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Abstract: The construction of reservoir dams has changed the environment and natural properties of
the river course, and deep-water reservoirs present an obvious phenomenon of thermal stratification.
Low-temperature outflow water in spring and summer will have a negative impact on the down-
stream ecological environment. Therefore, it is necessary to take selective withdrawal measures to
regulate low-temperature outflow water. The temperature-control curtain project has the advantages
of low cost, convenient construction and wide application. Based on the topographic data, a labora-
tory test model for regulating outflow temperature by a temperature-control curtain is established. A
high-power electric heating system is adopted to form a nonlinear thermal stratification. The accuracy
of the test data is verified by the prototype observed water temperature. The main parameters
affecting the outflow temperature are investigated, including thermal stratification, flow height above
the temperature-control curtain, water level, and discharge flow. The results show the following:
firstly, the outflow temperature mainly depends on the thermal stratification, decreases with the
increase of water level, and increases with the increase of discharge flow; secondly, the effect of a
temperature-control curtain on improving the outflow temperature is directly related to the thermal
stratification in different months, and the improvement effect is better in spring and summer; finally,
the improvement effect increases with the decrease of flow height above the temperature-control
curtain, increases with the increase of water level, and decreases with the increase of discharge flow.

Keywords: temperature-control curtain (TCC); outflow temperature; thermal stratification; physical
model test; thermal-stratified reservoir

1. Introduction

The construction of hydraulic and hydropower projects contributes to the development
and utilization of water resources, which has important economic and social benefits [1,2].
However, the existence of reservoirs has changed the natural properties of rivers, and the
water temperature in deep-water reservoirs shows an obvious vertical thermal stratifica-
tion phenomenon [3,4]. In spring and summer, the surface water temperature is higher
because of strong solar radiation and high air temperature [5]. The water temperature in
the middle and lower layers is relatively low due to the large water depth, slow flow rate,
and insufficient heat transfer capacity [6]. The elevation of the water intake in a traditional
hydropower station is low, and the thermal stratification phenomenon causes the outflow
temperature to be lower than that of natural rivers in spring and summer [7–9]. The varia-
tion of water temperature may bring negative ecological and environmental problems [10].
Hydraulic and hydropower projects need to meet the economic growth of human society
while maintaining the sustainability of ecosystems and biodiversity [11]. Therefore, the
treatment and regulation of low-temperature outflow water is an urgent water environment
engineering subject [12,13].
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Before the dam construction, the water depth of the natural river is shallow and the
flow velocity is large, so the water heat exchange is relatively sufficient. The surface and
bottom water temperatures of the river are basically the same, and there is no thermal
stratification. After the reservoir is built and impounded, due to the large water depth and
insufficient heat exchange, there is a temperature difference between the surface and the
bottom layer. The water temperature in spring and summer is affected by solar radiation
and external temperature. The surface water has a higher temperature and a lower density,
while the bottom water has a lower temperature and a higher density. This situation is
obviously different from the natural river temperature, resulting in the vertical thermal
stratification phenomenon.

According to the thermal stratification distribution, the reservoir water can be verti-
cally divided into three parts: surface temperature layer, thermocline layer and hysteresis
layer. The thermal stratification of thermocline changes significantly, and the temperature
gradient is large. If the temperature difference between the surface and the hysteresis layer
is small, and the temperature gradient in the thermocline is small, it is weak stratifica-
tion distribution. If the temperature in the surface layer and hysteresis layer is basically
unchanged, and the temperature gradient in the thermocline is large, it is a single thermo-
cline distribution. If the temperature in the hysteresis layer is basically unchanged, and
the temperature gradient of the surface layer and the thermocline is large, it is a double
thermocline distribution.

In order to alleviate the negative effects of low-temperature outflow water, various
engineering measures have been proposed by domestic and foreign scholars. Typical
ones include selective withdrawal facilities [14], aeration facilities for destroying thermal
stratification [15], and hydro-ecological regulation facilities [16], among which selective
withdrawal facilities are the most widely used. Temperature-control curtains are an effec-
tive selective withdrawal facility. Compared with other traditional selective withdrawal
facilities, TCCs have an advantage in economic budget [17]. TCCs can be installed in
front of the water intake, which will greatly reduce the cost of dismantling the original
water intake and rebuilding other types of selective withdrawal facilities [18]. TCCs have
the advantages of low construction cost, the construction of a water storage environment,
simple structure and wide applicability [19].

TCCs can be classified into two categories based on their various positions: top-TCC
and bottom-TCC (Figure 1). Top-TCC can effectively improve water quality, prevent algae
from breeding and reduce outflow temperature. The TCC has been increasingly used to
change the temperature of outflow water due to its low cost and ease of construction. A
bottom-TCC is made up of a bottom gravity anchorage system, a main cable, a water-proof
curtain wall, and a floating bridge system.
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Some small reservoirs had only spillways, such as the Lewiston reservoir in the United
States [20]. The spillway was equipped with a top-TCC device, which aimed to block
the high-temperature water in summer, reduce the outflow temperature and improve the
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living environment of downstream cold-water fish. Politano et al. conducted a three-
dimensional simulation for McNary Dam to study the thermal stratification in front of the
dam and the outflow temperature after the application of TCC at the intake [21]. Shammaa
found that jets form under TCC in a certain area and there was a strong water exchange
cycle, which was verified in the two-layer flow model [22]. Lian Jijian et al. established
a three-dimensional thermal stratification simulation model based on flow-3D software,
and analyzed the laws and main influencing factors of bottom-TCC to change the outflow
temperature [23]. He Wei et al. carried out the mechanism of thermal stratification flow
in front of the dam and the traceability analysis of outflow temperature, and obtained the
influencing factors and variation rules of outflow temperature [24].

Currently, the main research methods for thermal stratification reservoirs are the
empirical formula method [25], the simulation model method [26], and the physical model
test method [27]. In early physical model tests, salt and fresh water were used to form
density stratification, which was usually divided into two layers along the water depth to
simulate water with different temperatures [28]. In addition to the two-layer stratification
model, density linear models were gradually developed [29]. Previous studies have focused
on stratified flow problems, such as ultimate suction height, water intake layer thickness,
critical Froude number, and critical flow, etc. [30]. However, there is a certain gap between
the water temperature stratification model and the actual engineering thermal stratification.

In order to achieve water temperature distribution consistent with the prototype,
a high-power heating system is used to directly heat the test water in this experiment.
The heating effect is observed through a temperature monitoring system. Most of the
thermal stratification tests are flume models, and there are few laboratory tests based
on actual topography. A laboratory test is established based on actual topographic data
in a thermal-stratified reservoir in Southwest China. Compared with the flume model,
the nonlinear thermal stratification based on the topographic data in front of the dam is
closer to the actual working conditions. The working program is shown in Figure 2. The
outflow temperature is affected by various factors, including water level, discharge flow
and thermal stratification. This paper investigates the effect of TCC on improving outflow
temperature and analyzes the influence of different factors on outflow temperature.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 3 of 18 
 

 

Some small reservoirs had only spillways, such as the Lewiston reservoir in the 
United States [20]. The spillway was equipped with a top-TCC device, which aimed to 
block the high-temperature water in summer, reduce the outflow temperature and im-
prove the living environment of downstream cold-water fish. Politano et al. conducted a 
three-dimensional simulation for McNary Dam to study the thermal stratification in front 
of the dam and the outflow temperature after the application of TCC at the intake [21]. 
Shammaa found that jets form under TCC in a certain area and there was a strong water 
exchange cycle, which was verified in the two-layer flow model [22]. Lian Jijian et al. es-
tablished a three-dimensional thermal stratification simulation model based on flow-3D 
software, and analyzed the laws and main influencing factors of bottom-TCC to change 
the outflow temperature [23]. He Wei et al. carried out the mechanism of thermal stratifi-
cation flow in front of the dam and the traceability analysis of outflow temperature, and 
obtained the influencing factors and variation rules of outflow temperature [24]. 

Currently, the main research methods for thermal stratification reservoirs are the em-
pirical formula method [25], the simulation model method [26], and the physical model 
test method [27]. In early physical model tests, salt and fresh water were used to form 
density stratification, which was usually divided into two layers along the water depth to 
simulate water with different temperatures [28]. In addition to the two-layer stratification 
model, density linear models were gradually developed [29]. Previous studies have fo-
cused on stratified flow problems, such as ultimate suction height, water intake layer 
thickness, critical Froude number, and critical flow, etc. [30]. However, there is a certain 
gap between the water temperature stratification model and the actual engineering ther-
mal stratification. 

In order to achieve water temperature distribution consistent with the prototype, a 
high-power heating system is used to directly heat the test water in this experiment. The 
heating effect is observed through a temperature monitoring system. Most of the thermal 
stratification tests are flume models, and there are few laboratory tests based on actual 
topography. A laboratory test is established based on actual topographic data in a ther-
mal-stratified reservoir in Southwest China. Compared with the flume model, the nonlin-
ear thermal stratification based on the topographic data in front of the dam is closer to the 
actual working conditions. The working program is shown in Figure 2. The outflow tem-
perature is affected by various factors, including water level, discharge flow and thermal 
stratification. This paper investigates the effect of TCC on improving outflow temperature 
and analyzes the influence of different factors on outflow temperature. 

 
Figure 2. Working program. 

  

Figure 2. Working program.

2. Materials and Methods
2.1. Case Study

The case study is a deep-water reservoir located in Southwest China which was built
and put into operation in 2006. The average water depth in front of the dam is over 130 m.
The annual inflow of the reservoir is 7.57 billion m3, the normal storage level is 475 m,
and the dead water level is 425 m. The hydropower station is equipped with 4 turbine
generating units, with a total installed capacity of 1000 MW, a full flow rate of 870 m3/s,
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and a total storage capacity of 4.094 billion m3. The water intake elevation of the diversion
power generation system is 408 m. The basic parameters of the thermal-stratified reservoir
are shown in Table 1. The main dam is a concrete face rockfill dam arranged in a river valley.
The height of the dam top is 482.5 m, the lowest height of the toe board is 297.0 m, the
maximum height of the dam is 185.5 m, the length of the dam top is 423.3 m, and the width
is 10 m. Figure 3 shows the upstream of the hydropower station dam. As the water depth
increases, water temperature stratification appears obvious. Due to the low water intake
elevation, the stratification of water temperature makes the outflow temperature different
from that of the natural incoming flow. Figure 4 shows the comparison of monthly average
inflow and outflow temperature. Outflow temperature tends to be lower than natural
inflow temperature in spring and summer, and the difference between the outflow and
inflow temperature is the largest in August. The inflow and outflow water temperatures
were recorded every 10 days.
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Table 1. Basic parameters of the deep water reservoir.

Parameter Value

Annual runoff 7.57 billion m3

Normal water level 475 m
Dead water level 425 m

Maximum discharge flow 870 m3/s
Total storage capacity 4.9 billion m3

Intake floor elevation 408 m

2.2. Test Design

The similarity conditions of thermal stratification laboratory tests are gravity similarity
and buoyancy similarity. That is, on the premise of ensuring geometric similarity, gravity
Froude number Fr and density Froude number Fd are equal [31,32]. The gravity Froude
number Fr ensures the similarity of fluid flow, and the density Froude number Fd ensures
the similarity of thermal stratification. The temperature difference between the two adjacent
layers of the laboratory model is equal to that of the prototype. Then, the conversion
relationship between the laboratory model and the prototype is:

Tp = Tm + (TBp − TBm)

where Tp is the prototype outflow temperature (◦C); Tm is the laboratory model outflow
temperature (◦C); TBp is the basic water temperature at the bottom of the prototype (◦C);
TBm is the basic water temperature at the bottom of the laboratory model (◦C).

The laboratory test consists of a water tank, a high-power heating system, a water
temperature acquisition system, and a flow control device. Considering the laboratory site
and test conditions, the geometrical scale is λL = 150 (prototype/model). The test design
should meet the gravity similarity and buoyancy similarity criteria. The main experimental
parameters and geometric scales are shown in Table 2.

Table 2. Main experimental parameters and geometric scales.

Similarity Criterion Physical Quantity Scale Relation Scale

Gravity similarity criteria

Length λL 150
Flow λQ = λL

2.5 275,567.6
Force λF = λL

3 3,375,000
Time λt = λL

0.5 12.2
Buoyancy similarity criteria Temperature TH − TBH = TM − TBM -

The laboratory test model includes a 1.38 km water area in front of the dam, a water
intake and a spillway area. The model is 9.77 m long, 9.57 m wide and 1.07 m high. The
high-power heating system consists of six fully sealed submersible electric heating tubes,
with a heating power of 4–8 kW and a voltage of 380 v. The laboratory test site and the
arrangement of the high-power heating system are shown in Figure 5. The water area
model in front of the intake was established based on the actual survey geographic data,
and the terrain was built by masonry and mortar plastering, as shown in Figure 6.
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The test instruments mainly include high-power electric heating tubes, current meter
(ADV), turbine flowmeter, water level measurement system and temperature sensors, as
shown in Figure 7. The parameters measured in the laboratory test mainly include water
temperature at different depths, outflow temperature, discharge flow, water level, etc. The
water level was measured by the water level measurement system and discharge flow is
measured by a turbine flowmeter. The flow velocity was measured by a high-precision
current meter which has a measurement range of 0–2 m/s, measurement accuracy of
±0.02 cm/s, and maximum sampling frequency of 100 Hz. The measured data of flow
velocity were transmitted to the computer acquisition system for real-time recording. The
water temperature is measured by digital temperature sensors which have a measure-
ment range of −20–70 ◦C and measurement accuracy of 0.1 ◦C. The digital temperature
sensors have the advantages of convenient reading, affordable price, corrosion resistance,
and so on.

The steps of the test mainly include: (1) pre-test preparation. The circuit equipment
is checked. The power of the electric heating tube is large, and the personal safety of the
test personnel should be strictly guaranteed during the water temperature heating process.
(2) The test model should be watered to the required water level, the water curtain should
be installed to the specified position, and the flow height of the TCC should be adjusted.
(3) The water temperature heating system is then turned on. During the heating process,
the temperature sensor is used to monitor the thermal stratification of the test water until
the target thermal stratification is achieved. In order to stabilize the thermal stratification,
the heating process takes a long time, about 3–4 h or more. (4) The discharge flow is
adjusted according to the test conditions, and the test water level should start to be collect;
the thermal stratification data and outflow temperature after the discharge flow indicator
is stable. The data are recorded every 30 s for 5 min. (5) Close the discharge flow, adjust the
thermal stratification according to the test conditions, and repeat the test.

The thermal stratification of different months is simulated by heating water in this
experiment. In order to achieve the target temperature stratification, the electric heating
system should meet the requirements of high-power and be fully submersible. According
to the temperature monitoring data, the position of the heating tube is adjusted at regular
intervals until the thermal stratification in the test matches the actual thermal stratification.
The temperature measurement system is composed of many digital temperature sensors.
In order to monitor the vertical water temperature, 13 temperature sensors are arranged at
equal distances in the test with an interval of 10 cm. Two temperature sensors are arranged
at the water intake to measure the outflow temperature. As the test time of each group is
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about 5 min, the water level is stable and the inlet and outlet flow are similar, and therefore
the thermal stratification can be considered to be stable and unchanged during the test.
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Figure 7. Experimental measuring instruments: (a) Electric heating tube, (b) ADV, (c) Turbine
flowmeter, (d) Probe arrangement of water temperature sensors, (e) Temperature sensor.

2.3. Test Scenarios
2.3.1. Thermal Stratification

The thermal-stratified reservoir is located in the area where the temperature is distinct
in four seasons. The distribution difference of thermal stratification in each season is large.
In order to be rigorous and to save resources, the representative months of each quarter
are selected for analysis, and are February, May, August and November, respectively. The
thermal stratification distribution of representative months is shown in Figure 8.

As can be seen from Figure 8, the temperature difference between the surface and
bottom in February is about 5 ◦C, and the thermal stratification intensity is weak, belonging
to weak stratification. In May, the temperature difference between the surface and bottom is
about 14 ◦C, and the temperature gradient of the surface and thermocline is large, belonging
to double thermocline distribution. In August, there is strong solar radiation and high
temperature, and the temperature difference is about 21 ◦C, which belongs to double
thermocline distribution. In November, the surface water temperature is about 21 ◦C, and
the temperature difference is about 12 ◦C. The surface temperature is basically unchanged,
while the thermocline temperature changes in a large gradient, which belongs to single
thermocline distribution. The thermal stratification in other months is similar to the above
four typical months.
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Figure 8. Thermal stratification of representative months.

2.3.2. Flow Height above TCC

To improve the outflow temperature, the test TCC is arranged at the bottom to block
low-temperature water. The TCC is impermeable and its base is consistent with the
topography. The TCC is arranged 250 m in front of the intake, which is converted into the
prototype size. Different flow heights above TCC will change the outflow temperature. In
laboratory tests, three different flow heights of 20 m, 30 m and 40 m are selected to study
the influence of flow heights on outflow temperature.

2.3.3. Water Level

The average operating water level of the thermal-stratified reservoir is 465 m. The
water level in the dry season is about 445 m, and the water level in the wet season is about
475 m. Four typical water levels of 445 m, 455 m, 465 m and 475 m are selected to study the
effects of different water levels on outflow temperature.

2.3.4. Discharge Flow

In addition to the spillway and other discharge facilities during the flood period, the
outlet is used for discharge most of the year. The full discharge of the outlet is 870 m3/s,
and the average inflow in spring and summer is about 500 m3/s. The discharge flow in the
test is set at 125 m3/s, 250 m3/s, 500 m3/s and 870 m3/s respectively.

In laboratory tests, four influencing factors including thermal stratification, flow height
above TCC, water level and discharge flow are considered. Spring is the breeding period
for fish and the planting season for fields. The rise in water temperature can improve
fish spawning reproduction and increase the growth rate of crops. Therefore, the outflow
temperature in spring has a great impact on the downstream river environment. The
thermal stratification in May, flow height of 30 m, water level of 465 m and discharge flow
of 500 m3/s are taken as the basic working conditions in the laboratory tests. The influence
of thermal stratification, flow height, water level and discharge flow on the outflow tem-
perature are investigated. Simultaneously, no TCC is employed as a comparative condition.
The laboratory test scenarios are shown in Table 3.
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Table 3. The laboratory test scenarios.

NO. Description Thermal
Stratification

Flow
Height (m)

Water
Level (m)

Discharge
Flow (m3/s)

A1 Basic scenario May 2013 30 465 500
B2

Different thermal
stratification

August 2013 30 465 500
B3 November 2013 30 465 500
B4 February 2014 30 465 500
C5 Different flow

height
May 2013 20 465 500

C6 May 2013 40 465 500
D7

Different water
level

May 2013 30 445 500
D8 May 2013 30 455 500
D9 May 2013 30 475 500
E10 Different

discharge flow

May 2013 30 465 125
E11 May 2013 30 465 250
E12 May 2013 30 465 870

F No TCC
Same as the
comparison

scenario
- Same as the comparison

scenario

3. Results
3.1. Model Verification

The key to the reliability of laboratory test results is to simulate the thermal stratifica-
tion of the prototype. The submersible electric heating tubes are used to directly heat the
experimental water in the laboratory test, and the water temperature is monitored until the
target thermal stratification is achieved. According to the similar conditions of the thermal
stratification test described in Section 2.2, the test thermal stratification is converted to the
prototype water temperature. The distribution of thermal stratification in May, August,
November and February are taken as typical working conditions. The geometrical scale of
the test is λL = 150 (prototype/model). The data obtained from the test are transformed
into the corresponding parameters of the prototype. This is of reference significance for
practical engineering, which is also the purpose of the test. So the test results are based on
the test converted data. Table 4 shows the comparison of outflow temperature between
test measurement (after conversion) and prototype observation. The comparison of mea-
sured water temperature, converted water temperature and prototype water temperature
is shown in Figure 9.

Table 4. Comparison of outflow temperature between test measurement (after conversion) and
prototype observation.

Thermal
Stratification

Water
Level (m)

Discharge
Flow (m3/s)

Test Outflow
Temperature (◦C)

Prototype Outflow
Temperature (◦C) ∆T (◦C)

May 2013 465 500 16.3 16.1 0.2
August 2013 465 500 21.1 20.7 0.4

November 2013 465 500 19.3 19.0 0.3
February 2014 465 500 13.6 13.5 0.1

Note: the water level, discharge flow and test water temperature in the table are all prototype values after
conversion.

As can be seen from Figure 9, the test water temperature after conversion is basically
consistent with that of the prototype. The nonlinear thermal stratification distribution
can be formed by directly heating water with high-power electric tubes. The thermal
stratification of the prototype reservoir is well simulated in laboratory tests, and the two are
in good agreement. The relative error of outflow temperature between the test measurement
(after conversion) and the prototype data in typical months is small (Table 4). The minimum
difference in outflow temperature occurs in February with a difference of 0.1 ◦C. August
has the greatest difference in outflow temperature, with a difference of 0.4 ◦C. The results
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of the laboratory test (after conversion) agree well with the prototype observations, and the
results of the thermal stratification test are accurate and reliable.
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Figure 9. Comparison of measured water temperature, conversion water temperature and prototype
observed water temperature: (a) May; (b) August; (c) November; (d) Next February.

3.2. Thermal Stratification

In order to study the influence of thermal stratification on outflow temperature, four
thermal stratifications are considered, that is, May, August, November and next February.
Other parameters are kept constant and are set as follows: a water level of 465 m, discharge
flow of 500 m3/s, and flow height above curtain of 30 m. In addition, there are no TCCs
designed in the comparison scenarios. The thermal stratification test scenarios and test
results are shown in Table 5.

Figure 10 shows the comparison of outflow temperature before and after TCC imple-
mentation and outflow temperature of different thermal stratification. Compared with
no TCCs scenarios, the outflow temperature after TCC implementation in May, August,
November and next February increased by 2.9 ◦C, 4.2 ◦C, 1.1 ◦C and 0.2 ◦C, respectively. In
May and August, the water temperature difference between the surface and the bottom
layer was substantial, the thermocline was prominent, and the surface temperature changed
greatly. After the implementation of TCC, the outflow temperature increased substantially,
and the effect of improving outflow temperature was improved.
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Table 5. Different thermal stratification test scenarios and results.

NO. Description Thermal
Stratification

Flow Height
(m)

Water Level
(m)

Discharge
Flow (m3/s)

Outflow
Temperature (◦C)

B2
Different
thermal

stratification

May 2013 30 465 500 19.2 (+2.9)
A1 August 2013 30 465 500 25.3 (+4.2)
B3 November 2013 30 465 500 20.4 (+1.1)
B4 February 2014 30 465 500 13.8 (+0.2)

F13

No TCCs

May 2013 - 465 500 16.3
F14 August 2013 - 465 500 21.1
F15 November 2013 - 465 500 19.3
F16 February 2014 - 465 500 13.6
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Figure 10. Comparison of outflow temperature: (a) before and after TCC implementation; (b) different
thermal stratification.

In November, the temperature difference between the surface and bottom layer was
about 12 ◦C, and the thermocline fluctuated a lot, although the surface water temperature
remained rather constant. The TCC had little effect on improving the outflow temperature.
The temperature difference between the surface and bottom in February was just about
5 ◦C. The temperature stratification was weak, and the TCC had only a minor impact on
improving the water temperature. The test results demonstrate that the outflow temper-
ature is mostly influenced by thermal stratification. For thermal stratification with large
temperature differences (e.g., May and August), the TCC has a good effect on improving
the outflow temperature. When the surface water temperature is essentially the same
(e.g., November), the TCC can improve the outflow temperature, but only modestly. The
TCC has little effect on the outflow temperature when the thermocline gradient changes
little (e.g., February). The laboratory test results show that the effect of TCC on improving
low-temperature water is greatly affected by thermal stratification. TCCs may significantly
improve the outflow temperature in spring and summer, which is an effective selective
withdrawal facility.

3.3. Flow Height above TCC

To investigate the effect of flow height above TCC on outflow temperature, 20 m, 30 m
and 40 m heights are chosen as typical working conditions. In the laboratory test, the
thermal stratification is May, the water level is 465 m, and the discharge flow is 500 m3/s.
And there are no TCCs designed in the comparison scenarios. The flow height test scenarios
and test results are shown in Table 6.
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Table 6. Different flow height test scenarios and results.

NO. Description Thermal
Stratification

Flow
Height (m)

Water
Level (m)

Discharge
Flow (m3/s)

Outflow
Temperature (◦C)

C5 Different
flow height

May 2013 20 465 500 19.9 (+3.6)
A1 May 2013 30 465 500 19.2 (+2.9)
C6 May 2013 40 465 500 18.6 (+2.3)

F14 No TCCs May 2013 - 465 500 16.3

Figure 11 shows the comparison of outflow temperature before and after TCC imple-
mentation and outflow temperature at different flow heights. The outflow temperature
was 16.3 ◦C without TCC. After the TCC was implemented, the outflow temperatures at
the flow height of 20 m, 30 m and 40 m were 19.9 ◦C, 19.2 ◦C and 18.6 ◦C, respectively. The
outflow temperature was the highest at 20 m flow height and the lowest at 40 m flow height.
Compared with the scenario without TCC, the outflow temperature at the flow height of
20 m, 30 m and 40 m increased by 3.6 ◦C, 2.9 ◦C and 2.3 ◦C, respectively. The results show
that for the thermal stratification in May, the construction of TCC can effectively improve
the outflow temperature. The lower the flow height, the higher the outflow temperature,
and the greater the effect on improving low-temperature water.
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Figure 11. Comparison of outflow temperature: (a) before and after TCC implementation; (b) different
flow height.

3.4. Water Level

The water level of the reservoir is dynamic and varies in different seasons. Water levels
of 445 m, 455 m, 465 m and 475 m are selected to analyze the effect on outflow temperature.
Other impact parameters are kept constant with thermal stratification in May, flow height of
30 m, and discharge flow of 500 m3/s. No TCCs are designed in the comparison scenarios.
The water level test scenarios and test results are shown in Table 7.
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Table 7. Different water level test scenarios and results.

NO. Description Thermal
Stratification

Flow
Height (m)

Water
Level (m)

Discharge
Flow (m3/s)

Outflow
Temperature (◦C)

D7
Different

water level

May 2013 30 445 500 19.6 (+1.4)
D8 May 2013 30 455 500 19.4 (+2.3)
A1 May 2013 30 465 500 19.2 (+2.9)
D9 May 2013 30 475 500 19.1 (+3.7)

F17

No TCCs

May 2013 - 445 500 18.2
F18 May 2013 - 455 500 17.1
F14 May 2013 - 465 500 16.3
F19 May 2013 - 475 500 15.4

Figure 12 shows the comparison of outflow temperature before and after TCC imple-
mentation and outflow temperature at different water levels. When the water level rose
from 445 m to 475 m without TCC, the outflow temperature decreased by 2.8 ◦C. When
the thermal stratification, flow height and discharge flow remain unchanged, the higher
the water level, the lower the outflow temperature. After the TCC was implemented, the
outflow temperature at the water level of 445 m, 455 m, 465 m and 475 m increased by
1.4 ◦C, 2.3 ◦C, 2.9 ◦C and 3.7 ◦C, respectively. Compared with the scenarios without TCCs,
the higher the water level, the better the effect of TCC on improving water temperature. The
outflow temperature difference between the four different water levels with TCC did not
exceed 0.5 ◦C, and the change of water level had little influence on the outflow temperature.
This is because when TCC exists, the overflow of high-temperature water at different water
levels is basically unchanged. The laboratory test results show that the higher the water
level, the lower the outflow temperature in the absence of TCC. However, for the effect
of TCC on improving low-temperature water, the higher the water level, the better the
effect. After the implementation of TCC, the water level has little effect on the outflow
temperature.
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Figure 12. Comparison of outflow temperature: (a) before and after TCC implementation; (b) different
water level.

3.5. Discharge Flow

Discharge flow is one of the important parameters affecting the flow field. To study the
effect of discharge flow on outflow temperature, four discharge flows of 125 m3/s, 250 m3/s,
500 m3/s and 870 m3/s are considered. Other impact parameters remain unchanged and
are set as follows: thermal stratification in May, flow height of 30 m, and water level
of 465 m. No TCCs are designed in the comparison scenarios. The discharge flow test
scenarios and test results are shown in Table 8.
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Table 8. Different discharge flow test scenarios and results.

NO. Description Thermal
Stratification

Flow
Height (m)

Water
Level (m)

Discharge
Flow (m3/s)

Outflow
Temperature (◦C)

E10
Different
discharge

flow

May 2013 30 465 125 18.6 (+3.2)
E11 May 2013 30 465 250 19.0 (+3.1)
A1 May 2013 30 465 500 19.2 (+2.9)
E12 May 2013 30 465 870 19.5 (+2.7)

F20

No TCCs

May 2013 - 465 125 15.4
F21 May 2013 - 465 250 15.9
F14 May 2013 - 465 500 16.3
F22 May 2013 - 465 870 16.8

Figure 13 shows the comparison of outflow temperature before and after TCC imple-
mentation and outflow temperature at different discharge flows. When the discharge flow
was 125 m3/s, 250 m3/s, 500 m3/s and 870 m3/s, the outflow temperatures without TCC
were 15.4 ◦C, 15.9 ◦C, 16.3 ◦C and 16.8 ◦C, respectively. The outflow temperature increases
with the increase of discharge flow. After the TCC was implemented, the corresponding
outflow temperatures were 18.6 ◦C, 19.0 ◦C, 19.2 ◦C and 19.5 ◦C, respectively. Compared
with the scenarios without TCCs, the outflow temperatures increased by 3.2 ◦C, 3.1 ◦C,
2.9 ◦C and 2.7 ◦C, respectively. The smaller the discharge flow, the higher the outflow
temperature raised by TCCs. The laboratory test results show that the outflow temperature
is positively correlated with the discharge flow, while the effect of TCC on improving
low-temperature water is negatively correlated with the discharge flow.
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Figure 13. Comparison of outflow temperature: (a) before and after TCC implementation; (b) different
discharge flow.

4. Discussion

Due to the thermal stratification of deep-water reservoirs and the low intake elevation
of hydropower stations, the outflow temperature in spring and summer is lower than
the inflow temperature. This may have an important impact on farmland irrigation, fish
reproduction and water ecological balance. Managers try to take engineering measures to
change the flow pattern and reduce the outflow of low-temperature water so as to ensure
the normal water environment and water ecology of the downstream river. The TCC project
is a competitive new type of selective withdrawal facility.

In this paper, a laboratory test model is designed using actual topographic data in
front of the dam of the Southwest Reservoir. The high-power heating system heats the
test water directly, producing a temperature distribution that is nearly identical to the
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prototype nonlinear thermal stratification. Shammaa et al. conducted a flume stratification
experiment for TCC using a two-layer flow of fresh and saltwater [22]. Compared with
Shammaa’s salinity stratification test, the nonlinear thermal stratification in this test is
more consistent with the actual situation. He et al. developed and verified a 3-D thermal
tracer model based on Flow-3D and investigated the source of discharged water [24]. The
experimental results in this paper are consistent with He’s numerical simulation results.

TCCs have a promising future in the fields of hydropower and coastal engineering.
They can improve downstream water quality in addition to managing the temperature of
stratified reservoirs. A curtain placed in the upper regions of a river can effectively limit
high-nutrient flow into downstream areas, reducing eutrophication and algal bloom [12].
Curtains can also be used to distinguish water of different densities, such as fresh water
and seawater, allowing for the construction of marine reservoirs to meet the demand for
freshwater in offshore engineering. Flexible materials will become more widespread in
hydraulic structures as material science and technology develop.

At present, TCC is still in the design stage and has not been applied in engineering
practice. There is a preliminary plan for the construction process of TCC. TCC construction
in a full-scale reservoir needs to comprehensively consider the engineering geological
environment, construction conditions, TCC structural characteristics, and other factors.
The overall construction sequence of TCC is as follows: the part above the water surface is
constructed and then the underwater part is constructed. First, the cable towers on both
banks are constructed; secondly, the surface pontoon system is arranged, and then the
gravity anchor and ground anchor are installed. Finally, the TCC is sunk. The general steps
are as follows: (1) construction preparation; (2) construction of cable towers on both banks;
(3) positioning and placement of pontoon system; (4) set up water operation platform;
(5) install gravity anchors and ground anchors; (6) TCC sinking; (7) commissioning and
acceptance project.

5. Conclusions

This paper introduces the similarity conditions of the thermal stratification test on
the premise of geometric similarity, the gravity Froude number Fr, and the density Froude
number Fd of the model and the prototype are equal. According to similar conditions,
actual topographic data and a high-power heating system, a physical test model of a deep-
water reservoir is established. The effects of thermal stratification in typical months, flow
height above TCC, water level and discharge flow on outflow temperature are analyzed.
The main conclusions are as follows:

(1) The thermal stratification and outflow temperature in the test are verified through the
prototype-observed water temperature data. The verification results show that the
laboratory test can simulate the nonlinear thermal stratification of the actual reservoir,
and the test results are accurate and reliable.

(2) The outflow temperature mainly depends on the thermal stratification, decreases with
the increase of water level and increases with the increase of discharge flow in the
thermal-stratified reservoir.

(3) The effect of TCC on improving the outflow temperature is directly related to the
thermal stratification in different months and the improvement effect is greater in
spring and summer.

(4) The improvement effect of TCC increases with the decrease of flow height above
TCC, increases with the increase of water level, and decreases with the increase of
discharge flow.

An experimental study on regulating outflow temperature by TCCs is investigated, but
the measured and observed results of the experiment have some limitations. Subsequently,
a numerical simulation model should be established and compared with the test results
to verify the flow field, temperature field and other information in detail. There are few
studies on the law of TCC load, and the interaction mechanism between TCC load and flow
is lacking. In the future, the load characteristics of TCC under different working conditions
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should be studied, which is of reference significance to the research and development of
TCC design.
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