
sensors

Article

Evolutionary Multi-Objective One-Shot Filter Pruning for
Designing Lightweight Convolutional Neural Network

Tao Wu , Jiao Shi * , Deyun Zhou, Xiaolong Zheng and Na Li

����������
�������

Citation: Wu, T.; Shi, J.; Zhou, D.;

Zheng, X.; Li, N. Evolutionary

Multi-Objective One-Shot Filter

Pruning for Designing Lightweight

Convolutional Neural Network.

Sensors 2021, 21, 5901. https://

doi.org/10.3390/s21175901

Academic Editor: Zahir M. Hussain

Received: 22 July 2021

Accepted: 29 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronics and Information, Northwestern Polytechnical University, 127 West Youyi Road,
Xi’an 710072, China; tao_woe@mail.nwpu.edu.cn (T.W.); dyzhounpu@nwpu.edu.cn (D.Z.);
xlzheng@mail.nwpu.edu.cn (X.Z.); linaflydream@mail.nwpu.edu.cn (N.L.)
* Correspondence: jiaoshi@nwpu.edu.cn

Abstract: Deep neural networks have achieved significant development and wide applications
for their amazing performance. However, their complex structure, high computation and storage
resource limit their applications in mobile or embedding devices such as sensor platforms. Neural
network pruning is an efficient way to design a lightweight model from a well-trained complex deep
neural network. In this paper, we propose an evolutionary multi-objective one-shot filter pruning
method for designing a lightweight convolutional neural network. Firstly, unlike some famous
iterative pruning methods, a one-shot pruning framework only needs to perform filter pruning and
model fine-tuning once. Moreover, we built a constraint multi-objective filter pruning problem in
which two objectives represent the filter pruning ratio and the accuracy of the pruned convolutional
neural network, respectively. A non-dominated sorting-based evolutionary multi-objective algorithm
was used to solve the filter pruning problem, and it provides a set of Pareto solutions which consists
of a series of different trade-off pruned models. Finally, some models are uniformly selected from
the set of Pareto solutions to be fine-tuned as the output of our method. The effectiveness of our
method was demonstrated in experimental studies on four designed models, LeNet and AlexNet.
Our method can prune over 85%, 82%, 75%, 65%, 91% and 68% filters with little accuracy loss on
four designed models, LeNet and AlexNet, respectively.

Keywords: convolutional neural network; filter pruning; evolutionary multi-objective algorithm;
lightweight model

1. Introduction

Recently, deep neural networks have achieved significant development with the in-
novations of computing equipment, especially for GPU-based computing. The excellent
performance of deep neural networks has led to their applications in many fields such as
computer vision, speech recognition and natural language processing [1]. For practical
applications, convolutional neural networks are more widely used than fully connected
models, because convolutional kernels can extract more potential spatial features with less
weight parameters. Nowadays, convolutional neural networks are not only widely used for
image recognition [2–4], but also achieve perfect performance in natural language process-
ing [5–7]. However, better performance always means more complex model structures [8],
which limit the more practical applications of deep neural networks. For example, sensor
platforms always suffer from limited computation and storage resources, and it is hard
to perform deep models on them. Therefore, designing a lightweight neural network
with high performance is necessary and valuable for performing them on resource-limited
platforms. Moreover, edge computing is widely used in practical applications such as
intelligent city, and these edge devices are always resource-limited. For these edge devices,
although sometimes they handle the same problems, their requirements for results may be
different because of different environments and equipment hardware limitations. There-
fore, we may face a challenge in designing a series of similar models for these edge devices.

Sensors 2021, 21, 5901. https://doi.org/10.3390/s21175901 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6925-109X
https://orcid.org/0000-0003-1124-6738
https://doi.org/10.3390/s21175901
https://doi.org/10.3390/s21175901
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21175901
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21175901?type=check_update&version=1

Sensors 2021, 21, 5901 2 of 21

Neural network pruning is an efficient method to simplify network structure and maintain
the performance of the original complex model. Therefore, in this paper, we will study
how to design a lightweight convolutional neural network based on pruning methods that
can be deployed on resource-limited devices.

Factually, studies [8,9] have shown that neural networks always have redundant
parameters. Therefore, removing some redundant or unimportant parameters can sim-
plify neural network structure with little or even no loss of accuracy. Neural network
pruning is a traditional technique, which can be divided into unstructured pruning (e.g.,
weights pruning) and structured pruning (e.g., filter pruning) [10,11]. Unstructured prun-
ing methods prune individual parameters. Doing so produces a sparse neural network,
which—although smaller in terms of parameter-count—may not be arranged in a fashion
conducive to speed-ups using modern libraries and hardware [11,12]. Structured prun-
ing methods consider parameters in groups, removing entire neurons, filters or channels
to exploit hardware and software optimized for dense computation [13–17]. The neural
network pruning method can be divided into iteration pruning and one-shot pruning
from another point of view. Iterative neural network pruning methods [18–21] repeat
pruning and fine-tuning operations while one-shot pruning methods [22–24] run pruning
and fine-tuning operations only one time. The lottery ticket hypothesis [24] indicated that
one-shot pruning makes it possible to identify winning tickets without repeated training,
especially for the small size networks where the winning ticket is the sub-networks which
reach test accuracy comparable to the original network. Whatever neural network pruning
method is used, neuron or connection importance estimation is key to these methods. The
literature [25,26] has studied how to understand the importance of individual parameters
or parameters in the group.

We still face some issues for convolutional network pruning. Firstly, the unstruc-
tured pruning methods can obtain a sparse model, but it is also hard to be deployed on
resource-limited devices without specific sparse computing algorithms. For structured
pruning methods, the key problem is how to distinguish which group of parameters can
be removed. Although some studies have proposed different metrics of importance estima-
tion, there is still no uniform and comprehensive pruning standard. Secondly, handcraft
technology-based pruning methods may not select optimal pruning parameters. Moreover,
it is hard to balance the model scale and model performance, or we will incur significant
time and resource costs to obtain a good trade-off between the model scale and model
performance. Thirdly, compared with one-shot pruning, although iterative pruning meth-
ods are can obtain better results with more ease, iterative pruning methods always have
larger computation complexity and would cost more time. The time cost of a human is
very expensive for iterative pruning methods, especially for designing a series of similar
models. Whether it is iterative pruning or one-shot pruning, we need to design each model
independently for each device.

In this paper, we propose an evolutionary multi-objective one-shot filter pruning
method (EMOFP) for designing a lightweight convolutional neural network. In EMOFP,
there are three phases: obtaining a well-trained CNN; evolutionary multi-objective filter
pruning (EMFP); and a fine-tuning pruned model; these phases are implemented only one
time. It is important to note that the key of the EMOFP is the second phase. In EMFP, we
build a constraint multi-objective filter pruning problem, in which two objective functions
represent the pruning ratio and the accuracy of the pruned model, respectively. Then, a non-
dominated sorting-based evolutionary multi-objective algorithm is used to solve the above
filter pruning problem. Finally, for a series of different trade-off pruning solutions of EMFP,
we uniformly select some pruned model to the third phase, fine-tuning the selected pruned
models. In total, our EMOFP automatically completes the filter pruning task without extra
human hand-craft and pruning and fine-tuning only once, and provides a series of pruned
models with a different trade-off between the model scale and model performance.

The remainder of this paper is organized as follows. In Section 2, we will review the
context of the proposed method and some related works. In Section 3, the evolutionary

Sensors 2021, 21, 5901 3 of 21

multi-objective one-shot filter pruning method will be introduced in detail. We will conduct
the experimental studies in Section 4. A discussion about one-shot and iterative neural
network pruning will be introduced in Section 5. Finally, we will give the concluding
remarks of this paper.

2. Background and Related Work
2.1. Neural Network Pruning

According to the literature [11,12], we define a neural network architecture as a
function family f (X; ·), where X denotes the dataset on which to train and fine-tune. The
architecture of a neural network includes the configuration of a network’s parameters and
the set of operations which consists of convolutional units, activation functions, pooling,
batch normalization, etc. Therefore, we can define a neural network model as the particular
parameterization of an architecture. For example, for a specific parameter W, the model
can be denoted as f (X; W). The neural network pruning aims to obtain a new W ′ which is
simpler than the original W. Generally, we can obtain W ′ by

W ′ =M�W

M ∈ {0, 1}|W|
(1)

whereM denotes the binary pruning mask in which zero means the parameter will be
pruned, � is the Hadamard product operator and |W|means the number of elements in W.
In practice, rather than using an explicit mask, the pruned parameters of W are fixed to
zero or removed entirely.

A general framework of neural network pruning can be summarized in Algorithm 1.
The neural network pruning task can be divided into three phases [12]. In the first phase,
we trained a dense neural network model on the dataset X to obtain the original complex
model. In the second phase, we prune the original complex model with some different
pruning strategies to obtain the pruned model. In the third phase, in order to maintain
the accuracy of the original model, we fine-tuned the pruned model on the dataset X.
Furthermore, for iterative pruning methods, the second and third phases will be executed
alternately for N iterations. When N is equal to 1, this framework represents a one-shot
neural network pruning method.

Algorithm 1: General Framework of Pruning and Fine-Tuning

Input: N: the number of iterations of pruning;
X: the dataset on which to train and fine-tuning.
Output: M: binary pruning mask;
W: network parameters.

1 W ← Initialization()
2 W ← Train(f (X; W))

3 M← 1|W|

4 for i = 1 to N do
5 M← Prune(M, score(W))
6 W ← Finetune(f (X;M�W))

7 end

Most neural network pruning methods focus on proposing or improving pruning
strategies in the second phase. For example, an early approach to pruning was biased
weight decay which is based on weight magnitude [27]. The optimal brain damage
(OBD) [18] and optimal brain surgeon (OBS) [19] reduced the number of connections
based on the Hessian of the loss function. In the literature [13,28], a structured sparsity
regularizer was added on each layer to reduce trivial filters, channels or even layers. These
works used the l1 or l2-norm to select and prune unimportant filters, channels, etc.

Sensors 2021, 21, 5901 4 of 21

2.2. Evolutionary Multi-Objective Optimization

Multi-objective optimization is used to solve multi-objective optimization problems
(MOPs), which consist of more than one objective function and all of the objective function
needs to be optimized simultaneously. Therefore, an MOP can be stated as

min
x

F(x) = (f1(x), f2(x), . . . , fm(x))T ,

s.t. x = (x1, x2, . . . , xn)
T

(2)

where m means the number of objective functions, and n denotes the dimension of decision
variable. In general, the objectives in MOP are in conflict with each other. Therefore, for
solution xa and xb, if and only if the following conditions are satisfied:

∀i = 1, 2, · · · , m fi(xa) ≤ fi(xb),

∃j = 1, 2, · · · , m f j(xa) < f j(xb),
(3)

then solution xa is better than solution xb. It is generally called xa dominate xb, and it
is always marked as xa � xb. Moreover, the Pareto optimal solution means the solution
which cannot be dominated by any other solutions in decision space. All Pareto solutions
compose the Pareto optimal set, and the Pareto front is the set of all Pareto optimal objective
vectors corresponding to the Pareto optimal set.

Generally, it is very difficult to obtain whole Pareto optimal solutions. Therefore,
multi-objective optimization needs to obtain a uniformly distributed Pareto front which can
represent the whole solutions approximately. Nowadays, most multi-objective algorithms
are designed based on population optimization, especially with evolutionary algorithms,
such as the non-dominated sorting genetic algorithm (NSGA-II) [29], multi-objective parti-
cle swarm optimization (MOPSO) [30,31] and multi-objective evolutionary algorithm based
on decomposition (MOEA/D) [32]. In this paper, we will use NSGA-II to solve the multi-
objective filter pruning problem, which is a combinatorial optimization method. MOPSO
and MOEA/D are more efficient for continuous optimization problems. The key technolo-
gies of NSGA-II are fast non-dominated sorting and crowded-distance-based selection,
which provide Pareto solutions and make them uniformly distributed, respectively.

Multi-objective optimization has been widely used to solve machine learning problems.
For example, using multi-objective to sparse reconstruction was proposed in [33]. In [34,35],
multi-objective optimization was used for deep learning. Self-pace learning can also be
combined with multi-objective optimization [36]. Furthermore, a multi-objective matrix
decomposition method is proposed in [37]. For neural network structure optimization, Lu
et al. have proposed NSGA-Net [38] which considers the model computational cost and
accuracy as an MOP and solves it with NSGA-II. A continuous evolution for an efficient
neural architecture search was proposed in [39]. Moreover, we proposed a multi-objective
particle swarm optimization for neural network pruning [40], in which the pruning ratio of
each layer is optimized with two objectives of global pruning ratio and pruned model’s
accuracy. In summary, multi-objective optimization is an efficient method to solve neural
network optimization problems, especially if it is well worked on neural network pruning.

3. Methodology

In this section, we introduce the proposed EMOFP in detail. Firstly, the overview
framework of multi-objective one-shot filter pruning is presented. Then, we introduce the
mathematical model of filter pruning, especially the two conflicting objective functions.
Moreover, an evolutionary multi-objective algorithm was used to prune the filters of the
convolutional neural network in detail. Finally, we fine-tune the pruned model to maintain
the accuracy as much as possible.

Sensors 2021, 21, 5901 5 of 21

3.1. Framework of EMOFP

In our EMOFP framework, the main works can be divided into three phases. Firstly,
we obtain an original well-trained convolutional model, which may be trained by ourselves
or is a public well-trained model. Secondly, we prune the original model by evolutionary
multi-objective filter pruning method, and obtain a series of trade-off pruned models.
Lastly, models from the second phase would be fine-tuned to improve the performances
of these models. Therefore, our method outputs a series of different trade-off lightweight
convolutional models. A detailed framework is shown in Figure 1. In the framework
of EMOFP, the main work of our proposed method is in the second phase, evolutionary
multi-objective filter pruning. Figure 1 also shows an illustration of filter pruning for
the convolutional model, in which the i-th convolutional layer can be represented as the
product of the input tensor and filters. Taking a convolutional layer as an example, in
the second phase, we initialize a population which consists of N different filter pruning
schemes. The virtual filter represents the filter that will be removed and the solid filter
indicates the filter that will be retained in Figure 1, and we use 0 and 1 to encode the
removed and retained filter, respectively. Moreover, we used evolutionary operators (cross-
over and mutation) to update the population and finally output a Pareto front which
consists of a series of different trade-off filter pruning schemes.

Fine-tune lightweight models

Input Output

Filters

Convolutional

operation

model N

Input Output

Filters

Convolutional

operation

model 1

Input Output

Filters

Convolutional

operation

Individual N

Population

0

1

filters Enconding

Crossover

& mutation

Iterate

Population

0

1

filters Enconding

Input Output

Filters

Convolutional

operation

Individual 1

Input Output

Filters

Convolutional

operation

Individual N

Input Output

Filters

Convolutional

operation

Individual 1

Fine-tune

models

Initialize

pruning

mask

Input Output

Filters

Convolutional

operation

Model

The i-th convolutional layer of

original model

Evolutionary Multi-objective Filter Pruning

Training a convolutional model

Figure 1. The framework of evolutionary multi-objective one-shot filter pruning.

Sensors 2021, 21, 5901 6 of 21

3.2. Multi-Objective Filter Pruning Model

In order to parameterize the filter pruning for convolutional neural networks, we
assume that W denotes the filters of a convolutional model in which w ∈ W means a
complete filter, and f (X; W) denotes the model in which X means the dataset used to
train and fine-tune. Moreover, the acc, which is the accuracy of the models, is used to
evaluate the performance of models. The pruning operation can be represented as the
Hadamard product of filters W and pruning binary maskM, in which the filter will be
turned on/off when the corresponding mask equals 1/0. We can thus present the filter
pruning of convolutional neural networks as in Equation (1), and the pruned model is
f (X;M�W).

In the filter pruning task, we not only need to obtain as simple neural networks as
possible, but we also need to retain the performance of obtained neural networks as much
as possible. Therefore, we designed the two following objective functions:{

obj1(M) = ‖M‖l0

obj2(M) = |acc(f (X; W))− acc(f (X;M�W))|
(4)

where the first objective function means the number of non-zero elements in the pruning
maskM which can also denote the number of retained filters, and the second objective
function represents the performance difference between original and pruned models.
Finally, we can establish a multi-objective filter pruning model as

min
M

F(M) = (obj1(M), obj2((M)))T

=
(
‖M‖l0 , |acc(f (X; W))− acc(f (X;M�W))|

)T (5)

The numerical range of a first objective function ‖M‖l0 is a positive integer, while the
value of the second objective function is in the range [0, 1]. A large numerical difference
between these two objectives may cause unbalanced solutions and the first objective may
lead the optimization. Therefore, we need to normalize the first objective to prevent this
issue, and the normalized multi-objective filter pruning model is:

min
M

F(M) =

(
‖M‖l0
|M| , |acc(f (X; W))− acc(f (X;M�W))|

)T

(6)

where |M| means the number of elements inM. Furthermore, the accuracy of the original
model is a constant, and we cannot fine-tune a very bad pruned model to obtain a perfor-
mance similar to that of the original model. Therefore, it is necessary to add constraints
about the accuracy of the pruned model before fine-tuning. Thus, the final multi-objective
filter model can be represented as

min
M

F(M) =

(
‖M‖l0
|M| , |acc(f (X; W))− acc(f (X;M�W))|

)T

=

(
‖M‖l0
|M| , |C− acc(f (X;M�W))|

)T

=

(
‖M‖l0
|M| , 1− acc(f (X;M�W))

)T

s.t. δ1 ≤ 1− acc(f (X;M�W)) ≤ δ2

(7)

where C denotes a constant, and δ1 and δ2 are error constraints of the pruned model,
designating the acceptable error range of pruned model. For the second objective function,
we finally use 1− acc(f (X;M�W)), which means the error of the models.

Sensors 2021, 21, 5901 7 of 21

3.3. Evolutionary Multi-Objective Filter Pruning Algorithm

For the above multi-objective filter pruning model, we use an evolutionary multi-
objective filter pruning (EMFP) algorithm based on NSGA-II to optimize it. The pseudocode
of EMFP is shown in Algorithm 2. In algorithm EMFP, we binarily encode the pruning
masks as individuals of an evolutionary population, and genetic operations, such as
crossover and mutation, are used to generate offspring, whilst finally the nondominated
sorting and crowding distance-based selection are applied to update the population and
Pareto front. We will then introduce some detailed operations in EMFP.

Algorithm 2: Pseudocode of evolutionary multi-objective filter pruning
Input:
D: the dimension of individual;
N: population size;
G: the maximum generation.
Output: P: the final population.

1 P0 ← ∅ // initialize population
2 for i = 1 to N do
3 ind← randint(0, 2, D) // randomly initialize D-dims binary individual
4 Calculate fitness of ind
5 P0 ← P0 ∪ ind
6 end
7 Sort individuals in P0 by nondominatedSort(P0)
8 t← 1
9 while t < G do

10 P′t ← ∅
11 subP← generateO f f spring(Pt−1)
12 Update fitness of all individual in subP
13 P′t ← Pt−1 ∪ subP
14 Sort individuals in P′t by nondominatedSort(P′t)
15 Calculate crowding distance by crowdingDistance(P′t)
16 Pt ← select(P′t) // select individuals from P′t with crowding distance to

generate new population
17 t← t + 1
18 end

Firstly, we introduce individual encoding and population initialization. Figure 2 gives
a simple illustration about filter pruning and evolutionary individual encoding. For each
convolutional layer in the CNN model, we generate a binary mask with a size equal to
the number of filters, and each element in the mask represents the pruning decision about
the corresponding filter, 0 means that the filter needs to be removed, and 1 indicates the
remaining filter. For example, the mask (1, 0, . . . , 1, 0)T means that the second and last filter
need to be removed. We concatenated all the masks of each convolutional layer to obtain
the total filter pruning mask for the CNN model, such as the Mask in Figure 2. In EMFP, the
decision variable is the pruning mask, so we encode the concatenated mask vector as the
individual. Decoding needs to decompose the concatenated mask into the masks of each
convolutional layer according to the model configuration. For example, for a CNN model
with two layers, the number of filters of each layer is 4 and 6, respectively. Therefore, the
configuration of the CNN model is [4, 6]. A reasonable encoding is (1, 0, 1, 0, 0, 0, 1, 0, 1, 0)T ,
which can be decoded to two sub-masks (1, 0, 1, 0)T and (0, 0, 1, 0, 1, 0)T for two convolu-
tional layers, respectively. The population initialization is shown in lines 1–6 in Algorithm 2.
We randomly initialize the binary individual and repeat N times to generate the population,
and the fitness calculation is based on Equation (7).

Sensors 2021, 21, 5901 8 of 21

Input

Filters

Pruned

Filters

Filters

Filter

Pruning Pruned

Filters

CNN

0 1 1 01 0 1 0Mask

Figure 2. Illustration of filter pruning and evolutionary individual encoding.

Secondly, we simply introduce generating offspring in line 11 in Algorithm 2. In
order to generate new individuals, we firstly randomly select two individuals—ind1 and
ind2—from the current population Pt. Furthermore, we will then use a binary two-point
crossover Equation (8) to create a new individual indc when the probability of crossover is
satisfied. Then, if the probability of mutation is satisfied, we will use the bitflip mutation
Equation (9) to mutate the individual indc to obtain the mutated individual indm. Finally,
we repeat the above operations N times to generate the offspring population subP:

indc(i) =

{
ind1(i) if cp1 ≤ i ≤ cp2

ind2(i) otherwise
(8)

where cp1 and cp2 are two randomly selected crossover points:

indm(i) =

{
¬indc(i) if rand ≤ pm

indc(i) otherwise
(9)

where pm means the probability of mutation. The derailed descriptions about the nondom-
inated sort and crowding distance can refer to the literature [29].

3.4. Fine-Tuning Strategy

After the above EMFP, we obtain a series of lightweight models. These models need
to be trained again, because missing a large number of parameters results in their perfor-
mance’s degradation. Compared with absolutely retraining the pruned lightweight model
with randomly initialized weight parameters, fine-tuning is a more efficient method to
recover the performance of models [24]. Therefore, in the EMOFP framework, we use
a fine-tuning strategy to improve the performance of valuable pruned models after an
evolutionary filter pruning operation.

In the model fine-tuning phase, we need to select some valuable pruned model before
fine-tuning the lightweight neural networks, because the EMFP algorithm outputs a series
of trade-off pruned models. For selecting suitable pruned models, we followed the rule
of uniform selection. For example, if we need to select K models, we will sort all models
according to the number of filters (the first objective in the multi-objective filter pruning
model), and then uniformly select K models from the model set. For selected pruned
models, we fine-tune them with the strategies of the data augmentation and auto-reduced
learning ratio.

3.5. Computational Complexity of EMOFP

Before analyzing the computational complexity of the proposed EMOFP, we assumed
some computational costs of special operators. Assuming that the computational cost

Sensors 2021, 21, 5901 9 of 21

of the neural network training is O(T), and the complexity of fitness evaluation is O(F),
both consist of the filter pruning and model evaluation on test data. The computation
complexity of EMOFP can be divided into two parts: the computational cost of the EMFP
algorithm (Algorithm 2) and the computational cost of the fine-tuning pruned model. For
the first part, the population size and maximum generation are N and G, respectively.
The computational complexity of initialization, the nondominated sort and calculating
the crowding distance are O(NF), O(2N2) and O(2(N − 2)), respectively. Therefore, the
total computational complexity of Algorithm 2 is O(NF + 2N2 + G(2N + NF + 2N2 +
2(N − 2) + N)), which can be denoted by O(GN2 + GNF) in summary. If K stands for the
number of pruned models selected for fine-tuning, the computational complexity of the
fine-tuning phase is O(KT). Thus, the total computational complexity of our proposed
EMOFP is O(GN2 + GNF + KT). It is noted that the computation complexity in this part
means the time complexity, and it is based on the assumed time cost of the neural network
training O(T) and individual fitness evaluation O(F).

4. Experimental Studies

In this section, we demonstrate the performance of the proposed EMOFP with experi-
mental studies. Firstly, we introduce the experimental setting and related convolutional
neural networks and datasets. Secondly, the overall experimental results—especially the
comparison results—are shown. Lastly, we present and analyze the experimental results of
our EMOFP on these models in detail.

4.1. Description of Model Variants and Datasets

In our experimental studies, we designed four convolutional models which have a
different number of convolutional layer and the same fully connected layers. Moreover,
we also apply our EMOFP on common yet efficient models, LeNet and AlexNet. Simple
descriptions of used neural network models are shown as follow.

• Conv1: Conv1 is a simple convolutional neural network which consists of a convo-
lutional layer and two fully connected layers. In the convolutional layer, there are
64 filters with the size of 3× 3, and the number of neurons in fully connected layers
are 128 and 10. The dataset for Conv1 is MNIST.

• Conv2: Conv2 is a convolutional neural network which consists of two convolutional
layers and two fully connected layers. The first convolutional layer has 32 filters with
the size of 3× 3 while the second convolutional layer with 64 3× 3 filters, and the
number of neurons in fully connected layers are 128 and 10. The dataset for Conv2
is MNIST.

• Conv3: Conv3 is a convolutional neural network which consists of three convolutional
layers and two fully connected layers. The number of filters of each layer are 16, 32
and 64, respectively; the filter size of all filters is 3× 3, and the number of neurons in
fully connected layers are 128 and 10. The dataset for Conv3 is MNIST.

• Conv4: Conv4 is a convolutional neural network which consists of four convolutional
layers and two fully connected layers. The number of filters of each layer is 16, 32, 64
and 64, respectively; the filter size of all filters is 3× 3, and the number of neurons in
the fully connected layers are 128 and 10. The dataset for Conv4 is MNIST;

• LeNet: LeNet [41] is a classical and common convolutional neural network for MNIST
classification. LeNet has two convolutional layers and three fully connected layers.
The number of filters of two convolutional layers is 8 and 16, and the size of filter is
5× 5 for each layer. The number of three connected layers is 120, 84 and 10.

• AlexNet: AlexNet [2] is a classical deep convolutional neural network which was
designed for ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012.
AlexNet has five convolutional layers and three fully connected layers. In our experi-
ment, we properly simplified AlexNet to classify CIFAR10.

Sensors 2021, 21, 5901 10 of 21

Detailed model variants, such as configurations, accuracy and used datasets are pre-
sented in Table 1. MNIST has a training set of 60,000 examples and a test set of 10,000 examples
of handwritten digits. The images are centered in a 28× 28 image. CIFAR10 consists of
60,000 color images in 10 classes with the size of 32× 32, and each class has 6000 images.
There are 50,000 training images and 10,000 test images in CIFAR10.

Table 1. Detailed neural network variants, consisting of the configuration, accuracy and used dataset.

Model Conv1 Conv2 Conv3 Conv4 LeNet AlexNet

Dataset MNIST MNIST MNIST MNIST MNIST CIFAR10

Accuracy 0.9878 0.9917 0.9929 0.9935 0.9905 0.9004

64@(3,3) 32@(3,3) 16@(3,3) 16@(3,3) 8@(5,5) 24@(3,3)
(,128) 64@(3,3) 32@(3,3) 32@(3,3) 16@(5,5) 64@(5,5)

(128,10) (,128) 64@(3,3) 64@(3,3) (,120) 96@(3,3)
(128,10) (,128) 64@(3,3) (120,84) 96@(3,3)

(128,10) (,128) (84,10) 64@(5,5)
(128,10) (,1024)

(1024,1024)

Configuration

(1024,10)

4.2. Experimental Setting

Firstly, we define some evaluation metrics to measure the pruned model, which consist
of the error, relative error, filter compression ratio and floating point operations (FLOPs) of
the pruned model. A detailed description of these is shown as follows.

• Error: The error of the neural network by

Error =
FP + FN

TP + FP + TN + FN
, (10)

where TP—true positive—is the number of observations correctly assigned to the
positive class; TN—true negative—is the number of observations correctly assigned to
the negative class; FP—false positive—is the number of observations assigned by the
model to the positive class which in reality belong to the negative class; and FN—false
negative—is the number of observations assigned by the model to the negative class
which actually belong to the positive class.

• Relative error (RE) : We define relative error of pruned model as

RE =
Ep − Eo

Eo
× 100% (11)

where Ep and Eo denote the error of the pruned model and original model, respectively.
A positive RE means that the error of pruned model is worse than the original error,
and a negative RE means the better performance of pruned model.

• Compression ratio (CR): We define the compression ratio of filter pruning as

CR =
No

Np
(12)

where Np and No denote the filter’s number of pruned models and original models,
respectively.

• Floating point operations (FLOPs): FLOPs can effectively measure a model’s computation
resources, and it is always used to measure model complexity in practical applications.

For exploring filter pruning effectiveness, all experiments simply remove the whole
filter with fixed fully connected layers. In our experiments, we use the pymoo [42] package
to perform evolutionary multi-objective optimization with NSGA-II, and all operations

Sensors 2021, 21, 5901 11 of 21

about convolutional neural networks are based on Keras [43]. The detailed parameter
settings of our EMOFP are shown in Table 2, where the lower and upper bounds of the
error in Equation (7) are two parameter sets. For our designed models and LeNet, the δ1
and δ2 are 0.01 and 0.7, respectively. Furthermore, the error bounds of the pruned model
is 0.5 and 0.9 when we prune AlexNet, because AlexNet has a much larger number of
weights and redundant weights for classifying CIFAR10.

Table 2. Detailed parameters of the evolutionary multi-objective one-shot filter pruning.

Parameter Meaning Value

N The number of individuals in population 50
G The maximum of generations 200
pc The probability of crossover 0.9
pm The probability of mutation 0.2
δ1 The lower bound of error in Equation (7) {0.01, 0.5}
δ2 The upper bound of error in Equation (7) {0.7, 0.9}

The comparison methods used in this paper are the l1-norm and l2-norm-based filter
pruning [13]. The difference between these two filter pruning methods is the different filter
importance estimation with the l1-norm and l2-norm. After estimating the importance of
all filters, we can remove unimportant filters with a given pruning ratio. Moreover, there
are two different pruning ratio assignment schemes: the global pruning ratio assignment
and the layer-wise pruning ratio assignment. Therefore, the comparison methods have four
different types which can be recorded as l1-global, l1-layer, l2-global and finally as l2-layer.

Because EMOFP is a one-shot pruning method, the comparison methods will also use
a one-shot pruning framework for fair comparison. Moreover, EMOFP provides a series of
trade-off solutions, and comparison methods only obtain a pruning result in one running.
Therefore, in order to better compare, we select three different trade-off solutions which
are located in the head, middle and bottom of the Pareto front, respectively. Then, the
comparison methods pruned the model with same pruning ratio with selected solutions.
Finally, for each model, we provide three different results with a different pruning ratio for
each method.

4.3. Experimental Results Presentation and Analysis
4.3.1. Results on Designed Models

In this part, we present the experimental results of our designed models. The pruning
results on Conv1, Conv2, Conv3 and Conv4 are shown in Tables 3–6, respectively. Moreover,
we plot the Pareto fronts of EMFP on four designed models in Figure 3.

First of all, from Figure 3a, it is well known that we can obtain a series of trade-
off pruned models after running EMFP, and the remained filter ratio is in the range of
[0.14 0.29] while most of them have an error which is less than 0.1. Compared results with
other methods are presented in Table 3, EMOFP obtains better pruned models, especially
before fine-tuning. From Table 3, the configurations of pruned models are 18, 13 and 9 for
all pruning methods while that of the original model is 64. Although the configurations
of pruned models are the same, the pruning schemes are different. Obviously, the errors
of pruned models are different, and EMOFP always obtains much less errors than other
methods. After we fine-tune these pruned models with same training strategies, as all the
methods can obtain acceptable final models with similar or little larger errors compared
with the original model. With the increasing compression ratio, the error is increased
whether it is the pruned model or fine-tuned model. For EMOFP, the fine-tuned models
are better than the original model, except in the case where CR is 7.11. Even when the
pruned model only has nine filters, the error after fine-tuning is 0.0136, which is slightly
larger than 0.0122. Moreover, the FLOPs of the pruned model is significantly less than
that of the original model, and the FLOPs of the last pruned model are only 14% of that of

Sensors 2021, 21, 5901 12 of 21

original model. Thus, for the designed Conv1, EMOFP generally has a good performance
for obtaining a lightweight model.

（a）Pareto front of EMFP on Conv1 （b）Pareto front of EMFP on Conv2

（c）Pareto front of EMFP on Conv3 （d）Pareto front of EMFP on Conv4

Figure 3. Pareto fronts of EMFP and scatter plots of fine-tuned solutions on designed models. Subfigure (a–d) mean the
scatter plots on Conv1, Conv2, Conv3 and Conv4, respectively.

Table 3. Pruning results of Conv1 on MNIST. Error p and Error f mean the error of the pruned model before fine-tuning and
the fine-tuned model, respectively. CR means the filter compression ratio of the pruned model.

Model Method Config Remained Filter % Error p Error f Relative Error % CR FLOPs

Conv1

original (64) - - 0.0122 - - 3.21 M

l1
(18) 28.13 0.1846 0.0123 0.82 3.55 0.91 M
(13) 20.31 0.2984 0.0121 −0.82 4.92 0.66 M
(9) 14.06 0.4188 0.0137 12.30 7.11 0.45 M

l2
(18) 28.13 0.1823 0.012 −1.64 3.55 0.91 M
(13) 20.31 0.3355 0.0122 0 4.92 0.66 M
(9) 14.06 0.4716 0.0136 11.48 7.11 0.45 M

EMOFP
(18) 28.13 0.05 0.0118 −32.79 3.55 0.91 M
(13) 20.31 0.0523 0.012 −1.64 4.92 0.66 M
(9) 14.06 0.156 0.0136 11.48 7.11 0.45 M

Sensors 2021, 21, 5901 13 of 21

Secondly, Figure 3b shows the Pareto front of EMFP on Conv2. From the figure, we
can deduce that EMFP obtains a series of uniform trade-off solutions, and their errors are
acceptable. The remained filter ratios of these solutions are in the range of [0.15 0.5] which
satisfy the setting of parameters δ1 and δ2, and their maximum error is approximately
0.25—which is acceptable and can become very small by fine-tuning. More detailed results
on Conv2 are presented in Table 4. The difference with the results of Conv1 is that the
comparison methods consist of l1-global, l1-layer, l2-global and l2-layer. From the table, we
can deduce that the configuration and error of the original model are (32, 64) and 0.0083,
respectively, and all the methods prune the model with three different filter compression
ratios: 2.04, 3.31 and 5.65. Although their CRs are the same, the detailed pruning schemes
are different, especially for different pruning ratio assignment strategies. In terms of the
error of the pruned models, the EMOFP can obtain better results than all comparison
methods, except in the case where filter pruning ratio is 2.04, in which case the results of
our method become better and better than those of others with an increasing pruning ratio.
In terms of the error of the fine-tuned model, the results of all methods are similar and
approximate the error of the original model. Moreover, the fine-tuned error of EMOFP is
better than the original one, except for the third pruning scheme, and EMOFP performs
better than comparison methods in most cases.

Table 4. Pruning results of Conv2 on MNIST.

Model Method Config Remained Filter % Error p Error f Relative Error % CR FLOPs

Conv2

original (32, 64) - - 0.0083 - - 842.82 K

l1-global
(20, 27) 48.96 0.0634 0.0081 −0.85 2.04 351.33 K
(15, 14) 30.21 0.4339 0.0095 14.46 3.31 182.23 K

(9, 8) 17.71 0.5497 0.0097 16.87 5.65 104.38 K

l1-layer
(16, 31) 48.96 0.1842 0.0074 −10.84 2.04 400.65 K
(10, 19) 30.21 0.5242 0.008 −3.61 3.31 244.50 K
(6, 12) 17.71 0.5692 0.0099 19.27 5.65 154.50 K

l2-global
(20, 27) 48.96 0.0933 0.008 −3.61 2.04 351.33 K
(15, 14) 30.21 0.2454 0.0086 3.61 3.31 182.23 K

(8, 9) 17.71 0.632 0.0091 9.64 5.65 116.90 K

l2-layer
(16, 31) 48.96 0.1841 0.0075 −9.64 2.04 400.65 K
(10, 19) 30.21 0.2291 0.0074 −10.84 3.31 244.50 K
(6, 12) 17.71 0.6058 0.0101 21.69 5.65 154.50 K

EMOFP
(12, 35) 48.96 0.1001 0.0073 −12.05 2.04 449.38 K
(10, 19) 30.21 0.1005 0.0077 −7.23 3.31 244.50 K
(8, 9) 17.71 0.2491 0.0098 18.07 5.65 116.90 K

Thirdly, the comparison results and the Pareto front are shown in Table 5 and Figure 3c.
The Pareto front of EMFP on Conv3 is not very smooth but uniformly distributed. From
the figure, we can deduce that the remaining filter ratio is in the range of [0.24 0.42] and
their error is in the range [0.1 0.6]. Generally, the results of EMFP are not bad; however, the
range of the pruning ratio is a little small, especially for high pruning ratio solutions. From
Table 5, it is well known that EMOFP is always better than the four comparison methods
regardless of the pruning scheme. The configuration of the original model is (16, 32, 64),
which has 112 filters in total, and the filter’s number of pruned models is approximately 45,
34 and 27, respectively. It is worth noting that the pruned configuration will be 46, 34 and 28
when the pruning ratio assignment is layer-wise. The error of the original model is 0.0071,
and the error of the final models of all methods are worse than that of original model,
although our method performed better than the comparison methods. However, the errors
of the final models are perfectly acceptable, even in terms of the filter compression ratio
which is maximum 4.15, and the maximum error of our pruned model is 0.0104. When

Sensors 2021, 21, 5901 14 of 21

comparing the error of the pruned model which is not fine-tuned, the error of EMOFP
is obviously smaller than that of the comparison methods, which reveals that EMOFP is
better than the comparison methods on Conv3. When we focus on the FLOPs of the pruned
model, EMOFP certainly obtains a lightweight model which only has approximately 20%
of the FLOPs of the original model.

Table 5. Pruning results of Conv3 on MNIST.

Model Method Config Remained Filter % Error p Error f Relative Error % CR FLOPs

Conv3

original (16, 32, 64) - - 0.0071 - - 196.39 K

l1-global
(16, 17, 12) 40.18 0.3622 0.0086 21.13 2.49 39.07 K
(16, 15, 3) 30.36 0.677 0.0168 136.62 3.29 14.90 K
(15, 11, 1) 24.11 0.8716 0.0407 473.24 4.15 8.31 K

l1-layer
(7, 13, 26) 41.07 0.4395 0.0086 21.13 2.43 70.32 K
(5, 10, 19) 30.36 0.5054 0.0105 47.89 3.29 50.75 K
(4, 8, 16) 25 0.7272 0.0109 53.52 4 42.38 K

l2-global
(16, 17, 12) 40.18 0.2142 0.0087 22.54 2.49 39.07 K
(16, 12, 6) 30.36 0.4856 0.0137 92.96 3.29 21.43 K
(15, 10, 2) 24.11 0.7025 0.0205 188.73 4.15 10.51 K

l2-layer
(7, 13, 26) 41.07 0.5695 0.0084 19.31 2.43 70.32 K
(5, 10, 19) 30.36 0.62 0.0111 56.34 3.29 50.75 K
(4, 8, 16) 25 0.615 0.0113 59.15 4 42.38 K

EMOFP
(8, 13, 24) 40.18 0.1014 0.008 12.68 2.49 65.75 K
(7, 10, 17) 30.36 0.1867 0.0084 18.31 3.29 46.18 K
(3, 9, 15) 24.11 0.5989 0.0104 46.48 4.15 40.10 K

Finally, we present comparison results and Pareto front on Conv4 in Table 6 and
Figure 3d, respectively. In Figure 3d, the Pareto front of EMFP on Conv4 is not very good
the because the front is not smooth enough and the range of remaining filter ratio is not
wide enough. The smallest pruned model has kept over 30% filters, and the error of this
model is approximately 0.8 before fine-tuning. Meanwhile, the biggest pruned model has
kept approximately 55% filters, and the error of this model is approximately 0.1. Detailed
comparison results are in Table 6. It is well known that the original model has 176 filters in
total with the configuration of (16, 32, 64, 64), and its error is 0.0065. Although the detailed
configuration of pruned models with different methods is different, the filter’s number
of each model with the same pruning ratio is similar, and they are approximately 97, 80
and 60, respectively. Moreover, the filter compression ratios of our method are 1.81, 2.2
and 2.93, respectively. Compared to the original model, the performances of all fine-tuned
models are worse than that of the original model, although the their error is also acceptable,
especially for models of EMOFP, where the biggest error of our fine-tuned model is only
0.0093. In terms of the error of the pruned model, EMOFP performs much better than the
comparison methods. For the second pruning ratio, the error of EMOFP is 0.1867 while the
best result of the comparison methods is 0.4856. Obviously, EMOFP can prune over 70%
filters of Conv4 with little performance loss, and perform better than comparison methods
in general. Moreover, the average FLOPs of the pruned models are approximately 20%
those of the original model, which reveals that EMOFP can obtain a lightweight model
with acceptable performance.

From these results on four designed models, we can make sure that EMOFP provides
a series of efficient different trade-off solutions and has better performance than the com-
parison methods. Moreover, we can also know that with the depth of increasing depth of
the model, the pruning performance decreases. For four Pareto fronts, the Pareto fronts
of Conv1 and Conv2 are better than those of Conv3 and Conv4. It is well known that the
filter pruning problem dimension is increasing while the model becomes increasingly deep.

Sensors 2021, 21, 5901 15 of 21

Therefore, the difficulty of the pruning problem is increased. For example, the pruning
problem dimensions of four designed models are 64, 96, 112 and 176. Furthermore, the
number of filters of each layer is also a restricted condition for optimization, which will
be complex due to the increasing number of layers. It is therefore increasingly difficult to
find solutions with a large filter pruning ratio, and the results show that the biggest filter
compression ratio decreases when the model becomes complex. Moreover, the FLOPs of
our pruned models are less obvious than those of the original model, although the FLOPs
of EMOFP are not the most competitive. This is because our EMOFP is only optimized
for the number of filters and does not take FLOPs into account. Generally, EMOFP surely
obtains a lightweight model with acceptable performance.

Table 6. Pruning results of Conv4 on MNIST.

Model Method Config Remained Filter % Error p Error f Relative Error % CR FLOPs

Conv4

original (16, 32, 64, 64) - - 0.0065 - - 139.05 K

l1-global
(16, 30, 37, 14) 55.11 0.5102 0.0079 21.54 1.81 44.38 K
(16, 30, 27, 7) 45.45 0.7952 0.0109 67.69 2.2 31.27 K
(16, 26, 15, 3) 34.09 0.9152 0.0276 324.62 2.93 18.94 K

l1-layer
(9, 18, 35, 35) 55.11 0.4502 0.008 23.08 1.81 48.00 K
(7, 15, 29, 29) 45.45 0.5451 0.009 38.46 2.2 34.98 K
(6, 11, 22, 22) 34.66 0.7669 0.0252 287.69 2.89 22.56 K

l2-global
(16, 32, 38, 11) 55.11 0.6379 0.0099 52.31 1.81 44.30 K
(16, 29, 30, 5) 45.45 0.6235 0.013 1 2.2 30.85 K
(16, 24, 19, 1) 34.09 0.9066 0.2965 4461.54 2.93 18.57 K

l2-layer
(9, 18, 35, 35) 55.11 0.4294 0.0081 24.62 1.81 48.00 K
(7, 15, 29, 29) 45.45 0.577 0.0079 21.54 2.2 34.98 K
(6, 11, 22, 22) 34.66 0.7596 0.0108 66.15 2.89 22.56 K

EMOFP
(8, 19, 34, 36) 55.11 0.1086 0.0082 26.15 1.81 48.32 K
(9, 13, 28, 30) 45.45 0.1793 0.0086 32.31 2.2 34.19 K
(5, 9, 24, 22) 34.09 0.6199 0.0093 43.08 2.93 22.49 K

4.3.2. Results on LeNet

In this part, we will show the experimental results on LeNet, which is one of the
most familiar convolutional neural networks. Firstly, we plot the Pareto front of EMFP
and the fitness of the fine-tuned models corresponding to Pareto solutions in Figure 4. In
Figure 4a, the blue circle dot means the solution of EMFP and the red square dot denotes
the solution after fine-tuning. It is well known that EMFP can obtain a very good Pareto
front for which the ranges of the remained filter ratio and error are both in [0, 0.7] and
the Pareto front is smooth and uniformly distributed. Moreover, as the errors of models
after fine-tuning are all below 0.1, it is difficult to observe the change in these solutions in
Figure 4a. In order to show them to be more precise, we plot a separate scatter figure in
Figure 4b. From Figure 4b, we can know that the distribution of fine-tuned solutions is
approximate to Pareto distribution. The maximum error of obtained fine-tuned models
is approximately 0.054 with the remaining filter ratio of 0.08. Furthermore, the minimum
error is approximately 0.0085 while the remained filter ratio is approximately 0.667.

The comparison results on LeNet are presented in Table 7. The configuration and error
of the used LeNet are (8, 16) and 0.0095, respectively. For EMOFP and the comparison
filter pruning methods, the minimum filter compression ratio is 1.5 when the number of
remaining filters is 16, and the maximum filter compression ratio is 12 when only two filters
remain. For global pruning ratio assignment methods, the l1-layer and l2-layer, they cannot
generate a normal convolutional neural network because there is no filter in the second
convolutional layer. In terms of the error of the pruned model which is not fine-tuned,
EMOFP is much better than all comparison methods, especially with the increasing filter

Sensors 2021, 21, 5901 16 of 21

pruning ratio. Moreover, in terms of the error of the fine-tuned model, EMOFP is also
better than all comparison methods, where the errors of three different pruning schemes of
EMOFP are 0.0085, 0.0106 and 0.0541, respectively. It is well known that EMOFP obtained a
series of valuable different trade-off pruning solutions, and that their FLOPs of are greatly
less than that of the original model.

(a) Pareto fronts after EMFP and fine-tuning (b) Pareto front after fine-tuning

Figure 4. Pareto front of EMFP and scatter plot of fine-tuned solutions on LeNet.

Table 7. Pruning results of LeNet on MNIST.

Model Method Config Remained Filter % Error p Error f Relative Error % CR FLOPs

LeNet

original (8, 16) - - 0.0095 - - 90.09 K

l1-global
(7, 9) 66.67 0.0585 0.0091 −4.21 1.5 59.91 K
(7, 2) 37.5 0.4898 0.0171 80 2.67 30.58 K
(2, 0) 8.33 - - - - -

l1-layer
(5, 11) 66.67 0.0464 0.0091 −4.21 1.5 67.09 K
(3, 6) 37.5 0.5573 0.0141 48.42 2.67 45.94 K
(1, 1) 8.33 0.8472 0.0585 515.79 12 25.79 K

l2-global
(7, 9) 66.67 0.0325 0.0086 −9.47 1.5 59.91 K
(6, 3) 37.5 0.4698 0.02 110.53 2.67 34.57 K
(2, 0) 8.33 - - - - -

l2-layer
(5, 11) 66.67 0.0486 0.0089 −6.32 1.5 67.09 K
(3, 6) 37.5 0.4066 0.0121 27.37 2.67 45.94 K
(1, 1) 8.33 0.8565 0.0722 660 12 25.79 K

EMOFP
(6, 10) 66.67 0.02 0.0085 −10.53 1.5 63.55 K
(4, 5) 37.5 0.1054 0.0106 11.58 2.67 42.25 K
(1, 1) 8.33 0.6915 0.0541 469.47 12 25.79 K

Sensors 2021, 21, 5901 17 of 21

4.3.3. Results on AlexNet

AlexNet was the deepest convolutional neural network used to examine the perfor-
mance of EMOFP in the experimental studies. Furthermore, the detailed experimental
results are shown in Figure 5 and Table 8. Firstly, we plot the Pareto front of EMFP and
scatter plot of fine-tuned models in Figure 5. In Figure 5a, the blue circle dot means the
solution of EMFP and the red square dot denotes the solution after fine-tuning. The Pareto
front of EMFP is approximate to a line, and the errors of Pareto solutions are not small
where all of them are greater than 0.5. Moreover, the range of the remaining filter ratio is
[0.1 0.55], which is a little narrow. From the Pareto front, we can deduce that our EMFP
can provide a series of trade-off pruned models but it suffers some difficulties of higher
dimension optimization. In order to analyze the final performance of these models, we also
scatter plot the fine-tuned model in Figure 5a and separately show it in Figure 5b. It is well
known that the distribution of fine-tuned solutions is approximate to Pareto distribution,
and the error of a fine-tuned model is in range of 0.15–0.21. All of them are worse than the
original AlexNet. In total, EMOFP does not perform as well on AlexNet as it did before
from Figure 5.

We present a detailed comparison of the results on AlexNet in Table 8. The filter
configuration of the original AlexNet is (24, 64, 96, 96, 64) and the number of filters is 344
in total. Furthermore, the error of the original AlexNet is 0.0996. The comparison methods
consist of norm-based filter pruning [13], average percentage of zeros (APoZ) [15], soft filter
pruning (SFP) [16] and ThiNet [17], where APoZ and SFP are implemented on one-shot
pruning framework and ThiNet belongs to iterative pruning. From Table 8, under the
condition of a similar pruned model (pruning approximately 60% filters), the performance
of EMOFP is not bad but just worse than SFP and ThiNet. Specifically, the configuration
of the pruned model with EMOFP is (9, 20, 39, 43, 24), while that of most of comparison
methods is (10, 25, 38, 38, 25), because these comparisons use the same layer pruning ratio.
Norm-based filter pruning methods are obviously worse than others due to the rough
filter importance estimation. SFP pruning filters, while training the model, could update
the weights in time. ThiNet applies an iterative pruning framework which usually works
better. For a one-shot pruning method, EMOFP achieves the error of 0.1794 on AlexNet,
which is acceptable. Moreover, the FLOPs of our pruned model are only half those of
the original model, because there are a lot of FLOPs in fully connected layers which are
not pruned.

(a) Pareto fronts after EMFP and fine-tuning (b) Pareto front after fine-tuning

Figure 5. Pareto front of EMFP and scatter plot of fine-tuned solutions on AlexNet.

Sensors 2021, 21, 5901 18 of 21

Table 8. Comparison of the pruning results of AlexNet on CIFAR10.

Model Method Config Remained Filter % Error Relative Error % CR FLOPs

AlexNet

original (24, 64, 96, 96, 64) - 0.0996 - - 11.67 M

l1-global [13] (24, 53, 40, 14, 4) 39.24 0.252 153.01 2.55 2.93 M
l1-layer [13] (10, 25, 38, 38, 25) 39.53 0.186 86.75 2.53 5.58 M

l2-global [13] (24, 51, 42, 14, 4) 39.24 0.2232 124.10 2.55 2.92 M
l2-layer [13] (10, 25, 38, 38, 25) 39.53 0.1846 85.34 2.53 5.58 M

APoZ [15] (10, 25, 38, 38, 25) 39.53 0.1801 80.82 2.53 5.58 M

SFP [16] (10, 25, 38, 38, 25) 39.53 0.1735 73.90 2.53 5.58 M

ThiNet [17] (10, 25, 38, 38, 25) 39.53 0.1612 61.85 2.53 5.58 M

EMOFP (9, 20, 39, 43, 24) 39.24 0.1794 80.12 2.55 5.44 M

4.4. Fine-Tuning with Shared Weights or Randomly Initial Weights

From the experimental results, we observed that the performances of fine-tuned
models have some differences although they have the same model structure. The difference
between these pruned models before fine-tuning is their weights. Therefore, in this part,
we explore the influence of different weights on the pruned model to analyze that the
purpose of pruning is searching a suitable lightweight model structure or a pre-trained
model which only needs to be fine-tuned. In this experiment, we rebuilt the model with
random initialized weight parameters according to the configuration of the pruned model.
The experimental results are shown in Table 9.

From Table 9, there are two models, Conv2 and Conv3, used to examine the difference
between the two different ways of giving the weights of a pruned model. For each model,
we select 10 different pruning solutions and sort them with the error of the pruned model
without fine-tuning ascending. Comparing Error rf and Error sf, which are the errors
of the fine-tuned model with random initialized weights and shared original weights,
respectively, we can know that Error sf is always less than Error rf for all pruned models,
whether it is Conv1 and Conv2. This reveals that sharing original weights is better than
random initialized weights. Therefore, our pruning method not only searches for a suitable
lightweight model structure but also provides suitable initial weights of the lightweight
model, therefore simple fine-tuning can obtain a lightweight and well-performing model.

4.5. Practical Example of Cat and Dog Classification

In order to exam the performance of the proposed method, we provided a simple
practical example about cat and dog classification. Firstly, we randomly selected 1000 cat
images and 1000 dog images as training samples, and each RGB image with the shape of
150× 150× 3. Moreover, the test dataset consists of 500 cat images and 500 dog images
with the same shape of the training sample. Secondly, we designed a deep convolutional
neural network as a cat and dog classifier with four convolutional layers and two fully
connected layers, in which the filter size was 3× 3 and the number of neurons in the fully
connected layers was 512 and 1. A detailed configuration and pruning results are shown in
Table 10. From the results of EMOFP for cat and dog classification, it is well known that the
proposed method can potentially enhance the previous model. For example, seven of the
nine pruned models have better accuracy than the original classifier and the configuration
of all nine pruned models is simpler.

Sensors 2021, 21, 5901 19 of 21

Table 9. Pruning results with different fine-tuning strategies on Conv2 and Conv3. Error p means
the error of pruned model which is not fine-tuned, and Error sf and Error rf mean the error of the
fine-tuned model with random initialized weight and shared original weight, respectively.

Model Solution No. Remained Filter % Error p Error rf Error sf

Conv2

1 0.4896 0.1001 0.0101 0.0073
2 0.3854 0.1002 0.0095 0.0079
3 0.3125 0.1004 0.009 0.0086
4 0.3021 0.1005 0.0103 0.0077
5 0.2917 0.1007 0.0103 0.0081
6 0.2708 0.101 0.0101 0.0089
7 0.2396 0.1062 0.0097 0.0088
8 0.2188 0.1408 0.0106 0.0106
9 0.2083 0.1909 0.0106 0.0095

10 0.1771 0.2491 0.0118 0.0098

Conv3

1 0.4107 0.1001 0.0104 0.01
2 0.4018 0.1014 0.0102 0.008
3 0.3929 0.1047 0.012 0.0097
4 0.3839 0.1507 0.0108 0.0093
5 0.3125 0.1634 0.0115 0.0086
6 0.3036 0.1867 0.0096 0.0084
7 0.2946 0.2847 0.0108 0.0088
8 0.2857 0.3038 0.0119 0.0095
9 0.2589 0.4949 0.0128 0.011

10 0.2411 0.5989 0.0147 0.0104

Table 10. Pruning results of EMOFP for cat and dog classification. Solution No. 0 means the
information of original CNN classifier.

Solution No. Configuration of Filters Accuracy

0 (32, 64, 128, 128) 0.8150
1 (18, 27, 65, 59) 0.8356
2 (18, 26, 54, 54) 0.8312
3 (14, 25, 41, 37) 0.8003
4 (19, 28, 45, 43) 0.8254
5 (18, 32, 70, 63) 0.8434
6 (20, 33, 55, 51) 0.8454
7 (16, 27, 32, 43) 0.8157
8 (13, 26, 35, 40) 0.8125
9 (15, 29, 45, 39) 0.8293

5. Conclusions and Future Works

In this paper, we proposed an evolutionary multi-objective one-shot filter pruning
method to design a lightweight convolutional neural network. Firstly, EMOFP is no
longer an iterative pruning method and only needs to perform pruning and fine-tuning
once. Secondly, a multi-objective filter pruning problem was established, which consists
of two objective functions and represents the filter pruning ratio and the accuracy of the
pruned model. Thirdly, we used a NSGA-II-based evolutionary multi-objective algorithm
to solve the above filter pruning problem and obtain a series of different trade-off pruning
solutions. Finally, K-pruned models were uniformly selected for fine-tuning to promote
their performance. Therefore, EMOFP provides a series of different trade-off pruned
models instead of a pruned model. Experimental studies of four designed models and
two famous models demonstrated that our method can efficiently prune filters to obtain
a lightweight convolutional neural network. Compared with the l1-norm and l2-norm-

Sensors 2021, 21, 5901 20 of 21

based one-shot filter pruning methods, EMOFP performs better than these comparison
methods most of the time, especially for comparing the error of pruned model before fine-
tuning, as our method is always much better than all comparison methods. Moreover, we
discussed whether the purpose of pruning is to obtain a lightweight network structure or a
lightweight network with shared weights. By comparing the model performance of random
initial weights and shared weights, shared weights always lead to better performance.
Therefore, model pruning not only searches a suitable lightweight model structure but also
provides suitable initial weights of the pruned model.

There are still some unresolved issues in this paper: for example, the pruning perfor-
mance of a larger model is decreased because of the increasing difficulty in optimization.
Therefore, in future work, we want to explore more efficient optimization strategies for
very deep convolutional neural network filter pruning.

Author Contributions: Conceptualization, T.W. and J.S.; methodology, T.W.; software, T.W.; val-
idation, T.W. and N.L.; formal analysis, T.W.; investigation, T.W.; resources, X.Z. and N.L.; data
curation, X.Z. and J.S.; writing—original draft preparation, T.W.; writing—review and editing, J.S.;
visualization, X.Z.; supervision, D.Z.; project administration, D.Z.; funding acquisition, D.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
62076204), the National Natural Science Foundation of Shaanxi Province (Grant Nos. 2018JQ6003
and 2018JQ6030) and the China Postdoctoral Science Foundation (Grantnos. 2017M613204 and
2017M623246).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
3. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
4. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

5. Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Penn, G. Applying convolutional neural networks concepts to hybrid NN-HMM
model for speech recognition. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 4277–4280.

6. Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural networks for speech recognition.
IEEE Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [CrossRef]

7. Park, S.R.; Lee, J. A fully convolutional neural network for speech enhancement. arXiv 2016, arXiv:1609.07132.
8. Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016,

arXiv:1605.07678.
9. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.; De Freitas, N. Predicting parameters in deep learning. arXiv 2013, arXiv:1306.0543.
10. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A survey of model compression and acceleration for deep neural networks. arXiv 2017,

arXiv:1710.09282.
11. Blalock, D.; Ortiz, J.J.G.; Frankle, J.; Guttag, J. What is the state of neural network pruning? arXiv 2020, arXiv:2003.03033.
12. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. arXiv 2015,

arXiv:1506.02626.
13. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
14. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.
15. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep

architectures. arXiv 2016, arXiv:1607.03250.

http://doi.org/10.1038/nature14539
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TASLP.2014.2339736

Sensors 2021, 21, 5901 21 of 21

16. He, Y.; Kang, G.; Dong, X.; Fu, Y.; Yang, Y. Soft filter pruning for accelerating deep convolutional neural networks. arXiv 2018,
arXiv:1808.06866.

17. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5058–5066.

18. Cun, Y.L.; Denker, J.S.; Solla, S.A. Optimal brain damage. In Advances in Neural Information Processing Systems 2; Touretzky, D.S.,
Ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1990; pp. 598–605. Available online: https://dl.acm.org/doi/10
.5555/109230.109298 (accessed on 29 August 2021).

19. Hassibi, B.; Stork, D.G. Second Order Derivatives for Network Pruning: Optimal Brain Surgeon; Morgan Kaufmann: Burlington, MA,
USA, 1993; pp. 164–171.

20. Castellano, G.; Fanelli, A.M.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural
Netw. 1997, 8, 519–531. [CrossRef]

21. Wu, T.; Li, X.; Zhou, D.; Li, N.; Shi, J. Differential Evolution Based Layer-Wise Weight Pruning for Compressing Deep Neural
Networks. Sensors 2021, 21, 880. [CrossRef]

22. Lee, N.; Ajanthan, T.; Torr, P.H. SNIP: Single-shot network pruning based on connection sensitivity. arXiv 2018, arXiv:1810.02340.
23. Srinivas, S.; Babu, R.V. Data-free parameter pruning for deep neural networks. arXiv 2015, arXiv:1507.06149.
24. Frankle, J.; Carbin, M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. arXiv 2018, arXiv:1803.03635.
25. Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; Kautz, J. Importance Estimation for Neural Network Pruning. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11264–11272.
26. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the value of network pruning. arXiv 2018, arXiv:1810.05270.
27. Hanson, S.J.; Pratt, L.Y. Comparing Biases for Minimal Network Construction with Back-Propagation. Available online: https:

//proceedings.neurips.cc/paper/1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf (accessed on 29 August 2021).
28. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. arXiv 2016, arXiv:1608.03665.
29. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
30. Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol.

Comput. 2004, 8, 256–279. [CrossRef]
31. Reyes-Sierra, M.; Coello, C.C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int. J. Comput. Intell.

Res. 2006, 2, 287–308.
32. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,

11, 712–731. [CrossRef]
33. Li, L.; Yao, X.; Stolkin, R.; Gong, M.; He, S. An evolutionary multiobjective approach to sparse reconstruction. IEEE Trans. Evol.

Comput. 2014, 18, 827–845.
34. Gong, M.; Liu, J.; Li, H.; Cai, Q.; Su, L. A multiobjective sparse feature learning model for deep neural networks. IEEE Trans.

Neural Netw. Learn. Syst. 2015, 26, 3263–3277. [CrossRef] [PubMed]
35. Liu, J.; Gong, M.; Miao, Q.; Wang, X.; Li, H. Structure learning for deep neural networks based on multiobjective optimization.

IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2450–2463. [CrossRef] [PubMed]
36. Gong, M.; Li, H.; Meng, D.; Miao, Q.; Liu, J. Decomposition-Based Evolutionary Multi-objective Optimization to Self-paced

Learning. IEEE Trans. Evol. Comput. 2018, 23, 288–302. [CrossRef]
37. Wu, T.; Shi, J.; Jiang, X.; Zhou, D.; Gong, M. A multi-objective memetic algorithm for low rank and sparse matrix decomposition.

Inf. Sci. 2018, 468, 172–192. [CrossRef]
38. Lu, Z.; Deb, K.; Goodman, E.; Banzhaf, W.; Boddeti, V.N. NSGANetV2: Evolutionary multi-objective surrogate-assisted neural

architecture search. In Computer Vision—ECCV 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 35–51.
39. Yang, Z.; Wang, Y.; Chen, X.; Shi, B.; Xu, C.; Xu, C.; Tian, Q.; Xu, C. CARS: Continuous evolution for efficient neural architecture

search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June
2020; pp. 1829–1838.

40. Wu, T.; Shi, J.; Zhou, D.; Lei, Y.; Gong, M. A Multi-objective Particle Swarm Optimization for Neural Networks Pruning.
In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019;
pp. 570–577.

41. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

42. Blank, J.; Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [CrossRef]
43. Keras. Available online: https://keras.io/getting_started/faq/ (accessed on 29 August 2021).

https://dl.acm.org/doi/10.5555/109230.109298
https://dl.acm.org/doi/10.5555/109230.109298
http://dx.doi.org/10.1109/72.572092
http://dx.doi.org/10.3390/s21030880
https://proceedings.neurips.cc/paper/1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2004.826067
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TNNLS.2015.2469673
http://www.ncbi.nlm.nih.gov/pubmed/26340790
http://dx.doi.org/10.1109/TNNLS.2017.2695223
http://www.ncbi.nlm.nih.gov/pubmed/28489552
http://dx.doi.org/10.1109/TEVC.2018.2850769
http://dx.doi.org/10.1016/j.ins.2018.08.037
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/ACCESS.2020.2990567
https://keras.io/getting_started/faq/

	Introduction
	Background and Related Work
	Neural Network Pruning
	Evolutionary Multi-Objective Optimization

	Methodology
	Framework of EMOFP
	Multi-Objective Filter Pruning Model
	Evolutionary Multi-Objective Filter Pruning Algorithm
	Fine-Tuning Strategy
	Computational Complexity of EMOFP

	Experimental Studies
	Description of Model Variants and Datasets
	Experimental Setting
	Experimental Results Presentation and Analysis
	Results on Designed Models
	Results on LeNet
	Results on AlexNet

	Fine-Tuning with Shared Weights or Randomly Initial Weights
	Practical Example of Cat and Dog Classification

	Conclusions and Future Works
	References

