, hesperidin can improve the neurological deficit
symptoms of MCAO mice, inhibit the expression of M1
proinflammatory related factors, and upregulate the ex-
pression of anti-inflammatory M2 molecules. In vitro ex-
periments further showed that the microglial phenotype of
MCAO-induced BV2 cells treated with TLR-4 inhibitor
TAK-242 and NF-κB inhibitor BAY 11-7082 was similar to
that of hesperidin, verifying that hesperetin is neuro-
protective by inhibiting TLR4-NF-κB pathways, which
provides new targets and strategies for neuroprotection and
nerve repair after ischemic stroke.
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