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SUMMARY

Bacterial gene expression depends on the allocation of limited transcriptional resources provided a

particular growth rate and growth condition. Early studies in a few genes suggested this global regu-

lation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method

that generalizes these experiments to quantify the response to growth of over 700 genes that a priori

do not exhibit any specific control. We distinguish a core subset following a promoter-specific hyper-

bolic response.Within this group, we sort genes with regard to their responsiveness to the global reg-

ulatory program to show that those with a particularly sensitive linear response are located near the

origin of replication. We then find evidence that this genomic architecture is biologically significant by

examining position conservation of E. coli genes in 100 bacteria. The response to the transcriptional

resources of the cell results in an additional feature contributing to bacterial genome organization.

INTRODUCTION

Transcription regulation is one of the fundamental mechanisms by which bacteria adapt gene expression to

changing environmental conditions. Apart from the specific action mediated by transcription factors (TFs),

expression is modulated by a global regulatory program determined by the physiological condition of the

cell. Initial studies correlated this condition to the availability of core constituents of the expressionmachin-

ery: free RNA polymerase, tRNAs, ribosomes, etc. (Kjeldgaard et al., 1958; Schaechter et al., 1958), but

many other interacting components can play a role such as the cell volume, or the alarmone (p)ppGpp (Ku-

bitschek, 1974; Liang et al., 1999; Traxler et al., 2008). These works also provided an effective protocol to

describe the influence of all these elements: the dependence on physiology was linked to growth rate at

exponential phase independent of the particular nutrients fixing that rate. Therefore the examination of

the global program reduced to the quantification of expression response to changes in growth rate and

growing conditions.

The fact that global physiology complements specific regulation matters in many aspects. Indeed, growth

rate dependencies can interfere directly with genetic circuits and change their operation, for example, by

shifting the bistability regime of a switch or allowing for different antibiotic resistance strategies (Deris

et al., 2013; Klumpp et al., 2009). Costs of synthetic genetic circuits on cell physiology and the conse-

quences of the latter on the function of the circuits made the subject also relevant in applied areas, e.g.,

Synthetic Biology (Scott et al., 2010). Beyond ‘‘simple’’ genetic circuits, the interplay of global regulation

and cell resource allocation can modify many essential features at the system level (Klumpp and Hwa,

2008; Peebo et al., 2015). In fact, mechanistic approaches revealed that the global regulatory program con-

tributes to determining fundamental trade-offs involving the finiteness of the cellular size, energy, and

ribosomal fraction (Weiße et al., 2015).

To examine the activity of this program, the choice of constitutive genes as the primary model is clear: pro-

moters of these genes lack any interaction with specific DNA-binding TFs, and thus, they are a priori

constantly available for transcription initiation. Therefore, constitutive genes are subject only to physiolog-

ical regulation. An alternative approach is to mutate the TF-binding sites of non-constitutive genes to

assess the separate (mutant) and combined (wild-type) effect of global and specific regulation. Studies

applying these approximations included, however, only a few genes (Berthoumieux et al., 2013; Gerosa

et al., 2013; Kochanowski et al., 2017), and thus we lack a large-scale evaluation of global transcriptional

regulation.

Beyond its evaluation, it is also intriguing to examine to what degree global regulation could impact bac-

terial genomic organization, as it is the case for specific regulation (Camas and Poyatos, 2008). One of the
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factors contributing to this regulation is copy number as gene dosage depends on the growth rate and on

the distance to the origin of replication oriC of the chromosome. This is due to the overlap of multiple

replication rounds at fast growth rates (multifork replication). Indeed, the position and copy number of ri-

bosomal genes in Escherichia coli are tuned to maintain fast growth rates (Gyorfy et al., 2015). We could,

nevertheless, ask if the global transcriptional regulation excluding the copy number affects genomic archi-

tecture. At least two scenarios can be postulated. In one scenario, promoters that are intrinsically sensitive

to the global transcriptional regulation, i.e., excluding copy number contribution, are located far from oriC

to compensate for the small, almost negligible, increase in copy number at large growth rates. In the sec-

ond scenario, those promoters are located near oriC to further enhance their activity with growth rate. In

the first situation, the influence of the global transcriptional program is compensated along the chromo-

some, whereas in the second, copy number strengthens the dependence between expression and growth

rate. Either solution would reveal design principles of genome architecture.

In thiswork,we introduce aprocedure that enables us tofirst examine at a large scale the responseof�700genes

with no known explicit regulation by TFs to the separate and combined effect of the global regulation program

and the chromosomal copy number variations due to multifork replication in E. coli. To this end, we develop a

method that uses experimental time series of growth rate and promoter activity of a fluorescent reporter library

(Zaslaver et al., 2009, 2006), which has been proved tobeone of the best tools to study in vivogene expression at

largescale.This allowedusto recognizeacoresetof strictly constitutivegenespresentingapromoter-dependent

hyperbolic response.For thesegenes,wequantify themost sensitive to theglobalprogramandobserve that they

are significantly located near the origin of replication. This presents the proximity to oriC as an important feature

to enhance the control of expression and suggests that the location of these genes could be particularly

conserved in species in which this control is desirable, e.g., those experiencing faster or more variable growth

rates. We examine evidence in this respect with the analysis of the correlation between position conservation

of the correspondingE. coligenes in 100bacterial species and thenumberof replication rounds,maximal growth

rate, and environmental variability of the species’ habitat.

RESULTS

Quantifying Chromosomal Promoter Activity at a Large Scale

To quantify the promoter activity of chromosomal genes (PAchr) we developed a method that makes use of

promoter activity measurements obtained with low-copy plasmids (PApl). This is of particular interest as the

availability of a fluorescent library in E. coli (Zaslaver et al., 2006) could then be used to determine PAchr at a

large scale while reducing the experimental burden of locating expression reporters on the chromosome.

We build upon a previous gene expression model in which the promoter activity measured is proportional

to the promoter activity per gene copy (pa) and the gene copy number per cell (g) and inversely propor-

tional to the cell volume (v) (Klumpp et al., 2009).

We first decouple the copy number signal of the plasmid gpl that contributes to PApl (Figure 1A). As the

replication of these plasmids is synced to the end of the cell cycle (del Solar et al., 1998; Morrison and Chat-

toraj, 2004), the plasmid copy number gpl is proportional to that of terminal regions in the chromosome

(gter). Moreover, in the context of this fluorescent library, earlier experimental results showed that propor-

tionality between gpl and gter is equal to 5 independently of both growth rate (up to �1.8 dbl/h) and

measurement approach (balanced growth and time series) (Gerosa et al., 2013). We can thus consider

Cooper and Helmstetter’s model (Cooper and Helmstetter, 1968) describing the copy number of a chro-

mosomal gene gchr for a given growth rate m (gchr = 2m½Cð1�mÞ+D�, m represents the normalized distance

to the origin of replication of the gene) to obtain the plasmid copy number: gterfgpl = 5$2mD ; the values

of C and D are obtained by interpolation from experimental measurements (Bremer and Dennis, 1996).

Second, with our growth-rate measurements, we decouple the growth-rate-dependent cell size vðmÞ with
the cell size law that reads vðmÞ= 2mðC +DÞ in units of unit cell size, and that robustly predicts cell volume un-

der several perturbations (Si et al., 2017). Therefore, from optical density, which is proportional to the total

cell mass and volume (Donachie and Robinson, 1987; Nanninga andWoldringh, 1985), we can differentiate

whether larger optical density values stem from an increased cell number or cell volume.

This enabled us to compute promoter activity per gene copy, pa = PAplv=gpl , where the effect of gene copy

number and volume is excluded, and chromosomal promoter activity PAchr =PAplgchr=gpl , where both ef-

fects are included (Figures 1A and 1B). Figures 1C and 1D show the resulting promoter activities of two
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example cases using experimental data from Zaslaver et al. (2009): genes rph and hisL located at distances

from the origin of replication ofmrph = 0:04 andmhisL = 0:80, respectively. Differences in chromosomal pro-

moter activity become relevant when comparing genes at different positions in the chromosome. In this

way, the distinction between the promoter activity per gene copy (pa, Figure 1A) and chromosomal pro-

moter activity (PAchr, Figure 1A) emphasizes the added effects of multifork replication depending on the

location of the gene. Note that, due to the increase in copy number, the level of PAchr of promoters closest

to oriC keeps up with the increase in cell volume. We further tested our model by comparing the relative

activities of three genes of interest: maoP, pyrB, and racR located at distances m = 0.01, m = 0.24, and

m = 0.92, respectively, relative to oriC. We find that PAchr computed with our model predicts better the

relative transcription levels obtained by RT-qPCR than PApl (Transparent Methods; Figure S1 in the Supple-

mental Information).

Constitutive Genes Show a Promoter-Specific Hyperbolic Response to Global Regulation

We applied the previous approach to characterize the global program at a large scale. Constitutive genes

appear as the most suitable model given the absence of any specific regulation acting on them, and a list of

these genes can be proposed with the information available in current databases (Transparent Methods;

Discussion). However, characterizing the response of constitutive promoters in a traditional manner, i.e.,

from balanced growth measurements in different carbon sources, limits the scalability of the approach.

We follow then here an alternative method and consider insteadmeasurements of promoter activity during

dynamic changes of growth rate in a specific carbon source. Note that thesemeasures, in the case of consti-

tutively expressed genes, correlate well with those observed under balanced growth in different growth

media (Gerosa et al., 2013).

Figure 1. Decoupling Promoter Activity from Gene Copy Number

(A) Promoter activity per single gene copy, pa, can be obtained from experimental data of promoter activity quantified

with a plasmid library, PApl, once the plasmid copy number gpl and the growth rate dependence of the cell volume, v, are

known. With this, one can calculate the promoter activity of a chromosomal gene, PAchr, by using Cooper and

Helmstetter’s model (Transparent Methods).

(B) Chromosomal multifork replication makes the copy number per cell of chromosomal genes gchr dependent on both

growth rate and gene location in the chromosome. At a faster growth rate, the number of origins of replication oriCs (red

solid line and black dots in sketch) increases due to the overlap in time of multiple replication rounds. Arrows show the

direction of replication forks. In the case of plasmids with low copy number, as the one used in the plasmid library

(pSC101), gpl is proportional to the number of terminal regions (ters) in the cell (green dotted line).

(C and D) Relative differences in promoter activity (pa, PAchr, PApl) for two genes at different chromosomal locations for a

fixed growth rate (normalized to the corresponding pa). Genes (rph and hisL, C and D, respectively) are located at

distances mrph = 0.04 and mhisL = 0.80 from oriC. Observe that chromosomal promoter activity depends strongly on the

location of the gene. Data were obtained in balanced growth at m~0.9 dbl/h (Zaslaver et al., 2009). For comparability, we

show PA*pl = PApl/5 to normalize for the proportionality constant between gter and gpl (see main text for details).

See also Figure S1.
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We thus processed the time series data of the set of 708 ‘‘constitutive’’ genes of E. coli included in the fluo-

rescent library (Zaslaver et al., 2009) (Transparent Methods). Instead of measuring hundreds of genes in

many distinct carbon sources, we considered data during exponential and late-exponential growth (within

the first 5 h) in glucose medium supplemented with amino acids to obtain profiles of instantaneous

promoter activity and growth rate; PApl(m) profiles (Transparent Methods; Figure S2 in Supplemental Infor-

mation). Data derived in this way can be decoupled from their plasmid context to get chromosomal,

PAchr(m), and per gene, pa(m), profiles (previous section).

After computing PAchr(m) we applied a clustering algorithm that grouped all resulting profiles into four clas-

ses (Transparent Methods; cophenetic correlation coefficient c = 0.80, Figures 2A and 2B). Class 1 corre-

sponds to promoters whose activity increases following the expectedMichaelis-Menten profile with distinct

parameters (Data S1 in Supplemental Information), as it is expected from earlier works (Gerosa et al., 2013;

Kochanowski et al., 2017; Liang et al., 1999), whereas classes 2 and 3 correspond to promoter activities that

decrease or remain mostly constant across growth rates, respectively. Finally, class 4 includes promoters

with a non-monotonic profile that has maximum promoter activity at intermediate growth rates. These clas-

ses are robust whether PAchr(m) or pa(m) profiles are used for the classification (Figure S3 and Data S1).

To test the approach of inferring PAchr profiles from time series on a single growth medium, we experimen-

tally measured the promoter activity profiles PAchr(m) of 12 promoters—chosen among all four classes—

from balanced growth data in 10 different growth media (Transparent Methods; Figure S4). The method

appeared only particularly robust for all three promoters of class 1, which includes 56% of the total ‘‘consti-

tutive’’ genes considered. Indeed, Figure 2C shows the experimental results of three genes within the first

Figure 2. The Clustering Algorithm Groups the PAchr(m) Profiles into Four Classes, of Which Only the First Could

Be Validated Experimentally

(A) Fraction of promoters found in each of the four classes. Using a clustering algorithm, we grouped the PAchr(m) profiles

of about 700 genes with no known TF regulation into four classes following their growth rate dependency. Only class 1

comprises profiles with the expected behavior from earlier works.

(B) Mean profile of each class (solid line) and one standard deviation (shaded). Note that these profiles were obtained

from time series on a single growth medium (Transparent Methods; Figures S2 and S3).

(C) Experimental measurements of PAchr from balanced growth in 10 different media (red crosses, mean and SD from

three replicates) validate our approach of inferring the profiles from time series data in glucose supplemented with amino

acids (blue solid line, Transparent Methods) of genes in class 1. We also find large linear correlations rz between our own

time series data and that of Zaslaver et al. (2009). Figure S4 in Supplemental Information shows the experimental results

for all 12 promoters tested (three from each class). Data of corA grown in glycerol and arabinose resulted in fluorescence

levels below the background and are not shown.

See also Data S1.
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class, namely slyD, maoP, and corA (a brief description of these genes is available in the Transparent

Methods section). For genes in classes 2–4, not only do we not recover experimentally the cluster profiles

but also we fail to recover the expected Michaelis-Menten hyperbolic pattern of constitutive genes.

In addition, to verify if this lack of signal could be related to the reliability of the clustering algorithm, we

added random noise to the chromosomal promoter activity profiles and measured the mean number of

recovered genes to the original classification expressed in percentage (10 realizations; Transparent

Methods). For normally distributed relative levels of noise up to 10%, we recovered 93% promoters as-

signed to class 1, whereas the rest of the classes had recovering rates between 35% and 79%. This suggests

overall that the discrepancies that we find with classes 2–4 are not related to the approach itself, but rather

that these promoters might experience some unknown specific regulatory mechanisms.

However, the robustness with which class 1 promoters are identified and characterized suggests that pro-

moters in this class are likely constitutive. For this reason, we discard promoters from classes 2–4 in the

following and use only high-confidence profiles from class 1. Moreover, these results also suggest that

as observed previously, during the first hours after balanced growth and before stationary phase, their

expression can be well determined by the physiological state of the cell (Gerosa et al., 2013).

Promoters Sensitive to Global Regulation Are Located Closer to the Origin of Replication

Beyond the previous classification, we noted different genes within class 1 promoters with distinct sensi-

tivity to the global regulation. To quantify sensitivity, we fitted PAchr(m) profiles to a Michaelis-Menten

equation:

PAchr =
Vmm

Km +m
; (Equation 1.1)

whereVm is themaximumpromoter activity andKm is thegrowth rate at whichPAchr(m) is halfmaximal; note thatm

records the global program and that the different responses emphasize a promoter-specific rather than an un-

specific pattern (Gerosa et al., 2013; Klumpp and Hwa, 2008; Liang et al., 1999). Next, we classified profiles

withKm> 3 dbl/h and 0.1 < Km< 3 dbl/h as linear (Figure 3A) and saturable (Figure 3B), respectively (Transparent

Methods). The classification is robust with respect todifferent thresholdswithin realistic growth rates; only a small

number of genes, around 7% for both pa and PAchr, have Km values within 2 and 4 dbl/h. In addition, within this

range, the presence and significance of the signals shown in Figure 3 are qualitative and quantitatively robust.

In the case of promoters with linear profiles, we defined the sensitivity to the global program as the slope of

the PAchr(m) profile, such that larger values stand for larger increases in promoter activity for fixed changes

in growth rate. In the case of saturable promoters, we took Km as a proxy of their sensitivity to the global

program: for smaller values of Km the promoter activity becomes near saturation at smaller growth rates,

thus becoming less sensitive to changes in growth rate. We also computed sensitivities of pa(m) profiles

determined in an analogous manner (Transparent Methods; Figure S5 and Data S1).

We then asked if there exists an association between sensitivity and chromosomal location, given that one

of the factors that influence these responses is multifork replication, relevant near oriC. Figures 3C and 3D

show the running average of the sensitivities to the global program along the chromosome of constitutive

promoters with linear and saturable profiles, when including and excluding the effects of multifork replica-

tion, i.e., PAchr(m) and pa(m), respectively. We observed that the sensitivity of linear profiles decreases lin-

early with the distance to oriCmore abruptly and more significantly when considering PAchr than pa. In the

case of saturable constitutive promoters, we notice that only when considering PAchr there is a significant

peak within m < 0.20 of the chromosome (p < 0.05).

In general, these results suggest that saturable promoters in E. coli are located across the genome inde-

pendently of their promoter activity per gene copy. On the contrary, linear promoters that are most growth

rate dependent are preferentially located near the origin of replication where they can further boost their

expression due to increased copy numbers at large growth rates.

Global Regulation Acts as a Gene Position Conservation Force

In light of the previous results, it is reasonable to hypothesize that both modes of regulation (gene location,

and the sensitivity to the global program) would act synergistically in species experiencing multiple
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overlapping replication rounds, hence preserving gene order. Inversely, gene order should be lost only in

species living in rather stable environments or experiencing long doubling times.

To evaluate this hypothesis, we examined next if these genes maintain their proximity to oriC in other

species as a function of some characteristics of the species: their maximum growth rate, the variability of

the environment where they live, and the capacity for multifork replication (a function of genome size

and minimal doubling time). We performed a homolog search across 100 species to compute the corre-

sponding chromosomal displacement (Figure 4A; Transparent Methods). Displacements of the half most

growth-rate-dependent genes near oriC (m < 0.2; Figure 3) are compared against the null hypothesis,

i.e., displacement is independent of sensitivity. This is scored by the probability of finding a larger mean

displacement of gene groups of the same size chosen randomly among all constitutive promoters at

m < 0.2, for linear or saturated growth rate dependencies (Figure 4B). Smaller values of this score, termed

the position conservation, represent non-conserved locations of promoters.

We studied next the association between the position conservation and three main species features: envi-

ronmental variability (env), relevance of multifork replication (R), and maximal growth rate (as the inverse of

the minimal doubling time, mmax = tmin
�1). Environmental variability was based on an earlier environmental

classification (Parter et al., 2007), whereas minimal doubling time with genome size was estimated to

compute R, the ratio between the maximal chromosome’s replication time and the minimal doubling

time as a measure of the importance of multifork replication effects for an organism (Couturier and Rocha,

2006). For each class of promoter dependence (linear and saturated, pa and PAchr) we measured the partial

Spearman’s rank correlation r between the corresponding position conservation and env, R, or mmax while

controlling in all cases for phylogenetic distance (Transparent Methods).

In the case of lineal promoters, we obtained a significant correlation between position conservation and R

or mmax (all Spearman rwith p < 0.01). The numerical values of r are in line with those obtained in other gene

order studies (Couturier and Rocha, 2006). Correlations with R are only slightly stronger when the global

program includes the multifork effect (PAchr; 0.36 vs. 0.35), as expected from the definition of R, whereas

maximal growth rate and R are equally relevant when not including the multifork dosage effect (pa; 0.37

versus 0.37). Figure 4C explicitly shows these correlations: pa(m) versus maximum growth rate and PAchr(m)

versus R. The position conservation of saturable promoters was not significant in any case.

Figure 3. Promoters That Are Most Sensitive to Growth Rate Are Located Closer to the Origin of Replication

(A and B) Two profiles of promoter activity can be identified: linear (A) and saturable (B). Sensitivity to the global program

is proxied by the slope in the case of linear profiles and the growth rate at which activity is half maximal (Km) in the case of

saturable profiles (Figure S5 and Data S1).

(C and D) Running averages of the sensitivity to the global program of promoters with linear (C) and saturable (D) profiles,

of PAchr (red dots) and pa (blue dots). The sensitivity of linear profiles decreases linearly with the distance to oriC (solid

lines); this pattern is only significantly observed in saturable profiles when considering PAchr. Shading denotes one

standard deviation of sensitivities obtained from a permutation test with 104 randomizations (Transparent Methods).
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Overall these results support our hypothesis that the impact of the global transcriptional program on gene

order is a general feature of bacterial species, especially in those that undergomultifork replication. In fact,

the position of genes exhibiting a particularly sensitive linear response tends to be conserved in species

with larger values of R and fast growth rates.

DISCUSSION

We quantified growth rate dependencies of over 700 prospective constitutive genes in E. coli, arguably the

best gene collection to explore the effects of the physiological state of the cell, the global program, on

gene expression. This is based on an approach that obtains promoter activity as if reporters had been

inserted in the chromosome and that characterizes growth rate dependencies from dynamical data.

Both features reduce the costs and difficulties of large-scale experiments.

Half of the promoters that we examine present a Michaelis-Menten rate law confirming earlier reports (Ger-

osa et al., 2013; Liang et al., 1999). That we verify this class with experiments in which the dependency is

obtained using conventional approaches (growth rate being modified with the utilization of different

carbon sources; data obtained at steady state) supports our approach. However, we also find three other

patterns that differ. This does not seem to be associated with the method itself as our experimental char-

acterization of these responses did not recover hyperbolic profiles. These genes could be perhaps subject

to additional layers of regulation or other hidden structural aspects, which in turn makes us expect the lack

of correlations between balanced and dynamic growth measurements (Figure S4). However, we observed

no signal of a particular enrichment on specific sigma factors or AT content in the promoter region or up-

stream of it (Figures S6A and S6B in Supplemental Information), as large AT content is known to favor DNA

bending and thus protein-DNA interactions (Dorman and Dorman, 2016; Mitchison, 2005), in particular,

upstream of the promoter region in the UP element (Estrem et al., 1998). In addition, although the

supercoiling state of the chromosome is known to affect gene expression, no quantitative or even qualita-

tive genome-wide regulatory model is yet available (Lal et al., 2016). We considered instead data on

Figure 4. The Position Conservation of Constitutive Genes near oriC that Are Most Dependent on the Global

Program Correlates with the Maximum Growth Rate and R

(A) Gene’s position conservation is computed from the displacement of a gene in E. coli (mi) within the m < 0.2 region

(purple), with respect to its homolog in other species (mi,X).

(B) In every species, the observed mean displacement of genes that are most dependent on the global program and are

located at m=<0.20 is tested against the displacement of the rest of constitutive genes at m=<0.20 (Ho).

(C) The most predictive partial correlations (Spearman r, and light green solid line, both p < 0.01, denoted as ++) of the

position conservation of the half most growth-rate-dependent lineal profiles near oriC in E. coli were obtained with R, for

PAchr(m) profiles, and the maximum growth rate, for pa(m) profiles. Variables are corrected for phylogenetic inertia

(Transparent Methods; Figures S6–S9 and Data S2).
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independent supercoiling macrodomains (Valens et al., 2004) to notice again no signal (Figure S6C in

Supplemental Information).

Overall, the success in predicting the responseof over 50%promoterswith the original list (arguably the truly

constitutive ones) demonstrates the significance of the global program beyond balanced growth (Berthou-

mieux et al., 2013).Within thesepromoters wedistinguish subsets that are especially sensitive to growth rate

and that are selectively located in the chromosome. Indeed, genes with either linear or saturable profiles

show larger sensitivities to growth rate within 20% of the replichore closest to oriC. This pattern is partially

maintained when we control for the multiple replication fork effect, i.e., when we consider pa(m) profiles

instead of PAchr(m). We thus propose a model in which multifork effects and the global program (excluding

gene copy) work in combination: promoters that are most growth rate dependent in E. coli benefit from a

larger increase in gene expression at large growth rates (Figure S7 in Supplemental Information).

However, the fact that E. coli coordinates different mechanisms to obtain a multiplicative effect of

enhanced expression of genes near oriCmight not necessarily be a general property of bacterial genomes.

This precise coupling might have been selected in bacteria for which multifork gene dosage fluctuations

are relevant: those that are subject to variable growth rates or bacteria that reach a large number of over-

lapping replication rounds. We found evidence that supports our hypothesis: gene order conservation of

the most sensitive genes to the global program correlates significantly with the potential relevance of

multifork replication in over 100 species. In addition, a recent study found two fundamental bacterial repro-

duction strategies, the first relying on (metabolically) efficient but slow growth and a second that relies on

inefficient but fast growth (Roller et al., 2016). Of the two strategies, the latter perhaps exploits the coor-

dination of these mechanisms. Also, correlations involving maximal growth rate should be taken cautiously

as known doubling times are biased by laboratory-controlled environments (Gibson et al., 2018).

Recent studies show the important link between gene expression and gene location on the chromosome

(Block et al., 2012; Bryant et al., 2014). Indeed, the increase in gene dosage due to bacterial multifork repli-

cation appears as an added control mechanism of natural genetic circuits (Bar-Ziv et al., 2016; Slager and

Veening, 2016). However, the relevance of genome organization goes beyond gene dosage fluctuations in

fast growth (Sobetzko et al., 2012; Soler-Bistué et al., 2017), and it may be influenced by chromosomal struc-

ture (Sobetzko et al., 2012) and gene essentiality (Rocha and Danchin, 2003).

Our work builds on these studies to emphasize the genome-wide effect of the physiological state of the cell

(the global program) on the control of gene expression and its coupling to genome organization. In fact,

not only do we find that promoters that are most growth rate dependent (at a single copy level) are located

significantly close to oriC in E. coli but also that this feature is conserved in species for which multifork gene

dosage fluctuations are strongest. Therefore, we present the physiological control of gene expression as an

additional aspect to consider if we are to elucidate the organization and evolutionary dynamics of the bac-

terial genome.

Limitations of the Study

In this study we showed that promoters whose transcriptional response is more dependent on growth rate

are preferentially located closer to the origin of replication in the chromosome in E. coli, and that the rela-

tive location of these genes in other species correlates significantly with their respective growth dynamics,

directly related to their habitat. One limitation of the study is that it relies on mean, population-level data of

transcriptional expression, as the experiments are performed in batch culture. Data on single-cell transcrip-

tional expression variability could further be of interest but are limited by the scalability of the experimental

setup. Finally, the homologs of E. coli’s genes in other speciesmight have differences at the promoter level:

different affinity to the RNA polymerase or the acquisition of regulatory sequences of TFs. This is again

beyond reach due to the scale of the experiments required.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Data and code are available upon request to the authors.

8 iScience 23, 101029, April 24, 2020



SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101029.

ACKNOWLEDGMENTS

The authors would like to thank Blas Blázquez and Luis Almonacid for advice and help during the RT-qPCR.

This work was supported by PhD fellowship BES-2016-079127(P.Y.) and grant FIS2016-78781-R (J.F.P.) from

the Spanish Ministerio de Economı́a y Competitividad and the European Social Fund.

AUTHOR CONTRIBUTIONS

P.Y. and J.F.P. designed the research, P.Y. performed the experiments, P.Y. and J.F.P. analyzed the results

and wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interest.

Received: August 18, 2019

Revised: December 15, 2019

Accepted: March 27, 2020

Published: April 24, 2020

REFERENCES
Bar-Ziv, R., Voichek, Y., and Barkai, N. (2016).
Dealing with gene-dosage imbalance during S
phase. Trends Genet. 32, 717–723.

Berthoumieux, S., de Jong, H., Baptist, G., Pinel,
C., Ranquet, C., Ropers, D., and Geiselmann, J.
(2013). Shared control of gene expression in
bacteria by transcription factors and global
physiology of the cell. Mol. Syst. Biol. 9.

Block, D.H.S., Hussein, R., Liang, L.W., and Lim,
H.N. (2012). Regulatory consequences of gene
translocation in bacteria. Nucleic Acids Res. 40,
8979–8992.

Bremer, H., and Dennis, P. (1996). Modulation of
chemical composition and other parameters of
the cell by growth rate. E coli Salmonella. Cell.
Mol Biol. 2, 1553–1569.

Bryant, J.A., Sellars, L.E., Busby, S.J.W., and Lee,
D.J. (2014). Chromosome position effects on
gene expression in Escherichia coli K-12. Nucleic
Acids Res. 42, 11383–11392.

Camas, F.M., and Poyatos, J.F. (2008). What
determines the assembly of transcriptional
network Motifs in Escherichia coli? PLoS One 3,
e3657.

Cooper, S., and Helmstetter, C.E. (1968).
Chromosome replication and the division cycle of
Escherichia coli Br. J. Mol. Biol. 31, 519–540.

Couturier, E., and Rocha, E.P.C. (2006).
Replication-associated gene dosage effects
shape the genomes of fast-growing bacteria but
only for transcription and translation genes. Mol.
Microbiol. 59, 1506–1518.

del Solar, G., Giraldo, R., Ruiz-Echevarrı́a, M.J.,
Espinosa, M., and Dı́az-Orejas, R. (1998).
Replication and control of circular bacterial
plasmids. Microbiol. Mol. Biol. Rev. 62, 434–464.

Deris, J.B., Kim, M., Zhang, Z., Okano, H.,
Hermsen, R., Groisman, A., and Hwa, T. (2013).

The innate growth bistability and fitness
landscapes of antibiotic-resistant bacteria.
Science 342, 1237435.

Donachie, W.D., and Robinson, A.C. (1987). Cell
Division: Parameter Values and the Process.
Escherichia coli and Salmonella typhimurium:
Cellular andMolecular Biology (American Society
for Microbiology), pp. 1578–1593.

Dorman, C.J., and Dorman, M.J. (2016). DNA
supercoiling is a fundamental regulatory principle
in the control of bacterial gene expression.
Biophys. Rev. 8, 89–100.

Estrem, S.T., Gaal, T., Ross, W., and Gourse, R.L.
(1998). Identification of an UP element consensus
sequence for bacterial promoters. Proc. Natl.
Acad. Sci. U S A 95, 9761–9766.

Gerosa, L., Kochanowski, K., Heinemann, M., and
Sauer, U. (2013). Dissecting specific and global
transcriptional regulation of bacterial gene
expression. Mol. Syst. Biol. 9, 658.

Gibson, B., Wilson, D.J., Feil, E., and Eyre-Walker,
A. (2018). The distribution of bacterial doubling
times in the wild. Proc. R. Soc. B 285, 20180789.

Gyorfy, Z., Draskovits, G., Vernyik, V., Blattner,
F.F., Gaal, T., and Posfai, G. (2015). Engineered
ribosomal RNA operon copy-number variants of
E. coli reveal the evolutionary trade-offs shaping
rRNA operon number. Nucleic Acids Res. 43,
1783–1794.

Kjeldgaard, N.O., Maaloe, O., and Schaechter, M.
(1958). The transition between different
physiological states during balanced growth of
Salmonella typhimurium. J. Gen. Microbiol. 19,
607–616.

Klumpp, S., and Hwa, T. (2008). Growth-rate-
dependent partitioning of RNA polymerases in
bacteria. Proc. Natl. Acad. Sci. U S A 105, 20245–
20250.

Klumpp, S., Zhang, Z., and Hwa, T. (2009). Growth
rate-dependent global effects on gene
expression in bacteria. Cell 139, 1366–1375.

Kochanowski, K., Gerosa, L., Brunner, S.F.,
Christodoulou, D., Nikolaev, Y.V., and Sauer, U.
(2017). Few regulatory metabolites coordinate
expression of central metabolic genes in
Escherichia coli. Mol. Syst. Biol. 13, 903.

Kubitschek, H.E. (1974). Constancy of the ratio of
DNA to cell volume in steady-state cultures of
Escherichia coli B-r. Biophys. J. 14, 119–123.

Lal, A., Dhar, A., Trostel, A., Kouzine, F.,
Seshasayee, A.S.N., and Adhya, S. (2016).
Genome scale patterns of supercoiling in a
bacterial chromosome. Nat. Commun. 7, 11055.

Liang, S.-T., Bipatnath, M., Xu, Y.-C., Chen, S.-L.,
Dennis, P., Ehrenberg, M., and Bremer, H. (1999).
Activities of constitutive promoters in Escherichia
coli. J. Mol. Biol. 292, 19–37.

Mitchison, G. (2005). The regional rule for
bacterial base composition. Trends Genet. 21,
440–443.

Morrison, P.F., and Chattoraj, D.K. (2004).
Replication of a unit-copy plasmid F in the
bacterial cell cycle: a replication rate function
analysis. Plasmid 52, 13–30.

Nanninga, N., and Woldringh, C. (1985). Cell
Growth, Genome Duplication, and Cell Division.
Molecular Cytology of Escherichia coli (Academic
Press), pp. 259–318.

Parter, M., Kashtan, N., and Alon, U. (2007).
Environmental variability and modularity of
bacterial metabolic networks. BMC Evol. Biol. 7,
169.

Peebo, K., Valgepea, K., Maser, A., Nahku, R.,
Adamberg, K., and Vilu, R. (2015). Proteome
reallocation in Escherichia coli with increasing
specific growth rate. Mol. Biosyst. 11, 1184–1193.

iScience 23, 101029, April 24, 2020 9

https://doi.org/10.1016/j.isci.2020.101029
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref4
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref4
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref4
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref4
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref7
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref7
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref7
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref11
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref11
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref11
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref11
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref11
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref14
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref14
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref14
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref14
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref15
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref15
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref15
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref20
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref20
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref20
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref20
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref20
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref21
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref21
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref21
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref22
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref22
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref22
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref22
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref23
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref23
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref23
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref23
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref24
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref24
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref24
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref25
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref25
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref25
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref25
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30213-3/sref28


Rocha, E.P.C., and Danchin, A. (2003).
Essentiality, not expressiveness, drives gene-
strand bias in bacteria. Nat. Genet. 34, 377–378.

Roller, B.R.K., Stoddard, S.F., and Schmidt, T.M.
(2016). Exploiting rRNA operon copy number to
investigate bacterial reproductive strategies. Nat.
Microbiol. 1, 16160.

Schaechter, M.,Maaloe, O., and Kjeldgaard, N.O.
(1958). Dependency onmedium and temperature
of cell size and chemical composition during
balanced grown of Salmonella typhimurium.
J. Gen. Microbiol. 19, 592–606.

Scott, M., Gunderson, C.W., Mateescu, E.M.,
Zhang, Z., and Hwa, T. (2010). Interdependence of
cell growth and gene expression: origins and
consequences. Science 330, 1099–1102.

Si, F., Li, D., Cox, S.E., Sauls, J.T., Azizi, O., Sou,
C., Schwartz, A.B., Erickstad, M.J., Jun, Y., Li, X.,
and Jun, S. (2017). Invariance of initiation mass

and predictability of cell size in Escherichia coli.
Curr. Biol. 27, 1278–1287.

Slager, J., and Veening, J.-W. (2016). Hard-wired
control of bacterial processes by chromosomal
gene location. Trends Microbiol. 24, 788–800.

Sobetzko, P., Travers, A., and Muskhelishvili, G.
(2012). Gene order and chromosome dynamics
coordinate spatiotemporal gene expression
during the bacterial growth cycle. Proc. Natl.
Acad. Sci. U S A. 109, E42–E50.
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Supplemental figures and legends 

 

 

 

 

Fig. S1. Chromosomal promoter activities are anticipated by our model from measurements of 

a fluorescent reporter plasmid library, related to Figure 1. We find that the relative promoter 

activities obtained from RT-qPCR are better anticipated by our model than from fluorescent plasmid 

reporters (asterisks denote rejection of the null hypothesis of equal means of a two-tailed, two sample 

t-test with a confidence level of =0.001). Additionally, and as expected from the model, RT-qPCR 

data of PA ratios is well fitted by an exponential decreasing function of chromosomal distance between 

genes (non-linear least squares, R^2=0.90) unlike data from fluorescent reporters (R^2=-0.06). Fits 

not shown. RT-qPCR values are the mean of three biological replicates, and error bars denote two 

standard deviations (Methods). 

 

 

 



 

Fig. S2. Comparison between two different approaches to compute promoter activity profiles, 

related to Figure 2. (A) The traditional approach consists in obtaining data pairs (PApl, µ) from 

cultures during balanced growth in a variety of growth media. Experimental profile obtained for the 

promoter of gene maoP in minimal medium with five different carbon sources: glucose (orange), 

arabinose (yellow), lactose (green), glycerol (light blue), maltose (dark blue) and supplemented, or 

not, with amino acids (AA; crosses and circles respectively; Materials and methods). The best fit to 

Eq.(1) is also shown with the 95% confidence interval (red solid and dotted lines respectively). (B) 

We can also obtain promoter activity profiles from growth time-series in a single growth medium (e.g. 

lactose+AA). We consider promoter activity (in green) and growth rate (in black) points during early 

and late exponential phase (dark and light purple shade) to obtain a similar promoter activity profile 

(Materials and methods). The best fit to Eq. (1) and the 95% confidence bounds are also shown (blue 

solid and dotted lines respectively). (C) Superposition of the two profiles obtained previously by 

different means. These two approaches yield similar qualitative and quantitative profiles in this and 

other cases for promoters of genes in class 1. 



 

Fig. S3. Comparison of the results of the automatic clustering algorithm when considering pa(µ) 

and PAchr(µ) profiles, related to Figure 2. (A) Histograms with the number of promoters found in 

each class. Class -1 includes all discarded promoters during the clustering algorithm (Materials and 

methods). (B) Mean profiles (solid lines) with one standard deviation (dotted lines) of each class. (C) 

The composition of class 1 is robust whether computed from pa(µ) or PAchr(µ) profiles. In fact, 85% 

(312 out of 367) and 99% (312 out of 315) of genes are shared, respectively. 

 



 

Fig. S4. The experimental profiles obtained from balanced growth in ten different media and 

time series in a single growing medium correlate only for genes in class 1, related to Figure 2. 

(A) Mean PAchr(µ) profile (blue line, shaded area represents one standard deviation) of each of the four 

classes obtained from the clustering algorithm (Materials and Methods). Inset: pie chart with the 

fraction of promoters found in that particular class. (B) Experimental measurements of PAchr from 

balanced growth in ten different media (red crosses, mean and sd from three replicates) of 12 genes 

(three from each class). Profiles from time series data in glucose supplemented with amino acids are 

superimposed in blue solid line [Zaslaver et al. (2009)]. Observe that the expected hyperbolic pattern 

for constitutive genes is only recovered for those in class 1. Data of corA grown in glycerol and 

arabinose resulted in fluorescence levels below the background and are not shown. 



 

Fig. S5. Correlation between the parameters obtained from fitting pa(µ) and PAchr(µ) to Eq.(1), 

related to Figure 3. (A) There is a small correlation between the strength of a saturable promoter (Vm) 

and its sensitivity to growth rate (Km). (B) The expression level of a promoter, measured as its activity 

at µ=0.5 dbl/h, does not correlate with the sensitivity of saturable promoters Km. Predictably, 

expression level correlates well with the maximum activity of saturable promoters, and with the slope 

of lineal promoters. (C) Different sensitivities are obtained from pa(µ) and PAchr(µ) profiles. Left: 

values of Km of the 312 promoters belonging to class 1 when computed from pa(µ) and PAchr(µ). The 

region where promoters whose pa is saturable (non-saturable) but whose PAchr(µ) is constant 

(saturable) is marked in grey (yellow). Right: slopes of linear profiles computed from pa and PAchr 

correlate linearly. In all panels, ρ is Pearson's linear correlation coefficient, and a log-log scale is used 

for clarity because the values span several orders of magnitude. 



 

Fig. S6. Sigma factors, AT content and macrodomains do not explain the different classes, 

related to Figure 4. (A) Number of observed genes (vertical bars) within each sigmulon (x-axis) and 

the expected values under 104 randomizations (black circles, error bars correspond to one standard 

deviation; housekeeping -σ70-, general stress - σ38-, cytoplasmic stress - σ32-, extracytoplasmic stress 

- σ24-, nitrogen stress - σ54- and flagellar genes - σ28-). (B) Mean AT content and one standard 

deviation (y-axis) in different windows of the upstream region of the initiation transcription site (x-

axis). Although constitutive promoters are often considered to be about 100bp long, we show the 

results of different window sizes. (C) Number of promoters of each class found in the chromosomal 

macrodomains (colored bars; classes: saturable -s-, linear -l-, decreasing -d-, constant -c-, and other -

o-). Black points and error bars correspond to the mean and one standard deviation of the expected 

number of promoters found under 105 randomizations of their location. 



 

Fig. S7. Two possible scenarios for the effect of multifork gene dosage as part of the global 

program, related to Figure 4. (Top) Scenario 1. The most sensitive genes to the global program 

locate near the ter region (symbolized by a green gradient; note that global regulation here excluded 

the impact of gene dosage). In contrast, the multifork effect is stronger near oriC (orange gradient). 

The gene dosage effect is consequently not coupled to a strong sensitivity. (Bottom) Scenario 2. The 

most sensitive genes to the global regulation (excluding gene dosage) locate in the oriC region. In this 

case, the effect of gene dosage is linked to the strong sensitivity. 



 

Fig. S8. Phylogenetic tree of the 100 species used in this work, related to Figure 4. 

 



 

Fig. S9. Spearman rank correlations between possible explanatory variables for conservation 

measures, related to Figure 4. Correlations (with ties) for all species between phylogenetic distance, 

R (i.e. the relevance of multifork effects), environmental variability, minimal doubling time and 

genome size in Mbp, when available (Materials and methods). Values in red denote significant 

correlations (p<0.05). Histograms of the ranks are shown in the diagonal. 

  



Transparent Methods 

Promoter activity data and validating experiments 

We obtained time series of optical density and promoter activity from public available data 

(Zaslaver et al., 2009) that used a library of E. coli promoters expressing a fast-folding fluorescent 

protein and cloned in a low-copy plasmid (Zaslaver et al., 2006). We considered only data of those 

experiments using minimal medium with 0.5% (w/v) glucose and supplemented amino acids and did 

not include experiments in which the strains did not grow (within one standard deviation of the mean 

growth curve) or whose promoter activity was constant and equal to zero. 

 

We used this very library (E. coli K-12 MG1655 strain) in our validation experiments to test 3 

representative promoters from each of the four response classes. The list of their names and their 

products' are: maoP (macrodomain Ori protein), slyD (peptidyl prolyl cis/trans-isomerase and 

chaperone), corA (Ni2+/Co2+/Mg2+ transporter), prmB (50S ribosomal subunit protein L3 N5-glutamine 

methyltransferase), rssB (regulator of sigmaS), amyA (α-amylase), yaaA (peroxide stress resistance 

protein), ghrA (glyoxylate/hydroxypyruvate reductase A), nudF (ADP-sugar pyrophosphatase), cpsG 

(phosphomannomutase), argQ (tRNA) and mutT (8-oxo-dGTP diphosphatase). The reporter strains of 

these genes were retrieved from frozen stocks, plated in selective media, and grown overnight. Isolated 

colonies were grown overnight in the specific medium, then diluted 1/20 and pre-cultured for about 

5h. Then, 96-well flat transparent plates containing 190µl of the specific medium were inoculated 1/20 

with the pre-culture and added 50µl of mineral oil to prevent evaporation. Optical density (600 nm) 

and fluorescence (535 nm) were assayed in a Victor x2 (Perkin Elmer) at 10min intervals for ~8h 

(growth at 30ºC with shaking). 

 

Cultures were grown in M9 minimal medium with kanamycin (50µg/ml) to which either 

glucose, arabinose, lactose, glycerol or maltose was added to a final concentration of 0.5% (w/v). All 

five carbon media were also supplemented in the second set of experiments with amino acids to a final 

concentration of 0.2% (w/v), thus making 10 different nutrient conditions in total. 

 

RT-qPCR protocol. We harvested cells growing exponentially in M9+Gluc 0.5%+AA 0.2% at 

37ºC by centrifugation at 4000rpm at 4ºC for 10mins to quickly freeze them at -80ºC. The day after, 

RNA was extracted with Trizol (Invitrogen) and the resulting aqueous phase was directly purified with 

the RNeasy Mini Kit (Qiagen) and treated with Turbo DNA-free Kit (Invitrogen) following standard 

protocols. The samples where then handled by the Genomics Service of the CNB to obtain RT-qPCR 



results. Forward and reverse primers were: CAACTGCTTG AGCGTCATGG and CCACGGCATA 

CTGCTACGAA for maoP, ATCGCATCGA CGTAAGTGCT and CTTCTCCGAC AGCGCCAATA 

for pyrB and TTAAAGTGGC GTGCGACCTC and AGACTTAGGC CGAGCGATAGA for racR. 

We computed PApl following the previous protocol for reporter strains but grown at 37ºC instead. 

Growth rate was similar and about 1.5 dbl/h for all strains (fluorescence assay and RNA extraction). 

 

Data processing and modeling 

Growth rate time series were computed as the two-point finite differences of log(OD), 

µ(t)=Δlog(OD)/Δt, and promoter activities were computed as the two-point finite difference in time of 

fluorescence per OD unit, PApl(t)=ΔGFP/Δt/OD. Balanced-growth data was computed from the mean 

time-series measurements of three technical replicates as the average value in a ~2h time-window 

during observable exponential growth. Promoter activity is in units of GFP/OD/h. Note that the 

extensive generality and robustness of the cell size formula derived by Si and colleagues (Si et al., 

2017), expressed as v = 2
𝜏𝑐𝑦𝑐

𝜏  with 𝜏𝑐𝑦𝑐 = 𝐶 + 𝐷 and 𝜇 = 1 𝜏⁄  by definition in their supplementary 

material, suggests that it is a good first approximation of the cell size during the early and late 

exponential phases of growing E. coli in standard conditions.  

 

Automatic clustering was performed with the normalized growth rates and promoter activities 

(PAchr and pa) with respect to their maximum. The euclidean pairwise distance was used to compute 

the linkage matrix with the unweighted average distance, which was then automatically divided into 

50 clusters of which were rejected those with less than 2% of the sampled promoters. Clusters were 

then grouped together by visual interpretation resulting in the four classes presented in the main text. 

The robustness of the classification was tested against additional relative random noise of 5% and 10% 

normally distributed. The recovering rate is the mean number of genes classified as in the original 

classes expressed in percentage from 10 realizations. Promoter activity profiles of cluster 1 (either 

from pa and PAchr) were then fit to Eq.1 by means of non-linear least squares method. We fine-tuned 

the automatic classification and depending on the value estimated, by inter- or extrapolation, for Km 

we distinguish between linear (Km>3 dbl/h), saturable (0.1< Km <3 dbl/h) and constant (Km<0.1 dbl/h) 

profiles. The slope of linear profiles was obtained from linear least squares fits. Figure 3C-D shows 

the running averages of the sensitivities in a window of 10 genes, and although some oscillatory 

patterns can be appreciated, that is beyond the scope of this study. 

 

 



Definition of constitutive genes 

We selected constitutive promoters as those lacking any interaction with DNA-binding 

transcriptional factors, even with weakly specific factors as IHF and H-NS. For this we used the 

regulatory network of E. coli downloaded from RegulonDB (Gama-Castro et al., 2016), arguably the 

best characterized regulatory network to date of any living organism. This gene list overlaps 

considerably with the set of the constitutive promoters independently identified by Genomic SELEX 

screening (Shimada et al., 2017). Moreover, note that the promoter-specific values Vm and Km can be 

modulated by factors that bind to RNA polymerase like (p)ppGpp. That the alarmone (p)ppGpp affects 

the expression of >30% of the genome of E. coli (Traxler et al., 2008) denotes its relevance in gene 

expression control. However, (p)ppGpp's role is beyond specific regulation. In fact, recent results show 

that it is a leading component for the proper, coordinated regulation of bacterial physiological state 

(Dennis et al., 2004; Traxler et al., 2008), which is precisely the global program. For this reason, the 

expression control effects of (p)ppGpp with or without dksA are not considered to be part of a specific 

regulation, as neither does RegulonDB. In addition, that we find 3 ribosomal genes (rpsT, rpsB and 

rpmE) in our list highlights the fact that we focus only on transcriptional and not post-transcriptional 

regulation, because of the limitation imposed by the use of fluorescent reporter measurements.  

 

 

Environmental variability, R and phylogenetic distances 

The classification of over 100 species depending on the variability of their environment used 

in this work was previously published (Parter et al., 2007). Classes of increasing environmental 

variability are obligate, specialized, aquatic, facultative, multiple and terrestrial. E. coli is found in the 

facultative class. From the original list, species with more than one chromosome, species that could 

not be found in the phylogenetic tree (see below), and species without a published unified genome in 

NCBI database were not considered in this study (Data set S2 in supplemental material). The 

importance of multifork dosage increase due to multifork replication in a given species, termed R, is 

obtained as the ratio of chromosomal replication time by the minimal doubling time for each bacterium. 

In fact, it is proportional to the maximum number of overlapping replication rounds. Values of R and 

the minimal doubling time were retrieved for 60 of the 100 species (Couturier and Rocha, 2006). 

Phylogenetic distances from E. coli were computed from the phylogenetic tree of (Lang et al., 2013) 

(Fig. S8 in supplemental material). These variables correlate with each other and specially with 

phylogenetic distance to E. coli (Fig. S9 in supplemental material). For this reason, we used partial 

linear correlations (Couturier and Rocha, 2006), which considers the correlation between two variables 

(position conservation and µmax or R) controlling for a third confounding variable: phylogenetic 



distance in this case. The corrected values of position conservation, env, µmax and R are the residuals 

of their respective rank correlations with phylogenetic distance. Hence, correlation between corrected 

values are not affected by phylogenetic inertia (Fig. 4C). 

 

Origins of replication and homology search 

For the location of the origins of replication of most genomes, we used DoriC v7.0 (Gao et al., 

2013), a database of bacterial and archaeal genomes available at http://tubic.tju.edu.cn/doric/ -- the 

update of September 15th, 2017). For genomes for which the origin of replication was not directly 

available, Blochmannia Floridanus and Methanosarcina Acetivorans, we used the web-tool that DoriC 

offers for its identification. The best results had expected values E=0 and E=3e-9, respectively (Data 

set S2 in supplemental material). Moreover, the replication terminus ter was set half the genome length 

away from the origin of replication as is done in related works. We obtained the homolog sequences 

(and their location) of the 708 constitutive genes of E. coli from Blastp, results with expected values 

above E=1e-3 were discarded (Pearson, 2013). We quantified the position conservation of the half 

most sensitive genes to growth rate, located at m<0.2, for a given species as the probability of finding 

a smaller mean displacement in 104 random selections among all homologs found at m<0.2 

(independently of their sensitivity to growth rate). This protocol controls for a possible general 

conservation of genes near oriC, and for different numbers of homologs found in the set of species. 
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