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Abstract

Background: Biomedical text mining may target various kinds of valuable information embedded in the literature,
but a critical obstacle to the extension of the mining targets is the cost of manual construction of labeled data, which
are required for state-of-the-art supervised learning systems. Active learning is to choose the most informative
documents for the supervised learning in order to reduce the amount of required manual annotations. Previous works
of active learning, however, focused on the tasks of entity recognition and protein-protein interactions, but not on
event extraction tasks for multiple event types. They also did not consider the evidence of event participants, which
might be a clue for the presence of events in unlabeled documents. Moreover, the confidence scores of events
produced by event extraction systems are not reliable for ranking documents in terms of informativity for supervised
learning. We here propose a novel committee-based active learning method that supports multi-event extraction
tasks and employs a new statistical method for informativity estimation instead of using the confidence scores from
event extraction systems.

Methods: Our method is based on a committee of two systems as follows: We first employ an event extraction
system to filter potential false negatives among unlabeled documents, from which the system does not extract any
event. We then develop a statistical method to rank the potential false negatives of unlabeled documents 1) by using
a language model that measures the probabilities of the expression of multiple events in documents and 2) by using
a named entity recognition system that locates the named entities that can be event arguments (e.g. proteins). The
proposed method further deals with unknown words in test data by using word similarity measures. We also apply
our active learning method for the task of named entity recognition.

Results and conclusion: We evaluate the proposed method against the BioNLP Shared Tasks datasets, and show
that our method can achieve better performance than such previous methods as entropy and Gibbs error based
methods and a conventional committee-based method. We also show that the incorporation of named entity
recognition into the active learning for event extraction and the unknown word handling further improve the active
learning method. In addition, the adaptation of the active learning method into named entity recognition tasks also
improves the document selection for manual annotation of named entities.
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Background
A common framework of information extraction systems
is supervised learning, which requires training data that
are annotated with information to be extracted. Such
training data are usually manually annotated, where the
annotation process is time-consuming and expensive. On
the other hand, in biomedical domain, recent research
efforts on information extraction are extending from
focusing on a single event type such as protein-protein
interaction (PPI) [1] and gene regulation [2] to simulta-
neously targeting more complicated, multiple biological
events defined in ontologies [3], which makes the man-
ual annotation more difficult. There is thus the need of
reducing the amount of annotated data that are required
for training event extraction systems.
Active learning is the research topic of choosing ‘infor-

mative’ documents for manual annotation such that the
would-be annotations on the documents may promote
the training of supervised learning systems more effec-
tively than the other documents [4]. It has been studied
in many natural language processing applications, such
as word sense disambiguation [5], named entity recog-
nition [6–8], speech summarization [9] and sentiment
classification. Its existing works can be roughly classified
into two approaches: uncertainty-based approach [10] and
committee-based approach [11]. The uncertainty-based
approach is to label the most uncertain samples by using
an uncertainty scheme such as entropy [12]. It has been
shown, however, that the uncertainty-based approachmay
have worse performance than random selection [13–15].
In the biomedical information extraction, the

uncertainty-based approach of active learning has been
applied to the task of extracting PPIs. For instance, [16]
proposed an uncertainty sampling-based approach of
active learning, and [17] proposed maximum uncertainty
based and density based sample selection strategies.
While the extraction of PPI is concerned with a single
event type of PPI, however, recent biomedical event
extraction tasks [18] involve multiple event types,
even hundreds of event types in the case of the Gene
Regulation Ontology (GRO) task of BioNLP-ST’13 [19].
The committee-based approach, based on a committee

of classifiers, selects the documents whose classifications
have the greatest disagreements among the classifiers
and passes them to human experts for annotation. This
approach, however, has several issues in adaptation for
event extraction tasks. First, event extraction (e.g. PPI
extraction, gene regulation identification) is different from
many other applications of active learning, which are in
essence document classification tasks. Event extraction is
to locate not only event keywords (e.g. bind, regulates),
but also event participants (e.g. gene/protein, disease)
within documents and to identify pre-defined relations
between them (e.g. subject-verb-object). Thus, even if the

event extraction systems produce confidence scores for its
resultant events, the confidence scores do not correspond
to the probability of how likely a document expresses
an event type: in other words, how likely a document
belongs to an event type class, which should be the goal
of classifiers of the committee-based approach for event
extraction. Second, previous classifiers for the committee-
based approach may miss some details of events including
event participants. For example, the keyword ‘expression’
may mislead a classifier to predict that the document with
the keyword expresses gene expression event, although
the document does not contain any gene name.
Our target tasks of event extraction for active learning

in this paper are those introduced in BioNLP-ST’13 [20],
which involve multiple, complicated event types. Cur-
rently, there is only one event extraction system available
for all the tasks, called TEES [21], and we need an addi-
tional classifier to follow the committee-based approach.
We thus propose as an additional classifier a novel

statistical method for informativity estimation, which pre-
dicts how likely a text expresses any event concept of a
given ontology. The method is based on a language model
for co-occurrences between n-grams and event concepts.
Furthermore, it independently estimates the presence of
event participants in a text and the probabilities of out-of-
vocabulary words and combines them with the prediction
of event concept in the text. We collectively estimate the
informativity of a text for all the concepts in a given
ontology, similarly to the uncertainty-based approach
of [22–24].
We also present a revised committee-based approach of

active learning for event extraction, which combines the
statistical method with the TEES system as follows: Since
the confidence scores of the TEES system are not reli-
able for active learning, we take TEES outputs as binary,
that is, whether the system extracts any instance of a con-
cept from a text or not. The disagreement between the
TEES system and the statistical model is captured when,
given a text (T) and an event concept (C), the TEES system
does not extract any instance of C in T, but the probabilis-
tic model predicts a high probability of C in T. In other
words, the TEES system is used for filtering potential false
positives, and the probabilistic model for ranking them.
We further adapt our active learning method and the

statistical method for event concept detection to named
entity recognition, including gene name recognition. We
show that our method can improve active learning for
named entity recognition as well, when tested against the
BioCreative and CoNLL datasets.

Methods
We formalize the general workflow of active learning as
follows: At the start of round t, let U (t−1) be the pool of
unlabeled documents and let L(t−1) be the pool of labeled
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documents, where t starts from 1. In round t, we select
the most ‘informative’ document x(t) from U , manually
label it, and add it to L. If the label y(t) is assigned to
the document x(t) by the oracle, the labeled and unlabeled
document sets are updated as follows:

L(t) = L(t−1) ∪{(x(t), y(t))} U (t) = U (t−1)\x(t)

(1)

Such process is iterated until a certain stopping criteria
is met, such as when U = ∅ and after a pre-defined num-
ber of rounds. It also can be done in a batch mode, where
a group of documents are selected at each round for the
manual labeling.

Active learning method for event extraction
As explained above, our active learning method follows
the committee-based approach. As the committee, we
employ two classifiers: A classifier based on an event
extraction system called TEES and a statistical classifier
based on language modeling (see the next section for
details). The TEES [21] is a state-of-the-art biomedical
event extraction system based on support vector machine,
and was the only system that participated in all the tasks of
BioNLP-ST’13, showing the best performance in many of
the tasks [25]. The TEES system produces the confidence
score of each event it extracts. However, we do not use
the score for active learning because the confidence score
does not indicate the probability of the event in the doc-
ument. We also assume that if the TEES system extracts
an event (E) from a document (D), D is not informative
for E, because true positives are already not informative
and because the correction (i.e. labeling) of false positives
might not be useful for training event extraction systems
where event descriptions are scarce, and thus there are far
more negative examples than positive examples. In other
words, the primary goal of our active learning method is
to correct more false negatives, that is, to annotate the
true events not extracted by the existing system. Figure 1
depicts the workflow of the proposed method.
Our method works iteratively as follows: In round t, we

train the TEES system and the statistical classifier based
onL(t−1). Wemeasure the informativity of each unlabeled
document among U (t−1) and choose the top documents
as feed for manual annotation. We measure the informa-
tivity score of a document at the sentence level, that is, the
average of the informativity scores of all the sentences in
the document, as illustrated in (2).

x∗
Informativity = argmax

x
Iθ t (x) Iθ t (x) = 1

||x||
Sk∈x∑

I(Sk)

(2)

Document (D) Concept/relation (C)

Does TEES 
annotate C on D?

D is informative 
for C

Unlabeled corpus Ontology

No Yes

Is D likely to 
express C?

Yes No

D is not 
informative for C

Fig. 1 Overview of proposed active learning method. The integration
of underlying system into active learning method. For event
extraction task, if the underlying event extraction system (TEES) can
recognize the concept (C) in the given document (D), the D is not
considered as informative

θ t indicates the current models of the TEES system and
the statistical classifier at round t, but we will omit it for
simplicity.
The informativity of a sentence (Sk) is measured for the

event concept set E , which contains all event defined in
a given ontology, as expressed in (3). The informativity
score for event concept set is denoted as I(Sk , E). In fact,
the BioNLP-ST’13 tasks include not only events, but also
relations. A key difference between events and relations is
that an event always involves an event keyword (e.g. ‘reg-
ulates’ for GeneRegulation), but a relation does not have
any keyword (e.g. partOf). For simplicity, wemention only
events in the paper, while ourmethod involves both events
and relations in the same way.

I(Sk) = I(Sk , E) (3)

Informativity for event concept set
The informativity of a sentence for event concept set is
calculated as the sum of the informativity scores of the
sentence for all the event as follows:

I(Sk , E) =
Ei∈E∑

I(Sk ,Ei) (4)
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As explained earlier, we treat a sentence as non-
informative for an event if the event extraction system
TEES can extract any instance of the event from the
sentence. Otherwise, the informativity score is estimated
as the probability of the concept given the sentence as
follows:

I(Sk ,Ei)=
{
0 if Ei is recognized in Sk by the TEESmodel at round t
p(Ei|Sk) otherwise

(5)

p(Ei|Sk) can be converted into (6) using the Bayes’
theorem.

p(Ei|Sk) = p(Ei)p(Sk|Ei)
p(Sk)

(6)

The P(Ei) is estimated using the maximum-likelihood
estimation (MLE) based on the statistics of event annota-
tions in the training data.
As for P(Sk|Ei), we score the correlation between the

sentence Sk and the event Ei with a real value scoring func-
tion Z (see below for details) and use the softmax function
to represent it as a probabilistic value, shown in (7).

p(Sk |Ei) = σ(Z(Sk : Ei)) = 1∑
Ej∈E exp(Z(Sk : Ej))

exp(Z(Sk : Ei))

(7)

We use two types of units to approximately represent
the sentence Sk : n-grams (NG) and predicate-argument
relations (PAS) produced by the Enju parser [26]. A sen-
tence is represented as a bag of elements of a unit, for
example, a bag of all n-grams or a bag of all predicate-
argument relations from the sentence.

A. Using N-gram feature for probability estimation If
we use the bag of n-gram model, the score Z(Sk : Ei)
is measured using the average of the correlation score
between the n-gram (NG) contained in the sentence with
the event, expressed in (8), where len(Sk) is the normaliza-
tion factor and is calculated as the word count of sentence
Sk .

Z(Sk : Ei) = 1
len(Sk)

NGj∈Sk∑
p(NGj|Ei) (8)

While the probability between the n-gram and event
p(NGj|Ei) is also calculated using a correlation score
W (NGj,Ei) between the n-gram and the event, together
with the softmax function, shown in (9).

p(NGj|Ei) = σ(W (NGj,Ei))

= 1∑
NGl∈U exp(W (NGl,Ei))

exp(W (NGj,Ei))

(9)

The correlation scoreW (NGj,Ei) is calculated using one
of the following three methods: 1) Yates’ chi-square test,

2) relative risk, and 3) odds ratio [27]. For the calculation
of the three methods, a 2×2 table is constructed for each
pair of an N-gram and an event at the level of sentences,
as shown in Table 1. For example, a indicates the number
of sentences that contain the N-gram NGj and express the
event Ei.
Based on the 2×2 table, the three methods of Yates’

chi-square test, relative risk, and odds ratio calculate the
correlation score for the pair as shown in the formulas
(10), (11), and (12), respectively.

W (NGj,Ei) = N(|ad − bc| − N/2)2

NSNFNANB
(10)

W (NGj,Ei) = a/(a + b)
c/(c + d)

(11)

W (NGj,Ei) = a/b
c/d

(12)

B. Using predicate-argument relation for probability
estimation Similarly for the bag of predicate-argument
relation model, the score Z(Sk : Ei) is calculated with the
average of the correlation scores between the event and
the predicate-argument relations from the sentence, as in
(13).

Z(Sk : Ei) = 1
len(Sk)

PASj∈Sk∑
p(PASj|Ei) (13)

Additional features of active learning
We introduce two additional features of our active learn-
ing method: Incorporation of event participants and deal-
ing with out-of-vocabulary words.

Incorporation of event participants
The absence of event participants should negatively affect
the prediction of events. To reflect this observation, we
utilized a gene name recognition system, called Gimli [28],
in order to recognize gene/protein names, since most of
the BioNLP shared tasks involve genes and proteins (e.g.
gene expression, gene regulation, phosphorylation). We
incorporate the results of the Gimli system into our active
learning method as follows:

I(Sk) = I(Sk , E ,NG) + I(Sk ,N ) (14)

Table 1 Numbers of sentences for the calculation of correlation
score between Ei and NGj

Express event Ei Not express event Ei Total

Contain N-gram NGj a b NA

Not contain N-gram NGj c d NB

Total NS NF N
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I(Sk ,N ) = δ × T (15)

T indicates the number of gene/protein names pre-
dicted in a sentence Sk .
In fact, the Gimli system can be replaced with other

named entity recognition systems for tasks whose event
participants are other than gene/protein. Since the event
extraction tasks for evaluating our active learning method
(i.e. BioNLP shared tasks) are mainly about gene/protein,
we do not replace the Gimli system when evaluating the
incorporation of event participants. When we apply our
active learning method for the tasks of named entity
recognition (NER), however, we will evaluate it against
two NER systems (i.e. Gimli, Stanford NER system) (see
for details Sections ‘Active learning method for NER task’
in Page 8, ‘Datasets and employed systems’ in Page 11,
and ‘Evaluation of active learning method for NER task’ in
Page 19).

Dealing with OOV issue with word similarity
When we use the n-gram features, there is Out-of-
Vocabulary (OOV) issue, such that some n-grams in the
test dataset may not appear in the training dataset. To
tackle this issue, we adopt the word2vec system, which is
an unsupervised method for representing each word as a
vector in a latent semantic model and for measuring word
similarity [29], as follows: Consider an n-gram NGout that
does not occur in the training dataset. We use word2vec
to find the top-k n-grams NGin that are closest to NGout ,
where the word similarity score between NGout and each
NGin is designated as Sim(NGout ,NGin). We then recal-
culate the correlation scoring function W (NGout ,Ei) as
shown in Formula (16). Note that since word2vec can only
handle unigrams, and also since unigrams show the best
performance in our experiments of parameter optimiza-
tion (see the next section), we only deal with unknown
unigrams in this method. The word similarity scores are
trained a priori using the whole set of MEDLINE abstracts
released in April 2014.

WOOV (NGout ,Ei)=
NGin∈TrainingDataset∑

top−k
W(NGin,Ei)× SimNGout ,NGin

(16)

We denote the n-gram-based informativity of sentence
calculated using the updated correlation scoring function
(16) as I(Sk ,NGOOV ). For example, when the correlation
scoring function in (9) is updated, the resultant informa-
tivity in (4) is denoted as I(Sk , E ,NGOOV ).

Linear combination of n-gram and predicate-structure
relation features
While we choose either n-grams or predicate-argument
relations as features, we also tested the linear combination

of the two feature sets for our active learning method, as
follows:

I(Sk) = α × I(Sk ,NGOOV ) + β × I(Sk ,PAS) + γ × I(Sk ,N )

= α × I(Sk , E ,NGOOV ) + β × I(Sk , E ,PAS) + γ × I(Sk ,N )

(17)

Table 2 illustrates the calculation of informativity scores
in pseudo codes.

Active learning method for NER task
We also adapt our active learning method to named entity
recognition (NER), considering the ontology concepts of
named entities (e.g. Gene, Disease) instead of events (e.g.
PPI, gene regulation). Themethod for named entity recog-
nition estimates informativity, or the likelihood of a text
expressing any named entities.
Similar to Eq. (2), the informativity estimation in the

NER task is expressed in (18).

x∗
Infomativity = argmax

x
Iθ t (x) Iθ t (x) = 1

||x||
Sk∈x∑

I(Sk)

(18)

θ t indicates the current model of a given NER system
and the statistical classifier at round t, but we will omit
it for simplicity. We evaluate our method with two NER
systems of Gimli for biomedical domain and Stanford

Table 2 Proposed algorithm of active learning with TEES

Input: labeled document pool L, unlabeled document pool U, batch size b

// Initialization

ER0 = the set of events/relations annotated on L

Learn a TEES modelM0 from ER0

i = 0 // the index of the current round

// Active Learning Loop

while U is not empty:

i += 1

for each document Dij in U:

Document informativity score I(Dij) = 0

for each sentence Sk in Dij :

ApplyMi−1 to Sk and collect the resultant events/relations set ERSk

for each event/relation er s.t. er /∈ ERsk :

I(Dij) += informativity score I(Sk , er)

I(Dij) = I(Dij) / sizeOf(Dij)

Rank Dij in U based on I(Dij) and select the top b documents,

designated as B

Remove B from U, add B to L, and add the annotations on B to ERi−1,

designated as ERi

Learn a new modelMi from ERi
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NER system for general domain (see Section “Results and
discussion” for details of evaluation), one system at a time.
The informativity of a sentence for named entity set is

calculated as the sum of the informativity scores of the
sentence for all the named entities as follows:

I(Sk) = I(Sk ,N ) =
Ni∈N∑

I(Sk ,Ni) (19)

Similar to the active learning method for event extrac-
tion, we treat a sentence as non-informative for an named
entity if the NER system can recognize any instance of the
named entity from the sentence. Otherwise, the informa-
tivity score is estimated as the probability of the named
entity given the sentence as follows:

I(Sk ,Ni)=
{
0 ifNi is recognized in Sk by the NER system at round t
p(Ni|Sk) otherwise

(20)

The probability p(Ni|Sk) is calculated as follows:

p(Ni|Sk) = p(Ni)p(Sk|Ni)

p(Sk)
(21)

Similarly to the estimation for event, p(Ni) is estimated
using the maximum-likelihood estimation (MLE) based
on the statistics of named entities in the training data. For
the calculation of p(Sk|Ni), we follow similar steps as in
(7), using n-grams (i.e. Formula (8)), but not using PAS (i.e.
Formula (13)).

Comparison with related works
In this section, we describe the previous methods of active
learning that we compare with our proposed methods for
event extraction in the evaluation experiments.

A. Conventional committee-based method The com-
mittee based active learning, based on a committee of
classifiers, selects the documents whose classifications
have the greatest disagreements among the classifiers and
passes them to human experts for annotation, expressed
as follows:

x∗
Committee = argmax

x
Dθ (Y |x) (22)

Dθ (Y |x) is the disagreements among the classifiers for
a document x under the model θ , and the Y is the whole
label set. We use the summation of disagreement over the
sentence Sk contained in the document x.

Dθ (Y |x) =
Sk∈x∑

D(Y |Sk) (23)

For each sentence, we measure the collective disagree-
ment over the whole event concept set E defined in the
ontology by using the sum of all disagreement for all
event Ei.

D(Y |Sk) =
Ei∈E∑

D(Ei|Sk) (24)

The disagreement D(Ei|Sk) is calculated using the abso-
lute value of the differences of the probability produced
by the classifiers, named the aforementioned informativity
estimation method and the TEES event extraction system.

D(Ei|Sk) = |pInformativity(Ei|Sk) − pTEES(Ei|Sk)| (25)

The pTEES(Ei|Sk) is the probability estimated from the
TEES system, and pInformativity(Ei|Sk) is from the infor-
mativity estimation using statistical method, which is cal-
culated in Eq. (6). Note that while p(Ei|Sk) in Eq. (5) is
estimated using Eq. (6) only for the sentences from which
no Ei is recognized by the TEES, the same informativity
probability in Eq. (25) is estimated for all the sentences of
unlabeled documents.
However, as the TEES is a support vector machine

(SVM) based system and do not produce probabilistic out-
put, we use the confidence the SVM classifier has in its
decision for a event prediction as follows:

pTEES(Ei|Sk) =σ(C(Ei|Sk)) = 1∑
Ej∈E exp(C(Ej|Sk)) exp(C(Ei|Sk))

(26)

C(Ei|Sk) is the confidence for the classifier.
The confidence is calculated using the difference-2 of

the distance from the separating hyperplane, produced by
the SVM classifier. It is shown to have best performance
in active learning [30, 31], and the calculation is expressed
as follows:

mmax = argmax
m

dist(m, Sk)

n = argmax
n�=mmax

dist(n, Sk)

C(Ei|Sk) = dist(mmax, Sk) − dist(n, Sk)

(27)

The dist(m, Sk) is the distance of the predicted label m
in such sentence Sk .
Similarly in adapting to the NER task, for each sen-

tence, we measure the collective disagreement over the
whole named entity concept setN by using the sum of all
disagreement for all named entity Ni.

D(Y |Sk) =
Ni∈N∑

D(Ni|Sk) (28)

The disagreementD(Ni|Sk) is calculated using the abso-
lute value of the differences of the probability produced
by the classifiers, named the aforementioned informativity
estimation method and the NER system.

D(Ni|Sk) = |pInformativity(Ni|Sk) − pNER(Ni|Sk)| (29)

The pNER(Ni|Sk) is the marginal probability provided by
the Conditional Random Field (CRF) model from the NER
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system, and pInformativity(Ni|Sk) is from the informativity
estimation using statistical method.

B. Entropy based active learning method Entropy is
the most common measure for uncertainty, which indi-
cates a variable’s average information content. The docu-
ment selection of entropy-based methods is formalized as
follows:

x∗
Entropy = argmax

x
Hθ (Y |x) (30)

The Hθ (Y |x) is the entropy of a document x under the
model θ and the Y is the whole label set. We use the sum-
mation of entropy over the sentence Sk contained in the
document x.

Hθ (Y |x) =
Sk∈x∑

H(Y |Sk) (31)

For each sentence Sk , we use the aforementioned bag
of n-gram method, and estimate H(Y |Sk) as the average
entropy of each n-gram NGj in Sk , as follows:

H(Y |Sk) = 1
len(Sk)

NGj∈Sk∑
H(Y |NGj) (32)

We estimate the collective entropy over the whole event
concept set E defined in the ontology as the summation of
the entropy for all event Ei.

H(Y |NGj) =
Ei∈E∑

H(Ei|NGj) (33)

H(Ei|NGj) is calculated by using the Weka package for
the calculation of entropy [32].

C. Gibbs error based active learning method Gibbs
error criterion is shown to be effective for active learning
[33], which selects documents that maximize the Gibbs
error, as follows:

x∗
Gibbs = argmax

x
HGibbs(θ) (34)

Similarly to the entropy-based method implementation,
we calculate the collective Gibbs error as follows:

HGibbs(θ)=
Sk∈x∑

HGibbs(Y |Sk)=
Sk∈x∑ 1

len(Sk)

NGj∈Sk∑ Ei∈E∑
HGibbs(Ei|NGj)

(35)

For the calculation of HGibbs(Ei|NGj), we use the con-
ditional probability of p(Ei|NGj), defined as follows [33],

where p(Ei|NGj) is estimated using the proposed method
as shown in (9):

HGibbs(Ei|NGj) = 1 − p(Ei|NGj)
2 (36)

Results and discussion
Datasets and employed systems
The BioNLP shared tasks (BioNLP-ST) were organized
to track the progress of information extraction in the
biomedical text mining. In this paper, we used the datasets
of three tasks, namely GRO’13 (Gene Regulation Ontol-
ogy) [19], CG’13 (Cancer Genetics) [34] and GE’13 (Genia
Event Extraction) [35]. Each corpus was manually anno-
tated with an underlying ontology, whose number of
concepts and hierarchy are different from each other. A
comparison between the datasets is given in Table 3. Note
that since the official test datasets for CG and GE tasks are
inaccessible, we instead use parts of their training datasets
as the ‘test’ datasets, and the statistics of the datasets
include only those accessible documents.
Specifically, we employ the state-of-the-art Stanford

NER [36] system for the CoNLL-2003 [37] dataset, and the
Gimli gene name recognition system [28] for the BioCre-
ative II Gene Mention [38] dataset. Note that in BioCre-
ative task, the named entities are naturally of one class, i.e.,
the Gene/Protein name; while the CoNLL dataset involves
four classes of named entities (i.e. Person, Organization,
Location, Misc).

Evaluation metrics for comparison of active learning
methods
To compare the performance of the different strategies
of sample selection, we plot their performance in each
iteration. Since the difference between some plots is not
obvious, however, we mainly use the evaluation metric of
deficiency for comparison [39, 40], defined as follows:

Defn(AL,REF) =
∑n

t=1(accn(REF) − acct(AL))∑n
t=1(accn(REF) − acct(REF))

(37)

The acct(C) is the performance of the underlying clas-
sifier C at tth round of learning iteration. AL is an active
learning method, and REF is a baseline method (see below
for details). n refers to the total number of rounds (i.e. 10).
A deficiency value smaller than 1.0 means that the active
learning method is superior to the baseline method, and
in general, a smaller value indicates a better method.

Table 3 Summary of task datasets used in the experiments

Task Corpus size (Dev/Train/Test) Document type No. event concepts No. relations

GRO’13 300 (50/150/100) MEDLINE abstract 507 10

CG’13 400 (100/200/100) MEDLINE abstract 58 1

GE’13 20 (5/10/5) PubMed Central full text 13 20
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Parameter optimization
We first take a parameter optimization step to determine
the most appropriate parameters for the aforementioned
calculation of informativity scores.

Correlationmeasure and n-gram size
As mentioned above, we considered three correlation
measures to estimate the correlation score between n-
gram and event, including chi-square test, relative risk,
and odds ratio.We also should determine the value of n for
n-grams. To find the optimal solutions for the two tasks,
we carried out a simulation of ontology concept predic-
tion at the sentence level as follows: Given a sentence Si
and Ni ontology concepts manually annotated on the sen-
tence, we predict the top Ni ontology concepts in Si and
compare them with the Ni manually annotated concepts,
measuring the overlap between the two concepts sets.
We select the best combination of co-occurrence analysis
method and n-gram size for the rest of experiments in this
paper.
Using 10-fold cross validation, the average prediction

rate is calculated and reported in Table 4. Each column
corresponds to an n-gram size, and each row to one of the
three co-occurrence analysis methods used for the pre-
diction. Note that when N=2 (i.e. bi-grams), it does not
include unigrams for the calculation. N=1-2 indicates the
mixture of unigrams and bi-grams. This experiment is
carried out using the GRO’13 dataset.
As shown in Table 4, for all co-occurrence analysis

methods, the accuracy mostly drops as the length of N-
grams increases. This may happen due to the data sparse-
ness problem for large N-grams. We choose to use chi-
square test and unigrams for the following experiments
based on the results.

Parameter for the incorporation of event participants
The parameter of δ in Eq. (15) is to determine the sig-
nificance of effects of event participants on event con-
cept prediction. We tested our active learning method in
Eq. (14) against the GRO’13 dataset with the δ values set
as 0.15, 0.25 and 0.35. We summarize the performance
results in terms of deficiency in Table 5. We choose the
δ = 0.25 for the following experiments based on the
results.

Table 4 Parameter optimization results

Calculation
method

N-gram

N = 1 N = 2 N = 3 N = 4 N = 5 N = 1 − 2

Chi-square 0.507 0.413 0.159 0.036 0.009 0.436

Relative ratio 0.341 0.395 0.307 0.128 0.038 0.361

Odds 0.420 0.395 0.274 0.117 0.035 0.407

The averaged concept prediction accuracy is reported. The best accuracy is
highlighted in boldface

Table 5 Parameter optimization results

Method GRO’13

RS_Average 1

δ = 0.15 0.716

δ = 0.25 0.706

δ = 0.35 0.713

The deficiencies of active learning method using different factor against the GRO’13
are reported. The best deficiency is highlighted in boldface in this table and also in
the tables below

Parameter for dealing with OOV issue
In dealing with the OOV issue, we choose top-k simi-
lar words for an unknown word, as in Formula (16). In
order to choose the optimal value for k, we use the linear
combination method in Eq. (17) with the other parame-
ters α = 0.1, β = 0.1 and γ = 0.8, and test our active
learning method against the GRO’13 dataset, as changing
the k value from 5 to 25. We summarize the deficiency of
the active learning method using the different k values in
Table 6. As the result, we choose k=25 for the remaining
experiments.

Evaluation of active learning methods for event extraction
Active learningmethods using informativity estimation
In the following evaluations, we show the learning curves
and deficiencies of the event extraction system TEES
under different sample selection strategies against the
dataset of GRO’13, CG’13 and GE’13 task. The active
learning methods use only the informativity estimation,
but not the additional features such as incorporation of
event participants and dealing with OOV issue, which will
be discussed in the next section.
We compare the proposed active learning method with

other sample selection strategies, including random selec-
tion, and entropy-based [17], and Gibbs error [33] based,
as well as a conventional committee based active learning
methods. We use the random selection as the baseline for
deficiency calculation. Each experiment has ten rounds,
where in each round, 10 % of the original training data
are added for training the TEES system. The initial model
of the TEES system before the first round is trained only
on the development dataset. Note that the test data of

Table 6 Parameter optimization results

Method GRO’13

RS_Average 1

LC_(α=0.1,β=0.1,γ=0.8), k = 5 0.611

LC_(α=0.1,β=0.1,γ=0.8),k = 10 0.600

LC_(α=0.1,β=0.1,γ=0.8),k = 15 0.617

LC_(α=0.1,β=0.1,γ=0.8),k = 20 0.628

LC_(α=0.1,β=0.1,γ=0.8),k = 25 0.563

The deficiencies of active learning method using different factor against the GRO’13
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Table 7 Deficiencies of sample selection methods for event
extraction against the GRO’13, CG’13 and GE’13 datasets

Method GRO’13 CG’13 GE’13

RS_Average 1 1 1

AL(Entropy) 1.017 1.226 0.854

AL(GibbsError) 1.039 0.993 0.850

AL(ConventionalCommittee_PAS) 0.830 0.589 0.439

AL(ConventionalCommittee_Unigram) 0.832 0.788 0.263

AL(Informativity_PAS) 0.845 0.581 0.872

AL(Informativity_Unigram) 0.760 0.768 0.139

each dataset is fixed. The followings are considered for the
selection of additional 10 % training data in each round:

– Random selection: We randomly split the training
data into 10 bins in advance, and during the training
phase in each round, one bin is randomly chosen. We
report the averaged performance of random selection
for ten times (hereafter referred as RS_Average).

– Entropy-based active learning: We calculate the
entropy of each document based on (30), sort
documents by their entropy values and feed from
documents with top values to those with bottom
values as training data. (designated as AL(Entropy))

– Gibbs error based active learning: We calculate the
Gibbs error of each document based on (34), sort
documents by their Gibbs error values and select the
documents with top values as training data.
(designated as AL(GibbsError))

– Proposed active learning: We evaluate the method
using either unigrams (Unigram) or
predicate-argument relations (PAS). The resultant
method is referred as AL(Informativity_Unigram)
and AL(Informativity_PAS), respectively.

– Conventional committee-based active learning: We
evaluate the committee based method based on (22),
using the confidence score produced by TEES. We
estimate the informativity using either unigrams
(Unigram) or predicate-argument relations (PAS)
for the proposed statistical method. The resultant
method is referred as AL(Conventional
Committee_Unigram) and AL(Conventional
Committee_PAS), respectively.

We first apply those methods to the dataset of GRO’13
[19] and measure the performance change of the TEES
system with the incremental feed of the training data. We
summarize the deficiency for each method in Table 7.
The proposed active learning methods and the con-
ventional committee-based methods achieve deficiency
value of less than 1, while the entropy and Gibbs error
method achieve a deficiency higher than 1, suggesting
that the entropy and Gibbs error methods do not per-
form better than that of random selection. Particularly,
the AL(Informativity_Unigram) method achieves the best
deficiency of 0.760, while the corresponding conventional
committee based method achieves the performance of
0.832 in AL(ConventionalCommittee_Unigram), which
is an 8.65 % improvement for the informativity based
method over that of conventional committee-based
method. However, when using the PAS model, the
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Fig. 2 Comparison of active learning with informativity based, entropy-based, Gibbs error based, and conventional committee based method, and
random selection against GRO’13 dataset. The learning curves for the TEES system under active learning (AL), using the Gibbs error based method
(Gibbs Error), entropy based method(Entropy), conventional committee based method (ConventionalCommittee) and the proposed informativity
method (Informativity), as well as the random selection (RS), when tested against the GRO’13 task dataset. The active learning method uses the
predicate-argument relation (PAS) model
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Fig. 3 Comparison of active learning with informativity based, entropy-based, Gibbs error based, and conventional committee based method, and
random selection against GRO’13 dataset. The learning curves for the TEES system under active learning (AL), using the Gibbs error based method
(Gibbs Error), entropy based method(Entropy), conventional committee based method (ConventionalCommittee) and the proposed informativity
method (Informativity), as well as the random selection (RS), when tested against the GRO’13 task dataset. The active learning method uses the
unigram model

AL(Informativity_PAS) achieves deficiency of 0.845,
which is 1.78 % worse than that of the committee-based
method, whose deficiency is 0.830. In addition, when
comparing the performance of the methods using the
PAS and unigram, we notice that using the unigram,
the proposed informativity method shows an 10.1 %

improvement over that using PAS model, yet this is not
evident in the committee-based method. The results sug-
gest that the proposed informativity method performs
best when using the unigram model in the GRO’13
dataset. We then plot the learning curves for each method
in Figs. 2 and 3. In Fig. 3, the AL(Informativity_Unigram)
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Fig. 4 Comparison of active learning with informativity based, entropy-based, Gibbs error based, and conventional committee based method, and
random selection against CG’13 dataset. The learning curves for the TEES system under active learning (AL), using the Gibbs error based method
(Gibbs Error), entropy based method(Entropy), conventional committee based method (ConventionalCommittee) and the proposed informativity
method (Informativity), as well as the random selection (RS), when tested against the CG’13 task dataset. The active learning method uses the
predicate-argument relation (PAS) model
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Fig. 5 Comparison of active learning with informativity based, entropy-based, Gibbs error based, and conventional committee based method,
random selection against CG’13 dataset. The learning curves for the TEES system under active learning (AL), using the Gibbs error based method
(Gibbs Error), entropy based method(Entropy), conventional committee based method (ConventionalCommittee) and the proposed informativity
method (Informativity), as well as the random selection (RS), when tested against the CG’13 task dataset. The active learning method uses the
unigram model

method is consistently performing over the other meth-
ods after 50 % of the documents are selected, which also
explains the results in the comparison of deficiency val-
ues. In addition, in the comparison of average number
of instances per ontological concept provided in [41], the
GRO’13 dataset have 13 instances per concept, while such
value for GE’13 dataset is 82. This also suggests that in
datasets such as GRO’13 whose document annotation
may not be abundant, the active learning method using

the unigram may perform better than the PAS model.
However, the experiment result in the GRO’13 dataset
indicates that the proposed informativity based active
learning method with unigram model can show better
performance than the conventional committee-based, the
entropy based and the Gibbs error based active learning
methods.
We then carry out a similar experiment using the CG’13

dataset. We summarize the deficiency for each method
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Fig. 6 Comparison of active learning with informativity based, entropy-based, Gibbs error based, and conventional committee based method, and
random selection against GE’13 dataset. The learning curves for the TEES system under active learning (AL), using the Gibbs error based method
(Gibbs Error), entropy based method(Entropy), conventional committee based method (ConventionalCommittee) and the proposed informativity
method (Informativity), as well as the random selection (RS), when tested against the GE’13 task dataset. The active learning method uses the
predicate-argument relation (PAS) model
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Fig. 7 Comparison of active learning with informativity based, entropy-based, Gibbs error based, and conventional committee based method, and
random selection against GE’13 dataset. The learning curves for the TEES system under active learning (AL), using the Gibbs error based method
(Gibbs Error), entropy based method(Entropy), conventional committee based method (ConventionalCommittee) and the proposed informativity
method (Informativity), as well as the random selection (RS), when tested against the GE’13 task dataset. The active learning method uses the
unigram model

in the Table 7. In this experiment, the Gibbs error based
approach achieves the deficiency value of less than 1, while
the deficiency for the entropy based method is 1.226.
Comparing the PAS and unigram model, the deficiency
values for PAS model are generally better than those of
unigram model. For instance, in the committee-based
method, the percentage of deficiency difference is 25.3 %.
Similarly in the proposed informativity method, there is a
24.3 % change in the deficiency value. This may suggest
that the PAS model may be more suitable for the CG’13

dataset. In addition, while comparing the proposed infor-
mativity method and committee-based method, the infor-
mativity method achieves better deficiency value over the
committee-based method. In terms of deficiency differ-
ence, the improvements are 0.020 and 0.008, for PAS
and unigram feature, respectively, which is a less obvious
improvement for the informativity method. However, this
also suggest that the PAS feature may be more sensitive
than that of unigram in the CG’13 dataset. Note that one
of the specialties in CG’13 dataset is that only a single
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Fig. 8 Integration of named entity recognition into active learning with PAS and n-grams against GRO’13 dataset. The learning curves for the TEES
system under the proposed informativity method using predicate-argument relation (PAS) and unigram model, as well as the conventional
committee (ConventionalCommittee) based active learning method as the benchmark. In contrast, each method is integrated with the output from
the named entity recognition result (NE)
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Table 8 Deficiencies of active learning methods with and
without integrating the prediction of named entities (NE) against
GRO’13 dataset

Method GRO’13

RS_Average 1

AL(ConventionalCommittee_PAS) 0.830

AL(ConventionalCommittee_PAS + NE) 0.693

AL(Informativity_PAS) 0.845

AL(Informativity_PAS + NE) 0.589

AL(Informativity_Unigram) 0.760

AL(Informativity_Unigram + NE) 0.706

relation type of Equiv is defined. Equiv is a symmetric
and transitive binary relation to identify entity mentions
as being equivalent in the sense of referring to the same
real-world entity [42]. Such relation is not evaluated in
the GRO’13 or GE’13 dataset. The better performance
of PAS model over unigram model may due to that the
PAS model is more stable for identification of equiva-
lent entity mentions than the unigram model. The learn-
ing curves for the active learning method are plotted in
Figs. 4 and 5.
We extend the aforementioned active learning meth-

ods to the GE’13 dataset, and the Table 7 summarize
the deficiency of the methods. In Table 7, all methods
achieve deficiency values less than the random selection.
The method of Gibbs error based approach achieve the
deficiency of 0.850, while the deficiency for the entropy
method is 0.854. The proposed active learning methods
using the unigram shows a more obvious improvement

than that using PAS. For instance, in the committee-
based method, there is an improvement of 40.1 % for
the unigram model over the PAS model. This may sug-
gest that, against the GE’13 dataset, the unigram feature
is more suitable for proposed method than that of the
PAS feature. We notice a more obvious improvement for
the unigram model in the informativity method. Partic-
ularly, the best performing AL(Informativity_Unigram)
achieve a deficiency value of 0.139.While the correspond-
ing committee-based method achieve the deficiency of
0.263 in AL(ConventionalCommittee_Unigram). We plot
the learning curves in Figs. 6 and 7. In the Fig. 7,
the active learning method using unigram generally
shows obvious improvement over the baseline of ran-
dom selection method, yet the active learning method
using PAS show less significant improvement over the
baseline method. This may due to the fact that the
ontology defined in GE’13 task is generally less com-
plicated than that in GRO’13 and CG’13. In addition,
the document annotation in the GE’13 dataset may be
abundant, as the average number of instances per onto-
logical concept in GE’13 dataset is 82, above six times
more than that of GRO’13 dataset [41]. Given the dataset
with less complicated ontological concepts and abun-
dant training data of document annotation, the unigram
model may show obvious improvement for active learning
methods.

Active learningmethods using additional features
Incorporation of event participants We evaluate the
active learning method that is incorporated with the
recognition of gene/protein names for event extraction,
as illustrated in Formula (14). We show the performance
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Fig. 9 Evaluation of incorporation of the word vector method into active learning with n-grams against GRO’13 dataset. The word vector is applied
into the active learning method to solve the out-of-vocabulary (OOV) issue that exists in the unigram model. For the unknown unigram, its score is
replaced by the top-25 most similar known unigrams
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Table 9 Deficiencies of using word vector to solve the
Out-Of-Vocabulary(OOV) issue for the unigram model

Method GRO’13

RS_Average 1

AL(Informativity_Unigram) 0.790

AL(Informativity_WordVec) 0.769

of the TEES system, with active learning method that
is either with or without using the gene/protein names.
Such experiment is carried out using the GRO’13 dataset.
The experiment results are plotted in Fig. 8 and we
summarize the deficiency values in the Table 8. In
the Table 8, the incorporation of gene/protein names
shows positive effects towards the active learning method
for event extraction, for both of bag of n-gram or
PAS method. By using the gene/protein names, the
deficiency for the active learning method using PAS
is further improved from 0.845 to 0.589, which is a
30.3 % improvement. Yet in the unigram model of
the informativity method, the improvement is rather
less significant of 7.1 %, which may suggest that some
named entities are already captured as n-grams, thus
redundant.
In addition, we notice similar improvement of the con-

ventional committee-based method by incorporating the
information of event participants into the part of sta-
tistical informativity estimation, from 0.830 (i.e. Con-
ventionalCommittee_PAS) to 0.693 (i.e. Conventional-
Committee_PAS + NE), a 16.5 % improvement. How-
ever, this improvement is significantly less than that for
our proposed method, which may indicate that the con-
fidence scores of the TEES used by the conventional

committee-based method hamper the effects of event
participants.
Dealing with OOV issue with word similarity The

n-gram model is based on the ‘registered’ n-grams that
occur in the training data, which has the issue of Out-
of-Vocabulary (OOV) words. We solve this by using
the word2vec toolkit to find top-k words that are clos-
est to a given OOV word in the test data and to use
their weights to estimate the weight of the OOV word.
The results of evaluating the word vector incorporation
against the GRO’13 dataset are plotted in Fig. 9, and the
deficiency is summarized in Table 9. Note that the experi-
ments about OOV word handling are carried out only for
events, excluding relations, observing that the relations
of the BioNLP-ST’13 tasks are little affected by the OOV
issue, since they are not associated with trigger words.
By using the word similarity, the n-gram model method
is further improved, as the deficiency of n-gram model
goes from 0.790 to 0.769, an improvement of 2.66 %.
The rather less significant improvement may suggest that
such OOV issue is rather not prevalent in the GRO’13
dataset.

Linear combination of n-gram and predicate-structure
relation features
Lastly, we linearly combine the proposed n-gram and
predicate-structure relation features for the active learn-
ing, as expressed in Eq. (17), and to understand which of
the active learning methods proposed in this paper are
more important towards the overall performance.
We use four weight combinations of (α=0.8, β=0.1,

γ=0.1), (α=0.1, β=0.8, γ=0.1), and (α=0.1, β=0.1, γ=0.8),
as well as the equal distribution of weight (α=0.33, β=0.33,
γ=0.33). The method of AL(Informativity_PAS + NE)

Fig. 10 Evaluation of linear combination of active learning methods against GRO’13 dataset. The active learning modules are assigned with different
weights and combined linearly. Different weight assignment strategies are compared
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Table 10 Deficiencies of linear combination of active learning
methods

Method GRO’13

RS_Average 1

AL(Informativity_PAS + NE) 0.589

LC_(α=0.33,β=0.33,γ=0.33) 0.740

LC_(α=0.8,β=0.1,γ=0.1) 0.772

LC_(α=0.1,β=0.8,γ=0.1) 0.752

LC_(α=0.1,β=0.1,γ=0.8) 0.563

LC_(α=0,β=0,γ=1) 0.583

is used as the benchmark, as it is the best perform-
ing method in the previous experiments in the GRO’13
dataset. Note that the AL(Informativity_PAS + NE) cor-
responds to the weight combination of (α=0, β=1, γ=1).
Additionally, we also use the benchmark of only using the
named entity for the active learning, i.e the weight com-
bination of (α=0, β=0, γ=1), to check if simply using the
total number of recognized named entities be sufficient
for the active learning method.
The results of comparison are plotted in Fig. 10, and

we summarize the deficiency values in Table 10. Overall,
the weight combination of (α=0.1, β=0.1, γ=0.8) shows
the best performance (deficiency 0.563). Compared to
PAS or unigram-based statistics, the incorporation of
event participants has the most effect on the best per-
formance. Note, however, that the model of using only
the event participants, i.e., the weight combination of
(α=0, β=0, γ=1), achieves the deficiency of 0.583, higher
than the best deficiency, which indicates that the PAS

or n-gram based statistics are complementary to event
participants.

Evaluation of active learning method for NER task
We apply the active learning method into NER task as
expressed in Eq. (18), and follow the similar experiment
design. Each sample selectionmethod starts with the same
held-out labeled development dataset for model initializa-
tion and a pool of unlabeled training dataset for selection.
In each round, 10 % of the unlabeled documents in the
training dataset are selected by different sample selec-
tion strategies. For evaluation, we report the performance
of NER system trained with the selected training docu-
ment in each round, against the same held-out test dataset
following the official evaluation procedure.
The sample selection strategies are as follows:

– Random selection: We randomly split the training
dataset into 10 bins in advance, one bin is randomly
chosen in each round. Following 10-fold cross
validation, we report the averaged performance in
each round. (hereafter referred to as RS_Average)

– Entropy-based active learning: The entropy of
documents are calculated, and select documents by
their entropy values, from the top to bottom.
(designated as AL(Entropy) )

– Maximum Gibbs Error based active learning: Similar
to the entropy-based method, but uses the Gibbs
error, as introduced in [33]. (designated as
AL(GibbsError) )

– Proposed active learning method using informativity
scoring only: Use the aforementioned system in
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Fig. 11 Comparison of active learning with informativity based, entropy-based, Gibbs error based, and conventional committee based method, and
random selection against BioCreative dataset. The learning curves for the Gimli system under active learning (AL), using the Gibbs error based
method (Gibbs Error), entropy based method(Entropy), conventional committee based method (ConventionalCommittee) and the proposed
informativity method (Informativity), as well as the random selection (RS), when tested against the BioCreative task dataset
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Table 11 Deficiencies of sample selection methods against the
BioCreative and CoNLL datasets

Method BioCreative CoNLL

RS_Average 1 1

AL(Entropy) 1.171 0.737

AL(GibbsError) 1.045 0.885

AL(ConventionalCommittee) 0.684 0.763

AL(Informativity) 0.514 0.575

Eq. (18), and selects documents based on their
informativity scores. (designated as
AL(Informativity))

– Conventional committee-based active learning: We
evaluate the committee based method based on (22),
using the confidence score produced by NER system.
The resultant method is referred as AL(Conventional
Committee).

We applied these methods to the BioCreative dataset
and plotted the learning curve of Gimli in Fig. 11,
and summarized their deficiency values in Table 11. In
Fig. 11, the proposed active learning method show steady
improvement over the other methods in most rounds.
Based on the deficiency comparison in Table 11, the
proposed method achieved a deficiency value of 0.514,
while the deficiency for the conventional committee based
method is 0.684.
We carried out similar experiments with the CoNLL

dataset, and the learning curves are plotted in Fig. 12,
and the deficiencies are compared in Table 11. In Fig. 12,
the proposed active learning method outperforms the

other methods; and in terms of deficiency, the proposed
method achieves 0.575 in the deficiency, a nearly 42 %
improvement over the random selection. In contrast, the
benchmark of Entropy and Gibbs error based approaches
also are shows deficiency value of less than 1, yet their
improvement over the random selection is nearly 26 %
and 11 %. The deficiency for the conventional com-
mittee based method is 0.763. The experiment results
in the BioCreative and CoNLL datasets indicate that
the proposed informativity based method can show bet-
ter performance than the conventional committee-based
method, as well as the Entropy and Gibbs error based
methods.

Conclusions
In this study, we proposed a novel active learning method
for ontological event extraction, which is more complex
than the simple PPI extraction. Our method measures
the collective ‘informativity’ for unlabeled documents,
in terms of the potential likelihood of biological events
unrecognizable for the event extraction system. We eval-
uated the proposed method against the BioNLP Shared
Tasks datasets, and showed that our method can achieve
better performance than other previous methods, includ-
ing entropy and Gibbs error based methods and the
conventional committee-based method. In addition, the
incorporation of named entity recognition into the active
learning for event extraction and the unknown word
handling further improved the active learning method.
Finally, we adapted the active learningmethod into named
entity recognition tasks and showed that the method also
improved the document selection for manual annotation
of named entities.
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