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Abstract

Dupuytren’s disease is a fibro-proliferative disease characterized by a disorder of the extracellular matrix (ECM) and high
myofibroblast proliferation. However, studies failed to determine if the whole palm fascia is affected by the disease. The
objective of this study was to analyze several components of the extracellular matrix of three types of tissues—Dupuytren’s
diseased contracture cords (DDC), palmar fascia clinically unaffected by Dupuytren’s disease contracture (NPF), and normal
forehand fascia (NFF). Histological analysis, quantification of cells recultured from each type of tissue, mRNA microarrays and
immunohistochemistry for smooth muscle actin (SMA), fibrillar ECM components and non-fibrillar ECM components were
carried out. The results showed that DDC samples had abundant fibrosis with reticular fibers and few elastic fibers, high cell
proliferation and myofibroblasts, laminin and glycoproteins, whereas NFF did not show any of these findings. Interestingly,
NPF tissues had more cells showing myofibroblasts differentiation and more collagen and reticular fibers, laminin and
glycoproteins than NFF, although at lower level than DDC, with similar elastic fibers than DDC. Immunohistochemical
expression of decorin was high in DDC, whereas versican was highly expressed NFF, with no differences for aggrecan.
Cluster analysis revealed that the global expression profile of NPF was very similar to DDC, and reculturing methods showed
that cells corresponding to DDC tissues proliferated more actively than NPF, and NPF more actively than NFF. All these
results suggest that NPF tissues may be affected, and that a modification of the therapeutic approach used for the
treatment of Dupuytren’s disease should be considered.
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Introduction

Dupuytren’s disease (DD) is a proliferative disorder affecting the

palm of the hands that is characterized by an alteration of the cells

and extracellular matrix (ECM) of the palm fascia. This alteration

may lead to an irreducible and progressively disabling flexion and

contracture of the fingers, with loss of function and deformity of

the hand [1]. DD is a multifactorial disease, and several studies

previously demonstrated the important role of genetics, alcohol,

tobacco [2] and different systemic diseases such as diabetes,

epilepsy and hyperlipidemia [3].

One of the main factors involved in the development of this

disease is the proliferation of myofibroblasts in the affected tissues.

Myofibroblasts share characteristics of both fibroblasts and

smooth-muscle cells [4], and they may be the responsible for the

tissue contracture found at the initial phases of DD [5]. In turn,

the ECM usually has important alterations of both its fibrillar and

non fibrillar components [2]. Although a comprehensive histolog-

ical and genetic analysis of the fibrillar and non-fibrillar

components of the ECM and the normal palm fascia has not

been performed to the date, previous studies have identified

alterations of type I and type III collagens, fibronectin, laminin

and other ECM components in DD [6], along with an important

disregulation of several genes encoding proteins in the WNT-

signaling pathway [7].

The treatment of DD is complex, and it involves surgical and

non-surgical approaches [8,9], all of them with a unique goal of

eliminate the affected tissue [9]. Non-surgical treatments are

mainly based on the use of radiotherapy, physiotherapy,

dimethylsulfoxide solutions and Clostridium histolyticum collage-

nase injections [10,11]. However, the most effective treatments are

the surgical removal of the fibrous cords causing the patient’s

symptoms by fasciectomy or fasciotomy [8,9]. The risk of

treatment failure and disease recurrence ranges between 8% and

66%, making necessary additional research on the causes and
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factors related to this recurrence, including treatment alternatives

improving short and long-term outcome of DD patients.

Despite recent advances in understanding the pathophysiology

of DD, the therapeutic approach is palliative and not curative

[12]. In most cases, evolution of DD is progressive and irreversible,

and the risk of relapse after surgical excision is high [2]. A better

knowledge of the factors and mechanisms involved in the disease

onset and progression not only in DD cords, but also in the rest of

the hand fascia, whose role in this disease should be clarified, could

contribute to a better treatment and prevention of postsurgical

relapse. Typically, the disease only affects the central zone of the

palmar aponeurosis [13] with the formation of a fibrous cord

attached to the base of the middle phalanx and often the tendon

sheath [12]. Other areas of the palmar fascia usually remain

asymptomatic. However, studies failed to determine whether these

areas are involved in the genesis and development of the DD and

may influence the final outcome in this disease.

To shed light on this issue, in the present study we have carried

out a complete analysis of both the cellular and ECM components

of Dupuytren’s disease contracture cords and palmar fascia

clinically non-affected by Dupuytren’s disease contracture by

using histological, histochemical, immunohistochemical, gene

expression and cell culture methods and techniques.

Materials and Methods

Tissue samples
In this work, we analyzed three types of tissues: Dupuytren’s

disease contracture cords (DDC); palmar fascia clinically unaf-

fected by Dupuytren’s disease contracture (NPF); and normal

forehand fascia (NFF). The three tissue types were obtained from

DD patients subjected to surgical removal of the DDC at the

trauma and orthopedic surgery unit of the San Cecilio University

Hospital of Granada (Spain) (n = 6 samples). All patients included

in the study were male and their age ranged between 60 and 66

years. They all had severe chronic Dupuytren’s disease with the

presence of an evident DDC that compromised the movement of

one of the fingers. None of the patients had been operated before.

In each case, the size of the excised tissue was 161 cm.

Immediately after removal, tissues were divided in three

fragments. One of the pieces was fixed in 10% buffered formalin,

dehydrated and embedded in paraffin for histological analysis.

The second piece was used for mRNA isolation for microarray

analysis. The last fragment was used for recultivation and cell

proliferation experiments.

Ethics Approval
In this study, each patient signed an Informed consent. This

study was approved by the ethics committee from University of

Granada, Granada, Spain.

Histological and histochemical analyses
Sections of 5 mm-thickness were obtained from tissues embed-

ded in paraffin by using a microtome. After dewaxing in xylene,

washing in ethanol series and rehydrating in water, sections were

processed as shown below. All samples were processed simulta-

neously.

1. For histological analysis of tissue structure, tissue sections

were stained with Masson’s trichrome staining method. Briefly,

samples were incubated in solution A –0.5 ml acid fuchsin, 0.5 ml

glacial acetic acid and 99 ml distilled water- for 15minutes, in

solution B -1 g phosphomolybdic acid and 100 ml distilled water-

for 10 minutes and in solution C – 2 g methyl blue dye, 2.5 ml

glacial acetic acid and distilled water up to 100 ml- for 5 minutes.

Then, samples were washed in distilled water, dehydrated in

alcohol and xylene and mounted for light microscopy analysis.

2. To determine the number of cells per area of tissue (cell

density analysis), tissue sections were stained with 4,6-diamidino-2-

phenylindole (DAPI) and analyzed using a light microscope. All

cell nuclei were automatically quantified using the Image J

software.

3. To analyze the fibrillar components of the ECM by

histochemistry, samples were stained as follows [14]:

– To evaluate the presence of collagen fibers, tissues were

stained with the Picrosirius method using Sirius red F3B reagent

for 30 min and counterstained with Harris’ Hematoxylin for

5 min. To analyze the three-dimensional collagen fiber organiza-

tion, samples stained with Picrosirius were evaluated using a

polarized Nikon Eclipse 90i light microscope.

– For reticular fibers, tissues were stained with the Gomori’s

reticulin metal reduction method using 1% potassium permanga-

nate for 1 min, followed by 2% sodium metabisulphite solution

and sensibilization with 2% iron alum for 2 min. After that,

samples were incubated in ammoniacal silver for 10–15 min and

in 20% formaldehyde for 3 min. Finally, differentiation was

performed with 2% gold chloride for 5 min and 2% thiosulphate

for 1 min. No counterstaining agent was used.

– To evaluate elastic fibers, the orcein method was used. All

samples were incubated in the orcein solution for 30 min at

37uand differentiated in acid-alcohol for a few seconds. No

counterstaining agent was used.

4. To analyze the non-fibrillar components of the ECM,

samples were stained as follows [14]:

– To determine the glycoproteins content in each tissue type, we

used the Schiff Periodic acid staining method (PAS). Briefly, 0.5%

periodic acid solution was used for 5 min as oxidant, followed by

incubation in Schiff reagent for 15 min. Samples were slightly

counterstained with Harris’s hematoxylin for 20 seg.

– For analysis of proteoglycans, each tissue section was

incubated in alcian blue solution for 30 min and then counter-

stained with nuclear fast red solution for 1 min.

Immunohistochemistry
Detection of specific non-fibrillar components of the ECM -

decorin, versican, agreccan and laminin- was carried out by

immunohistochemistry. For antigen retrieval, deparaffinized tissue

sections were incubated in pH 6 citrate buffer for 40 minutes at

95uC -laminin- or incubated with condroitinase ABC (Sigma-

Aldrich) at 37uC for 1 h -decorin, versican and aggrecan-. Then,

unspecific antigens were blocked with horse serum (Vector,

Burlingame, CA, USA) and samples were incubated with primary

antibodies anti-decorin (R&D systems, Minneapolis, MN), anti-

versican (ABCam, Cambridge, UK) and anti-aggrecan (ABCam)

or anti-laminin (Sigma-Aldrich, Steinheim, Germany) at a dilution

of 1:500, 1:100, 1:250, and 1:1000, respectively, for 60 min at

room temperature, except for laminin, which was incubated

overnight at 4uC. Secondary antibodies were applied and the

reaction was developed using a commercial 3-39 diaminobenzidine

kit (Vector Laboratories). Finally, samples were counterstained in

Mayer’s hematoxylin and mounted on coverslips for light

microscopy evaluation. Expression of anti-smooth muscle actin

(SMA) was identified by using pre-diluted anti-SMA primary

antibodies (Master Diagnostica, Granada, Spain) for 30 min at

room temperature and a secondary FITC-labeled antibody, and

mounted with fluorescent DAPI-Vectashield (Vector Laborato-

ries). To analyze cell proliferation, immunohistochemical analysis

of PCNA was used using monoclonal anti-proliferating cell nuclear

antigen clone PC10 (Sigma-Aldrich). First, cells were cultured in

Dupuytren’s Disease Histological Patterns
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culture chambers and primary anti-PCNA antibodies were applied

at a dilution of 1:1000 for 60 min at room temperature. Then,

secondary FITC-labeled antibodies were used for 30 min and

samples were mounted using fluorescent DAPI-Vectashield.

Histological images were obtained at 200X magnification by

using a Nikon Eclipse 90i light microscope, and the intensity of the

staining signal was quantified for each specific ECM component

by using ImageJ software as previously reported [15]. All images

were taken and analyzed using exactly the same conditions

(exposition time, white balance, background, etc.) for each tissue

type.

Gene expression analysis by microarray
Total mRNA was extracted and purified from each tissue -

DDC, NPF and NFF- by using Qiagen RNeasy Mini Kit system

(Qiagen, Mississauga, Ontario, Canada) following the manufac-

turer’s instructions. Total RNA was converted into cDNA using a

reverse transcriptase (Superscript II, Life Technologies, Inc.,

Carlsbad, California, EEUU) and a T7-oligo (dT) primer. Then,

biotinilated cRNA was generated by using a T7 RNA polymerase

and biotin-11-uridine-59-triphosphate (Enzo Diagnostics, Farm-

ingdale, Nueva York, EEUU). Labeled cRNA were chemically

fragmented to facilitate the process of hybridization and hybrid-

ized to Affymetrix Human Genome U133 plus 2.0 oligonucleotide

arrays for 6 hours at 45C. For the analysis of expression of ECM-

related genes, we first selected all probe-sets with a role in the

synthesis of ECM fibrillar components, glycosaminoglycans

(GAG), proteoglycans and glycoproteins by using the information

provided by Affymetrix. We also selected 6 WNT-pathway genes

previously reported to be associated with DD [7]. If more than one

probe-set was present in the array for the same gene, average

expression values were obtained for that specific gene. To classify

the three types of samples -DDC, NPF and NFF- according to

their global gene expression profile, we performed hierarchical

cluster analysis using the TM4 Software with all genes in the array

[16]. All expression data are publically available at the public

functional genomics data repository supporting MIAME-compli-

ant data submissions Gene Expression Omnibus (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59746).

Recultivation and cell proliferation analyses
Each tissue type was enzymatically digested in a 2 mg/ml

Clostridium hystoliticum collagenase solution (Gibco BRL Life

Technologies Ref. 17100-017, Karlsruhe, Germany) at 37C for

6 h. Isolated cells were harvested by centrifugation and cultured

on tissue culture flasks using a Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine serum

(FBS) and 1% antibiotics. 10,000 cells of each tissue type were

plated in 25 cm2 culture flasks, cultured in a 5% carbon dioxide

atmosphere for 21 days, and the number of cells grown per mm2

of culture surface was quantified after 7, 14 and 21 days of culture

in each tissue type. Culture medium was changed every three days,

and cells were not trypsinized during the 21 days.

Statistical analysis
For the global comparisons among the three tissue types -DDC,

NPF and NFF-, we used the Kruskal-Wallis statistical test. To

identify differences between two specific tissue types -DDC vs.

NPF, DDC vs. NFF and NPF vs. NFF-, we used the Mann-

Whitney test. All these tests were used to compare the signal

intensity for the histochemical and immunohistochemical analyses

(picrosirius, Gomori’s reticulin, orcein, PAS, laminin, alcian blue,

aggrecan, decorin and versican), the number of cells present in

each tissue type and the number of cells showing positive

expression of SMA. The analysis of gene expression levels as

determined by microarray was carried out by using the U-rank

statistical test as previously described [17]. This test allows

detection of genes whose expression was higher for each of the

samples corresponding to a specific group as compared to all

samples in the other group. P values below 0.05 were considered

statistically significant for all double-tailed tests.

Results

1. Structural analysis of DDC, NPF and NFF human
samples as determined by Masson’s trichrome staining

The analysis of human samples affected by Dupuytren’s diseases

(DDC) using Masson’s trichrome staining revealed the presence of

abundant fibrosis, with a fiber-rich dense tissue containing cells. In

contrast, NFF normal tissues were characterized by few fibers and

cells, with abundant blood vessels. Finally, NPF samples corre-

sponding to hand palmar fascia tissue non-affected by Dupuytren’s

disease were very similar to NFF, with a slight increase of fibrous

tissue (Figure 1A).

2. Analysis of cell density in DDC, NPF and NFF human
samples

As shown in (Table 1 and Figure 1B), quantification of the

number of cells per area of tissue demonstrated that DDC samples

had significantly higher number of cells as compared with NPF

and NFF (p,0.001). However, differences in the number of cells

between NPF and NFF were not statistically significant (p.0.05).

The analysis of expression of smooth muscle actin revealed that

the percentage of cells with positive expression of this protein was

significantly higher in DDC than in NPF and NFF, with NPF

showing higher percentage of cells with positive expression of actin

than NFF (p = 0.020) (Table 1 and Figure 1B).

3. Analysis of ECM fibrillar components in DDC, NPF and
NFF human samples

Quantification of collagen fibers by picrosirius staining demon-

strated that this fibrillar ECM component was significantly

different among the three groups of samples analyzed in this work

(p,0.001 for the Kruskal-Wallis test), with the highest collagen

contents corresponding to DDC (81.262.5) and the lowest values

corresponding to NFF (25.663.7) (Table 1 and Figure 2A).

Differences were statistically significant for the comparison of

DDC vs. NPF, DDC vs. NFF and NPF vs. NFF (p,0.01 for all

Figure 1. Histological analysis of Dupuytren’s diseased con-
tracture cords (DDC), palmar fascia clinically unaffected by
Dupuytren’s disease contracture (NPF), and normal forehand
fascia (NFF). 1A: Analysis of tissue structure using Masson’s trichrome
staining. 1B: Analysis of expression of smooth muscle actin (SMA) by
immunohistochemistry. Cell nuclei are stained in blue with DAPI and
cells showing positive expression of SMA are labeled in green.
doi:10.1371/journal.pone.0112457.g001
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three comparisons for the Mann-Whitney test). Interestingly, the

analysis of collagen fibers using polarized light microscopy

revealed that the abundant collagen mesh found in DDC was

very organized and most fibers were oriented in the same

direction. However, collagen fibers were oriented in different

directions in NPF and NFF (Figure 2B). When all genes encoding

for 46 collagen types were quantified at the mRNA level by

microarray analysis (Table 2), we found that the expression of 14

(30.4%) collagen types was significantly different in NPF samples

than in control NFF tissues (p,0.05 for the rank test). Of these 14

ECM components, 5 (35.7%) were downregulated in NPF

(including some types of collagens 4, 8, 11, 14 and 22) and 9

(64.3%) were upregulated in NPF, including some types of

collagens 4, 7, 8, 23, 24, 27, 28 and two procollagen isoforms.

When NPF was compared to diseased DDC tissues, we found 11

collagen types differentially expressed between both tissue types,

with 8 (72.7%) collagen types downregulated in NPF and 3

(27.3%) upregulated in DDC. Finally, the comparison of DDC

with control NFF tissues found 17 types of collagen differentially

expressed between both tissue types, with 14 (82.4%) of them

overexpressed in DDC. The ratio of type III to type I collagen was

1.0676 in DDC, 1.0776 in NPF and 0.9956 in NFF.

The analysis of reticular fibers in DDC, NPF and NFF human

samples (Table 1 and Figure 2C) showed that the amount of

reticular fibers as determined by reticulin staining technique was

significantly different among the three sample types (p,0.001 for

the Kruskal-Wallis test). Specifically, the highest content in

reticular fibers (49.562.5) was found in DDC tissues, which was

significantly higher as compared to NPF (38.263.6; p = 0.0241 for

the Mann-Whitney test) and NFF (21.063.6; p,0.001). At the

RNA levels (Table 2), the highest expression values of the collagen

3 gene corresponded to DDC samples, which were very similar to

those of NPF samples, whilst the lowest expression was found in

NFF (differences were not significant).
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Figure 2. Analysis of the extracellular matrix fibrillar compo-
nents of Dupuytren’s diseased contracture cords (DDC),
palmar fascia clinically unaffected by Dupuytren’s disease
contracture (NPF), and normal forehand fascia (NFF). 2A:
Identification of collagen fibers as determined by picrosirius staining.
2B: Analysis of orientation of collagen fibers as determined by
picrosirius staining using polarized microscopy. 2C: Staining of reticular
fibers by using the technique of Gomori. 2D: Analysis of elastic fibers as
determined by orcein staining.
doi:10.1371/journal.pone.0112457.g002
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Table 2. Microarray expression of ECM components and relevant WNT-pathway genes in the three tissue types analyzed in this
work.

ECM COMPONENT OR
PATHWAY GENE SYMBOL GENE TITLE NPF DDC NFF

FIBERS COL1A1 collagen, type I, alpha 1 3573.8 3686.9 3379.6

FIBERS COL1A2 collagen, type I, alpha 2 5853 6139.6 5717.6

FIBERS COL2A1 collagen, type II, alpha 1 8.1 6.5 4.6

FIBERS COL3A1 collagen, type III, alpha 1 5079.1 5245.4 4528.5

FIBERS COL4A1 collagen, type IV, alpha 1 268.5 230.1 287.3

FIBERS COL4A2 collagen, type IV, alpha 2 259.9 246.6 261.2

FIBERS COL4A3 collagen, type IV, alpha 3 4.4 5.8 6*

FIBERS COL4A3BP collagen, type IV, alpha 3 binding protein 184.4 218.3 192.4

FIBERS COL4A4 collagen, type IV, alpha 4 22.4 40* 3.7*

FIBERS COL4A5 collagen, type IV, alpha 5 17 12.3 18.5

FIBERS COL4A6 collagen, type IV, alpha 6 3.6* 5.3 4.5

FIBERS COL5A1 collagen, type V, alpha 1 1160.1 1087.2 1110.3

FIBERS COL5A2 collagen, type V, alpha 2 1468.1 1617.4* 1235.4

FIBERS COL5A3 collagen, type V, alpha 3 86.9 72.4 117.6

FIBERS COL6A1 collagen, type VI, alpha 1 916.1 1074.2 922.5

FIBERS COL6A2 collagen, type VI, alpha 2 1717.6* 2355.7* 1628.9

FIBERS COL6A3 collagen, type VI, alpha 3 6846.1 7249.2 6261.3

FIBERS COL6A6 collagen type VI alpha 6 50.9* 31.7 57.6

FIBERS COL7A1 collagen, type VII, alpha 1 31.9* 49.9* 22.5*

FIBERS COL8A1 collagen, type VIII, alpha 1 129.8 237.4 40.3*

FIBERS COL8A2 collagen, type VIII, alpha 2 59.6 110.8 198.2*

FIBERS COL9A1 collagen, type IX, alpha 1 1.3 1.7 1.3

FIBERS COL9A2 collagen, type IX, alpha 2 13* 10.3 12.1

FIBERS COL9A3 collagen, type IX, alpha 3 1.6 1.4 2

FIBERS COL10A1 collagen, type X, alpha 1 27.4* 119.1* 9.5

FIBERS COL11A1 collagen, type XI, alpha 1 91.1 143.4 82.8

FIBERS COL11A2 collagen, type XI, alpha 2 25.2 23.8 29.5*

FIBERS COL12A1 collagen, type XII, alpha 1 1016.6 1374.8* 1167.4

FIBERS COL13A1 collagen, type XIII, alpha 1 93.2 119.7 68.5

FIBERS COL14A1 collagen, type XIV, alpha 1 92.6* 35.6* 274*

FIBERS COL15A1 collagen, type XV, alpha 1 108.8 322* 119.6

FIBERS COL16A1 collagen, type XVI, alpha 1 845.6 956 755

FIBERS COL17A1 collagen, type XVII, alpha 1 1.1* 1.8* 1.3

FIBERS COL18A1 collagen, type XVIII, alpha 1 100.3 112.7 117.9

FIBERS COL19A1 collagen, type XIX, alpha 1 3.5 1.4* 3.5

FIBERS COL20A1 collagen, type XX, alpha 1 5.6 6.6 4

FIBERS COL21A1 collagen, type XXI, alpha 1 65.7 63.2 94.6

FIBERS COL22A1 collagen, type XXII, alpha 1 1.4 1.2* 5.1*

FIBERS COL23A1 collagen, type XXIII, alpha 1 9.7 10.3* 3.3*

FIBERS COL24A1 collagen, type XXIV, alpha 1 8.1 10.2* 3.4*

FIBERS COL25A1 collagen, type XXV, alpha 1 1.8 2.3 2.6

FIBERS COL27A1 collagen, type XXVII, alpha 1 36.5* 44.2* 22.8*

FIBERS COL28A1 collagen, type XXVIII, alpha 1 5 4.4* 3*

FIBERS COL29A1 collagen, type XXIX, alpha 1 3.5 4.8 2.6

FIBERS PLOD1 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 631.3* 721.6* 532.6*

FIBERS PLOD2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 1314.9* 2072.8* 627.2*

FIBERS ELN elastin 748.9 552.1 725.4

FIBERS FBN1 fibrillin 1 2461.8 1933.8* 3127.7*
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Table 2. Cont.

ECM COMPONENT OR
PATHWAY GENE SYMBOL GENE TITLE NPF DDC NFF

FIBERS FBN2 fibrillin 2 3.7* 8.5 10*

GAG CHPF chondroitin polymerizing factor 96.7 99* 135.9*

GAG CHST1 carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 16.3 9.8 13.4

GAG CHST11 carbohydrate (chondroitin 4) sulfotransferase 11 47.1* 34.3 36.7

GAG CHST12 carbohydrate (chondroitin 4) sulfotransferase 12 155.6* 195.1 183.4

GAG CHST13 carbohydrate (chondroitin 4) sulfotransferase 13 3 1.8* 5.2*

GAG CHST3 carbohydrate (chondroitin 6) sulfotransferase 3 82.8* 62.6* 83.1

GAG CHSY1 chondroitin sulfate synthase 1 734.2 821.3* 582.8*

GAG CHSY3 chondroitin sulfate synthase 3 90.1 102.1 76.2

GAG CSGALNACT1 chondroitin sulfate N-acetylgalactosaminyltransferase 1 63.2* 133.8* 77.4

GAG CSGALNACT2 chondroitin sulfate N-acetylgalactosaminyltransferase 2 466.3 506.6* 338.6*

GAG CSGLCA-T chondroitin sulfate glucuronyltransferase 224.2 246.8* 195.4*

GAG CSPG4 chondroitin sulfate proteoglycan 4 43.1 34.6* 69.4*

GAG CSPG4LYP1 & 2 chondroitin sulfate proteoglycan 4-like, Y-linked
pseudogenes 1 & 2

2 1.7 1.7

GAG CSPG5 chondroitin sulfate proteoglycan 5 (neuroglycan C) 4.7 4.7 5.8

GAG DSE dermatan sulfate epimerase 311.3* 509.1* 217*

GAG DSEL dermatan sulfate epimerase-like 319.2 263.5* 181.2*

GAG HAS1 hyaluronan synthase 1 32.7 18.8 15

GAG HAS2 hyaluronan synthase 2 623.1 832.3* 87.3*

GAG HAS3 hyaluronan synthase 3 16.4 15.9* 10.1*

GAG HGSNAT heparan-alpha-glucosaminide N-acetyltransferase 115.1* 103.7* 133.4*

GAG HS2ST1 heparan sulfate 2-O-sulfotransferase 1 155.1 134.9 173.4

GAG HS3ST1 Heparan sulfate 3-O-sulfotransferase-1 precursor (3OST1) 2.2 2.6* 6.8*

GAG HS3ST2 heparan sulfate (glucosamine) 3-O-sulfotransferase 2 70.1* 38 55.7

GAG HS3ST3A1 heparan sulfate (glucosamine) 3-O-sulfotransferase 3A1 100.5 174.6* 83.6

GAG HS3ST3B1 heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1 180 227.6* 115*

GAG HS3ST4 heparan sulfate (glucosamine) 3-O-sulfotransferase 4 8.9 8.4 7.9

GAG HS3ST5 heparan sulfate (glucosamine) 3-O-sulfotransferase 5 23.6* 15.3* 23.8

GAG HS3ST6 heparan sulfate (glucosamine) 3-O-sulfotransferase 6 3.7* 9.1 7.7

GAG HS6ST1 heparan sulfate 6-O-sulfotransferase 1 55.1 68.6 63.5

GAG HS6ST2 heparan sulfate 6-O-sulfotransferase 2 3.2* 1.1* 4.8

GAG HS6ST3 heparan sulfate 6-O-sulfotransferase 3 4.4 3.9 5.3

GAG NDST1 N-deacetylase/N-sulfotransferase (heparanglucosaminyl) 1 82.2 88.9 91.7

GAG NDST2 N-deacetylase/N-sulfotransferase (heparanglucosaminyl) 2 71.8* 64.7* 79.7*

GAG NDST3 N-deacetylase/N-sulfotransferase (heparanglucosaminyl) 3 15.2* 5.6* 3.1*

GAG NDST4 N-deacetylase/N-sulfotransferase (heparanglucosaminyl) 4 5.9* 0.8* 3.6

GLYCOPROTEINS FN1 fibronectin 1 4547.3* 4770.6 4229.1

GLYCOPROTEINS LAMA1 laminin, alpha 1 73.1 83.5 67.5

GLYCOPROTEINS LAMA2 laminin, alpha 2 187.3 184 207.2

GLYCOPROTEINS LAMA3 laminin, alpha 3 12.7 13.1* 10*

GLYCOPROTEINS LAMA4 laminin, alpha 4 186 198.6 181.1

GLYCOPROTEINS LAMA5 KIAA0533 protein 26.9* 15* 17.4*

GLYCOPROTEINS LAMB1 laminin, beta 1 734.2 847.8 872.5

GLYCOPROTEINS LAMB2 laminin, beta 2 (laminin S) 255.4* 278.7* 282.4*

GLYCOPROTEINS LAMB2L laminin, beta 2-like 8.7* 12.4 13.8*

GLYCOPROTEINS LAMB3 laminin, beta 3 33.4 48.8 30.7

GLYCOPROTEINS LAMB4 laminin, beta 4 2* 4.3* 6.9*

GLYCOPROTEINS LAMC1 laminin, gamma 1 (formerly LAMB2) 1942 1534.3 2074.2
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On the other hand, identification of elastic fibers by orcein

staining revealed that some differences exist among the three

sample types (p = 0.002 for the Kruskal-Wallis test). As shown in

Table 1 and Figure 2D, NFF samples had significantly higher

content in elastic fibers (60.064.0) than NPF (43.664.4; p = 0.007

for the Mann-Whitney test) and DDC (43.563.4; p = 0.001). The

same trend was found at the RNA level (Table 2), with the highest

expression values of fibrillin 1 and 2 found in NFF, although the

highest expression of the elastin gene was found in NPF followed

by NFF tissues.

4. Analysis of ECM non-fibrillar components in DDC, NPF
and NFF human samples

First, the analysis of glycoproteins was carried out by using the

periodic acid–Schiff (PAS) staining method. As shown in Table 1

and Figure 3A, differences among the three tissue types (DDC,

NPF and NFF) were not statistically significant. However,

quantification of the multiadhesive glycoprotein laminin by

immunohistochemistry revealed the existence of significant differ-

ences for the global comparison of the three tissue samples (p,

0.001 for the Kruskal-Wallis test). DDC specimens had signifi-

cantly higher laminin content (71.064.6) than NPF (33.765.8; p,

0.001) and NFF (28.963.3; p,0.001), although no differences

existed between these two later samples (Table 1 and Figure 3B).

The microarray analysis of genes encoding for 13 laminin types

(Table 2) showed that the highest expression values of 4 laminin

types were found in DDC tissues, whereas 8 laminins were

overexpressed in NFF. The gene expression of 6 laminin types was

statistically different between NPF and control NFF samples, with

LAMC3, LAMB2, LAMB2L and LAMB4 genes downregulated in

NPF. 4 laminin genes were statistically different between NPF and

DDC, with only one component being higher in NPF (LAMA5),

and 4 genes were significantly different between DDC and NFF.

The expression levels of 5 other glycoproteins included in the array

system -NID1, NID2, SPARC, FN1 and TNC- did not differ

among the 3 samples, with the only exception of NID1 (entactin

gene), which was significantly higher in NFF and FN1 (fibronectin

1), which was significantly higher in NFF than in DDC and NPF.

Then, quantification of ECM proteoglycans by alcian blue

staining demonstrated that the amount of these components

differed among the three sample types (p,0.001 for the Kruskal-

Wallis test), with the highest values corresponding to DDC

(15.461.0), which were significantly higher than those found in

NPF (0.160.8; p,0.001) and NFF (0.161.4) (Table 1 and

Figure 3C). The immunohistochemical analysis of specific proteo-

Table 2. Cont.

ECM COMPONENT OR
PATHWAY GENE SYMBOL GENE TITLE NPF DDC NFF

GLYCOPROTEINS LAMC2 laminin, gamma 2 21 21.6 77

GLYCOPROTEINS LAMC3 laminin, gamma 3 5.3 7.2 7.4*

GLYCOPROTEINS NID1 nidogen 1_ENTACTIN 227.1 249.1* 443.7*

GLYCOPROTEINS NID2 nidogen 2 (osteonidogen) 501.8 477 489

GLYCOPROTEINS SPARC secreted protein, acidic, cysteine-rich (osteonectin) 4443.1 4715.8 4462.4

GLYCOPROTEINS TNC tenascin 1129.3 1402.5 988.4

PROTEOGLYCANS ACAN aggrecan 70.3* 13.1* 93.3

PROTEOGLYCANS BGN biglycan 569.2* 752.1* 400.6*

PROTEOGLYCANS DCN decorin 6754.8* 7088.3 6774

PROTEOGLYCANS HSPG2 heparan sulfate proteoglycan 2_PERLECAN 345.8 333 371

PROTEOGLYCANS LUM lumican 2894 3220.6 2536.3

PROTEOGLYCANS NCAN neurocan 9.2* 1.4* 12.3*

PROTEOGLYCANS SDC1 syndecan 1 76.2 117.6 87

PROTEOGLYCANS SDC2 syndecan 2 400.2 293.7* 753.9*

PROTEOGLYCANS SDC3 syndecan 3 35.7 38.7 40.8

PROTEOGLYCANS SDC4 syndecan 4 969 1075* 942

PROTEOGLYCANS SDCBP syndecan binding protein (syntenin) 3358.1 3840.6 3826.7*

PROTEOGLYCANS SDCBP2 syndecan binding protein (syntenin) 2 30.1 33.3 33.5

PROTEOGLYCANS VCAN versican 1542.5 1141.5* 1815.9

WNT PATHWAY RSPO2 R-spondin 2 homolog (Xenopus laevis) 9.3* 2.8* 17.3

WNT PATHWAY SFRP4 secreted frizzled-related protein 4 3017.9 2516.3 717.7*

WNT PATHWAY SULF1 sulfatase 1 502.8 450.5 319.9

WNT PATHWAY WNT2 wingless-type MMTV integration site family member 2 14.7 15.5 21.7

WNT PATHWAY WNT4 wingless-type MMTV integration site family, member 4 1.4* 3.6 3.2*

WNT PATHWAY WNT7B wingless-type MMTV integration site family, member 7B 5.8 8.5* 6.4

Each gene was classified as a fibrillar ECM component (fibers), glycosaminoglycan (GAG), glycoprotein or proteoglycan. NPF: palmar fascia non affected by Dupuytren’s
disease contracture; DDC: Dupuytren’s disease contracture cords; NFF: normal forehand fascia. Statistically significant differences for the U-rank test are labeled with
asterisks: in the NPF column, asterisks show statistically significant differences for the comparison of NPF vs. DDC samples; in the DDC column, for the comparison DDC
vs. NFF; in the NFF column, for the NFF vs. NPF comparison.
doi:10.1371/journal.pone.0112457.t002
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glycans showed that global significant differences existed among all

sample types -DDC, NPF and NFF- for decorin and versican (p,

0.001 for the Kruskal-Wallis test) (Table 1 and Figures 3D, 3E

and 3F, respectively). In addition, decorin protein expression was

significantly higher in DDC as compared to NPF and NFF, with

no differences between these two tissue types, and the same trend

was found at the mRNA level. However, versican showed the

reverse behavior, with significantly higher expression in NFF

tissues and the lowest expression corresponding to DDC at both

the protein and the mRNA levels. Interestingly, aggrecan

expression was very low in all samples types, with no significant

differences among samples at the protein level, although its

expression was significantly higher in NFF and lower in DDC at

the mRNA level. At the mRNA level, the analysis of genes

encoding for 13 proteoglycan ECM components showed down-

regulation of 4 (30.8%) of these genes in NPF as compared to NFF

(neurocan, biglycan, syntenin and syndecan 2), with biglycan

overexpressed in NFP. The same number of proteoglycans genes

(4 genes, 30.8%) was differentially expressed between NPF and

DDC, with 2 proteoglycans genes upregulated in NPF (aggrecan

and neurocan) and 2 upregulated in DDC (decorin and biglycan).

The comparison of DDC samples vs. NFF tissues demonstrated

that 4 components -VCAN, ACAN, SDC2 and NCAN- were

upregulated in NFF and 2 components were overexpressed in

DDC -SDC4 and BGN-.

Finally, quantification of genes with a role in glycosaminoglycan

synthesis by microarray analysis -35 GAG components- (Table 2)

revealed that 15 -42.9%- of these components were differentially

expressed between NPF and NFF samples (NDST3, CHSY1,

CSGALNACT2, CSGLCA-T, DSEL, HAS2, HAS3, HS3ST3B1

Figure 4. Unsupervised hierarchical cluster analysis of the different samples included in the present study. Overexpressed genes are
shown in green and downregulated genes are shown in red. The classification tree of the samples is displayed at the right side of the figure. N:
normal forehand fascia (NFF); Palm: palmar fascia clinically unaffected by Dupuytren’s disease contracture (NPF); Dupuy: Dupuytren’s diseased
contracture cords (DDC).
doi:10.1371/journal.pone.0112457.g004

Figure 5. Recultivation and cell proliferation analyses of
Dupuytren’s diseased contracture cords (DDC), palmar fascia
clinically unaffected by Dupuytren’s disease contracture (NPF),
and normal forehand fascia (NFF). The top panel shows
representative images of cells cultured from each tissue type after 7,
14 and 21 days of culture, and the lowest panel shows the analysis of
cell proliferation using PCNA immunohistochemistry with two magni-
fication levels.
doi:10.1371/journal.pone.0112457.g005

Figure 3. Histochemical and immunohistochemical analysis of
Dupuytren’s diseased contracture cords (DDC), palmar fascia
clinically unaffected by Dupuytren’s disease contracture (NPF),
and normal forehand fascia (NFF). 3A: Detection of glycoproteins
by PAS staining. 3B: Laminin staining by immunohistochemistry. 3C:
Quantification of proteoglycans by alcian blue staining. 3D: Aggrecan
staining by immunohistochemistry. 3E: Decorin staining by immuno-
histochemistry. 3F: Versican staining by immunohistochemistry.
doi:10.1371/journal.pone.0112457.g003
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and DSE were overexpressed in NPF and HGSNAT, NDST2,

CHPF, CHST13, CSPG4 and HS3ST1 in NFF); 13–37.1%-

GAG components were significantly different between NPF and

DDC, with 4 components overexpressed in DDC and 9 in NPF;

and 21–60%- GAG types were significantly different between

DDC and NFF, with 11 overexpressed in DDC and 10 in NFF.

5. Analysis of key WNT-pathway genes in DDC, NPF and
NFF human samples

The analysis of six WNT genes previously reported to be

disregulated in DD revealed that the expression of these genes was

very low in all sample types, except for SFRP4 and SULF1. As

shown in Table 2, the highest expression of both genes was found

in DDC and NPF, and the lowest expression corresponded to

NFF.

6. Unsupervised cluster analysis of DDC, NPF and NFF
human samples

When all genes/EST included in the microarray system were

used to classify all samples by unsupervised cluster analysis, we

found that DDC samples tended to cluster together with NPF in

one branch of the hierarchical classification tree, whereas NFF

samples clustered in the other branch (Figure 4).

7. Cell proliferation analysis of cell cultures of DDC, NPF
and NFF human samples

When the three types of samples -DDC, NPF and NFF- were

subjected to enzymatic digestion and released cells were cultured

ex vivo, we found that cells isolated from DDC tended to

proliferate faster (average 22, 75 and 125 cells per mm2 after 7, 14

and 21 days, respectively) than cells isolated from NPF (average

20, 49 and 65 cells per mm2 after 7, 14 and 21 days, respectively)

and NFF (average 18, 35 and 43 cells per mm2 after 7, 14 and 21

days, respectively) (Figure 5), with higher number of cells in the

DDC group than in the NPF and NFF groups after 21 days of

culture (p = 0.029). Differences between NPF and NFF were also

significant (p.0.029). Strikingly, all cultured cells were positive for

the cell-proliferation marker PCNA.

Discussion

Numerous previous works already demonstrated that Dupuyt-

ren’s disease is a complex condition in which a large variety of

genes are involved [2,18,19,20]. However, this is one of the first

studies focused on the evaluation of the palmar fascia that is not

clinically affected by the fibrous cord of this disease but is

anatomically related to this tissue (NPF tissues), and normal NFF

tissues using a comprehensive approach.

According to our results, the global gene expression profile of

NPF samples was similar to that of DDC tissues and differed from

the expression showed by normal NFF samples. This finding

implies that NPF cells could share important similarities with

DDC cells, suggesting that NPF tissues could not be normal from a

gene expression standpoint even though these are apparently

clinically unaffected. To shed light on this issue, we first quantified

the number of cells present in each tissue and determined the

percentage of cells that were positive for smooth muscle actin, a

marker of myofibroblasts. Several reports [3,12] previously

demonstrated that contraction of the palmar and digital cords

may be induced by a 4- to 20- fold increase in the cells of these

structures [21], and a transformation of normal palmar fibroblasts

into myofibroblasts during the first phases of the Dupuytren’s

disease. During the proliferative phase of the disease, it is thought

that uncontrolled proliferation of myofibroblasts leads to the

formation of nodules, resembling fibroma [22]. In this regard, our

results showed that the number of cells per area of diseased tissue

(DDC) was very high and cells expressed high amounts of smooth

muscle actin, thus confirming the abundance of myofibroblasts in

Dupuytren’s diseased tissue. These values were statistically higher

in DDC than NPF and NFF. Interestingly, both the cell number

and the percentage of actin-positive cells showed different values in

NPF tissues -which are typically considered as normal tissues non-

affected by the disease- and in control NFF, with higher values in

NPF than in NFF, although differences were not statistically

significant for the number of cells. In consequence, we could

hypothesize that palmar NPF tissues may also be affected by the

disease, although at lower extent than Dupuytren’s disease

contracture cords. Since myofibroblasts could act as mediators

for the disease generation and progression, leading to progressive

flexion deformity of the involved fingers [23,24], the identification

of a high amount of these cells in an area of the palm fascia

traditionally considered as healthy tissue could be clinically

relevant.

Strikingly, our ex vivo cell culture assays found that cells

corresponding to NPF were able to proliferate in culture at a

significantly higher rate than normal FFN cells, although at lower

rate than diseased DDC cells, but the expression of the

proliferation marker PCNA was similar. These results are in

agreement with our idea that NPF cells could be pathological,

although at lower extent than diseased cells of the fibrous cord, at

least at this stage. Previous reports already demonstrated that cells

cultured from tissues affected by Dupuytren’s disease may have

higher proliferation rate than control tissues [25,26,27], and

several authors found a significant overexpression of several genes

involved in cell proliferation in these cells [28]. From a

translational standpoint, these results suggest that tissues that are

apparently unaffected by DD such as NPF could be also affected

by the disease. These results are in agreement with previous

reports suggesting that clinically-unaffected palmar skin of DD

patients may have important alterations related to the disease [29].

Once the cells of each tissue type were characterized both in situ

and in culture, we carried out a study of the ECM of these tissues

by immunohistochemistry, histochemistry and microarray. This

study confirmed that DDC tissues had increased extracellular

matrix (ECM) deposition as compared to NPF and NFF, as

previously suggested by Rehman and cols [30] and by Ratkaj and

cols [28]. In this sense, one of the most important ECM

components is the fibrillar component, which typically becomes

very abundant in Dupuytren’s disease [11,21,31], and a major

biochemical abnormality found in Dupuytren’s tissue is an

increase in total collagen associated with an increase in the ratio

of type III to type I collagen [21]. In this regard, our results

demonstrated that DDC had significantly more collagen content

than NPF and NFF as determined by picrosirius and Masson’s

trichrome staining, and that collagen fibers were highly organized

and oriented only in DDC tissues, with an increase in the ratio of

type III to type I collagen as compared to controls. The

concentration of collagen fibers oriented in the same direction is

one of the main factors related to the pathogenicity of this disease,

in which contracture cords are predominantly composed of an

oriented fibrous structure [32] mainly consisting of collagen fibers

[12]. Our histological analysis also revealed that the amount of

collagen fibers in NPF almost duplicated the amount found in

control NFF, with the ratio of type III to type I collagen being

similar in DDC and NPF. These results again suggest that NPF

tissues should not be considered as normal and specific medical

and surgical procedures could be indicated in future protocols for
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treatment of this area of the hand palm. This is in agreement with

the mRNA analysis as determined by microarray, which found

that NPF tissues only differed from DDC tissues in 23.9% of

collagen-related genes, but differed from NFF in 30.4% of these

genes. It is well known that most collagen fibrils are comprised in

vivo of several collagen types, including collagens I, II, III, V, IX,

and XI [33]. In this regard, our results put forward that DDC

tissues express the highest amounts of collagens types I, III and

Va2, suggesting that these diseased tissues could be constituted by

a well-developed fibrillar mesh of heterogeneous collagen fibers. In

addition, we found an alteration in the expression of other fibrillar

collagens such as collagen XXVII, which forms thin non-striated

fibrils [34], and the fibril-associated collagens XII and XV. All this

could explain the biomechanical behavior of Dupuytren’s disease

cords. Moreover, collagens types V and XIV play a role in

regulating fibrillogenesis by controlling the initiation of collagen

fibril assembly [35,36]. The significant alteration of both collagens

that we found in DDC tissues points to the idea that the complex

process of collagen fibrils formation is disregulated in Dupuytren’s

disease, as previously suggested [28,30]. Beside this, our analysis of

non-fibrillar collagens such as collagens types IV, VI, VII, VIII

and X revealed a significant alteration of these collagens as well,

suggesting that the diffuse tissue collagen network of normal

connective tissues could also be altered in DDC and NPF.

In this work, we also quantified the presence of important ECM

fibers that are very seldom analyzed in Dupuytren’s disease. First,

reticular fibers were significantly more abundant in DDC than in

the other sample types, but NPF showed significantly more

reticular fibers than control NFF, suggesting again that DDC and

NPF could have increased biomechanical properties than control

tissues. Then, the analysis of elastic fibers revealed a significant

reduction of these fibers in both the DDC and the NPF tissues as

compared to control NFF, with no differences between DDC and

NPF. This could explain the lack of flexibility typically found in

Dupuytren’s disease contracture cords and supports again the idea

that NPF tissues could not be normal. The results found for all

fibrillar components of the ECM show a different fibrillar pattern

among the three types of tissues. As a consequence, the

biomechanical properties could be different in each group, with

palmar tissues being stiffer and less elastic than control NFF.

On the other hand, non-fibrillar ECM components play key

roles in cell-cell interaction, cell adhesion, proliferation migration

and response, and they are essential for the maintenance of the 3D

structure and hydration level of human tissues [14,37]. Due to

their crucial function, alteration of these ECM molecules may be

associated to tissue dysfunction and pathology. The first type of

non-fibrillar components that we analyzed in the present work are

the proteoglycans. Most proteoglycans consist of a core protein

with several glycosaminoglycan (GAG) chains attached [38], and

these complex structures play a key role in regulating the transit of

ECM molecules, including water, throughout the tissue matrix.

Our histological analysis using PAS staining methods showed that

the concentration of glycoproteins was very similar among the

three tissue types analyzed in the present work, with a non-

significant increment in DDC tissues. However, the analysis of

specific proteoglycans revealed that some of these ECM compo-

nents were indeed differentially expressed among the three tissue

types. At the mRNA level, we found that the percentage of genes

differentially expressed between NPF and NFF was the same

found for the comparison of DDC vs. NFF (30.8%). This finding is

in agreement with our hypothesis that both DDC and NPF tissues

have important ECM alterations in vivo. To confirm this

hypothesis, we analyzed three important individual proteoglycans

in tissue samples corresponding to DDC, NPF and NFF by

immunohistochemistry and microarray. The results of this analysis

showed that both decorin and versican were significantly altered in

DDC. Previous works suggest that both proteoglycans play

important roles in the formation of interstitial collagen fibers by

regulating collagen fibrillogenesis and the assembly of fibrils into

fibers [38,39], cell migration and adhesion [40] and fibroblast

proliferation [41]. The alteration of these components in DDC

and NPF tissues could be associated to the disregulation found for

the fibrillar ECM components and suggests again that NPF tissues

may not be histologically normal.

Related with proteoglycans, glycosaminoglycans (GAG) are

important ECM components with a role in the synthesis,

maintaining and physiology of the ECM. In this regard, the

microarray analysis of gene transcripts corresponding to genes

involved in the synthesis of several GAG showed that 42.9% of

these genes were differentially expressed between NPF tissues and

control NFF samples, suggesting again that NPF tissues may be

not histologically normal. 37.1% of all GAG genes were

differentially expressed between DDC and NPF, probably due to

the fact that NPF tissues do not harbor the high level of damage of

DDC tissues.Finally, glycoproteins are abundant in the ECM of

most tissues, with higher concentration at the basement lamina,

especially laminin. Laminin is a large family of heterodimeric

proteins involved in the formation of networks and filaments

working as cell bindings along with integrins and other compo-

nents [37,42]. The analysis of laminin in samples included in the

present work revealed that the highest expression corresponded to

DDC, with significantly lower levels in NPF and NFF. Previous

studies reported that laminin could be upregulated in proliferative

nodules of Dupuytren’s disease, although it may be restricted to

these nodules [43]. Several isoforms of laminin have been found

altered in many tissues, including human tumors, and overex-

pression of this glycoprotein could be associated to tumor

progression, migration and invasion [44]. The increment of

laminin protein in DDC could explain the increased cell

proliferation found in these tissues. Interestingly, the laminin

protein levels found in NPF were again higher than those of

control NFF and lower than diseased DDC. Another important

glycoprotein that we found overexpressed in DDC at the mRNA

level is fibronectin. This increment is in agreement with previous

works demonstrating that Dupuytren’s disease nodules and fibrotic

cords contained increased amounts of collagen, fibronectin and

proteoglycans [45].

To confirm all these results, we also analyzed the expression of 6

relevant genes with a role in the WNT pathway as suggested by

Dolmans and cols [7]. WNT genes are known to encode

glycoproteins and extracellular signaling molecules, and this

pathway has been found altered in cancer and DD [7]. In our

study, we found that 4 of these genes were absent or expressed at

very low levels, although the genes SFRP4 and SULF1 were highly

expressed. It is remarkable that the lowest expression of both genes

corresponded to normal NFF, whereas DDC and NPF samples

had similarly high expression. Disregulation of the expression

levels of both genes has been associated to an alteration of the

synthesis of proteoglycans and beta-catenin degradation, which

could trigger fibroblast proliferation in DD [7,46].

In conclusion, this is one of the first studies in which the main

components of the ECM matrix were studied and quantified not

only in controls and tissues affected by Dupuytren’s disease, but

also in palmar fascia clinically unaffected by Dupuytren’s disease

contracture (NPF) using microarray approaches, histological,

histochemical, immunohistochemical approaches and cell reculti-

vation methods. Although previous works already demonstrated

that palmar skin of DD patients may be affected by the disease in
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the absence of clinically detectable symptoms [29], the results of

this comprehensive approach confirm that DDC tissues have

intense ECM alterations, and demonstrate for the first time that

NPF tissues should not be considered as normal tissues. The

clinical and translational consequences of this could be important,

since these results allow us to establish that different degrees of

alteration could affect the whole palmar fascia, with areas clinically

affected by DD -areas showing fibrotic cords- and areas affected by

the disease without clinical manifestations. Therefore, unaffected

palm regions should not be considered as normal. If our results are

confirmed in larger series of cases, a modification of the

therapeutic approach used for the treatment of Dupuytren’s

disease, including removal or drug treatment of the remaining

palm fascia, should be considered.
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