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Abstract: Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia
which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary
syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in
infants and the elderly. Here, based on a comprehensive review of the scientific literature related to
the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic
mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host
cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of
macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory
quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk
or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent
M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported,
including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving
M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This
narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection
and highlights the relevant vaccines that have been developed and their reported effectiveness.

Keywords: Mycoplasma pneumonia; virulence factors; pathogenesis; whole-cell vaccine; subunit
vaccines; DNA vaccines; live vector vaccines

1. Introduction

Community-acquired pneumonia (CAP) is associated with high morbidity and mor-
tality, and the disease is also a major threat to public health worldwide [1]. About 8–40% of
CAP in children admitted to hospitals were caused by Mycoplasma pneumoniae [2–4]. Based
on the reported cases in China, M. pneumoniae infections accounted for 19.2% of all CAP
cases in adults, and the prevalence of CAP in children and teenagers, ranged from 10% to
30% [1,5]. In the USA, a recent study of 2254 hospitalized children with CAP showed that
8% children with median age of 7 years were positive for M. pneumoniae by polymerase
chain reaction (PCR) [6].

Airborne droplets containing M. pneumoniae can be transmitted and spread among
people through coughing and sneezing. M. pneumoniae causes both upper and lower
respiratory tract infections, and in most cases the clinical symptoms are non-specific [7].
Tracheobronchitis is the most common type of lower respiratory infection, the incidence of
which is about 20 times that of pneumonia, and 10–40% of respiratory tract infections caused
by M. pneumoniae will eventually develop into pneumonia [8]. While most pneumonia
caused by M. pneumoniae (MPP) cases are benign, some cases may develop into severe
pneumonia and refractory pneumonia with pleural effusion, multi-organ dysfunction,
and serious long-term sequelae, including bronchiolitis obliterans and bronchiectasis [9].
Although CAP is the most significant disease caused by M. pneumoniae, the pathogen is
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known to cause upper respiratory tract infections. Pharyngitis is commonly reported while
rhinosinusitis and otitis media are less frequently encountered in upper respiratory tract
infections caused by M. pneumoniae [7].

M. pneumoniae respiratory infections are associated with asthma exacerbation during
which patients will suffer from a combination of symptoms including sudden or progres-
sive coughing, respiratory distress, wheezing or chest pain [10,11]. The onset of asthma is
due to the release of Mycoplasma-mediated cytokine in infected patients [12]. Respiratory
infections caused by M. pneumoniae are also associated with a wide array of extrapulmonary
manifestations such as meningoencephalitis, myocarditis, nephritis, atherosclerosis and
mucocutaneous eruptions, etc. [13–17]. More importantly, M. pneumoniae induces mucocuta-
neous diseases include Stevens-Johnson syndrome and M. pneumoniae-associated mucositis.
These mucocutaneous diseases are frequently associated with systemic inflammation and
higher risk of the occurrence of long-term sequelae [18–21].

Due to the atypical symptoms produced during M. pneumoniae infection, pneumonia
can be underestimated during the early stage of infection. There are no distinctive clinical
or radiographic features in patients with M. pneumoniae infections, so laboratory diagnosis
mainly based on rapid culture of throat swab specimens, PCR and serological assays.
Furthermore, enzyme-linked immunosorbent assays (ELISA) detecting the N-terminal
fragment of P116 protein and the C-terminal region of P1 protein both hold promise for
serodiagnosis [22,23]. The IgM ELISA assays based on the short recombinant P116 and P1
proteins were shown to improve the specificity of the immunodiagnostic assay [22].

Although M. pneumoniae infection is generally self-limiting and does not require
antibiotic treatment, patients of all age groups can develop severe, life-threatening or
extrapulmonary diseases [24]. Antibiotics such as tetracycline and fluoroquinolone have
been reported to be effective in eliminating M. pneumoniae infections [25] but tetracyclines
cause discoloration of bones and teeth in young children. Fluoroquinolones can also affect
the muscle, joint and tendon. Instead, macrolides, which have fewer side effects, have
been the drug of choice for treating M. pneumoniae infection in past years [26]. More
worrisome is that the extensive use of macrolides in China has led to a particularly high
rate of macrolide resistance in this organism (69%~95%) [27]. The emergence of antibiotic
resistance represents another challenge regarding the treatment of M. pneumoniae infections.
Failure in antibiotic treatment has caused an increase in mortality rate during recent
years [28]. Although the clinical outcomes of infections caused by macrolide-susceptible
and -resistant M. pneumoniae isolates are not significantly different, patients infected with
macrolide-resistant isolates had a longer febrile period (1.71 days), length of hospital stay
(1.61 day), antibiotic drug courses (2.93 days), and defervescence time after macrolide
treatment (2.04 days) compared to patients infected with macrolide-sensitive isolates [29].
Furthermore, macrolide-resistant strains may be associated with more extrapulmonary
complications, and severe clinical and radiological features [24,30]. Hence, the development
of vaccines against M. pneumoniae infections is a potential solution for the prevention of
infections caused by the pathogen.

2. Virulence and Pathogenesis of M. pneumoniae

M. pneumoniae encodes a variety of virulence factors, which include adhesins, glycol-
ipids, toxic metabolites, community-acquired respiratory distress syndrome (CARDS) toxin,
and capsular polysaccharides. Table 1 summarizes the key virulence factors associated
with M. pneumoniae.
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Table 1. Key virulence factors of M. pneumoniae.

Pathogenic
Mechanism Virulence Factor Gene

Annotation Reference

Adherence

P1 MPN141 [31]
P30 MPN453 [32,33]

P40 (Protein C) MPN142 [34]
P90 (Protein B) MPN142 [34]

P200 MPN567 [35]
Hypothetical protein HMW1-3 (high

molecular weight) MPN447/310/452 [36]

P116 MPN213 [36]
P65 MPN309 [37]

Elongation factor thermo unstable (EF-Tu) MPN665 [38–40]
Pyruvate dehydrogenase subunit B MPN392 [41]

Glycolytic enzymes enolase MPN606 [41,42]
TopJ MPN119 [43]

Immune
evasion

Nuclease MPN491 [44]
Immunoglobin binding protein (IbpM) MPN400 [45]

Inflammation
injury

H2O2 / [46]
Reactive oxygen species (ROS) / [46]

H2S / [47]
HapE enzyme MPN487 [47,48]
Oxidase GlpO MPN051 [49]

Membrane lipids / [50]
Membrane lipoproteins / [51]

Capsular materials / [52]

Cytotoxicity
Community-Acquired Respiratory
Distress Syndrome (CARDS) toxin MPN372 [53,54]

Cytotoxic nuclease MPN133 [55]

Gliding motility

P65 MPN309 [37]
P30 MPN453 [32]

Hypothetical protein MPN387 MPN387 [56]
P24 MPN312 [57]
P41 MPN311 [57]

2.1. Adhesins

M. pneumoniae attaches to epithelial cell surfaces with a high affinity for human respira-
tory epithelial cells. The pathogen has no cell wall and colonizes the respiratory tract via its
specific attachment organelle, which is a protrusion at one end of the Mycoplasma pneumo-
niae cell (Figure 1). The attachment organelle consists of internal and surface structures [58].
The internal structure is made up of a dumbbell-shaped terminal button consisting of three
protein molecules (HMW2, HMW3, and P65), paired plates (HMW1, HMW2, CpsG, and
HMW3), and a bowl complex (Lon, P24, TopJ, P200, P41, MPN387, and HMW2). The Nap
structure in the surface adhesion complex consists of the main adhesins (P1 and P30) and
accessory proteins (P40 and P90) surrounding the cell membrane (Figure 1). During gliding,
the force generated at the bowl complexes is transmitted through the paired plates and
reaches the P1 adhesin complex [58]. P30 adhesin is a membrane protein at the distal end
of the attachment organelle, required for cytoadherence, gliding motility and stabilization
of the accessory protein P65 [33]. Interaction of the M. pneumoniae attachment organelle
with the host’s respiratory epithelium induces cytoskeleton rearrangement in the host cell,
which promotes intracellular delivery of the pathogen [59,60].
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Figure 1. Component proteins of the internal structure of attachment organelle and proposed
mechanism of movements for gliding in M. pneumoniae. HMW1, HMW2, and HMW3 refer to three
high molecular weight (HMW) proteins. The force is generated at the bowl complexes, transmitted
through the paired plates, and reaches the P1 adhesin complex in the direction of the yellow arrow.
(Based on ideas from Nakane, et al. [58]). Copyright: ©2015. Public Library of Science. Creative
Commons Attribution License and disclaimer available from: http://creativecommons.org/licenses/
by/4.0/.

The host receptors for M. pneumoniae are sialylated glycoproteins on the respiratory
epithelium. The nature and density of host receptor moieties affect the attachment and
gliding mobility of the pathogen. P1 adhesin binds to both α-2,3 and α-2,6 linkages, but
only the latter type of linkage supports gliding of M. pneumoniae [61].

Attachment and invasion of M. pneumoniae produces direct damage to the host’s
respiratory epithelium [59,62]. Disturbance of carbohydrate metabolism, amino acid intake
and protein synthesis of the host cell results in nutrient depletion [46] Furthermore, the
oxygen radicals generated by the pathogen in the host cell can lead to cilia destruction and
host cell damage [63,64].

2.2. Inflammation Injury

Bacterial cellular components, metabolites and toxins released from M. pneumoniae are
able to induce damage in the host tissues. These include cytotoxicity, oxidative damage,
apoptosis and immune-pathological damage.

2.2.1. Enzymes and Metabolites

The enzyme, HapE, of M. pneumoniae is a virulence factor that can produce H2S by
the desulfurization of cysteine [47,48] which can lead to erythrocyte lysis. This enzyme
mediates inflammatory reactions via adenosine triphosphate (ATP)-sensitive K+ chan-
nels [65]. Oxidation of glycerol by the pathogen produces toxic metabolites [66] including
hydrogen peroxide [67,68] which injures cells by causing inflammation. In addition, the
Ca2+-dependent cytotoxic nuclease (encoded by MPN133) produced by M. pneumoniae can
lead to apoptotic-like programmed cell death in the host.

2.2.2. Lipoproteins

More than 50 different lipoproteins have been identified in M. pneumoniae, many
of them involved in inflammatory reactions [69]. The transcription of M. pneumoniae
lipoprotein genes are regulated in response to changes in environmental conditions (e.g.,
oxidative and acidic stress) [70,71]. The N-terminal region of all the lipoproteins contains

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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a lipid-cysteine structure and these lipoproteins induce inflammation [69]. M. pneumo-
niae lipoproteins can be recognized by toll-like receptor (TLR)1, TLR2 and TLR6, which
stimulate the release of proinflammatory cytokines including tumor necrosis factor (TNF)-
α, interleukin (IL)-1β, IL-6 and other inflammatory mediators via the nuclear factor κB
(NF-κB) pathway [72,73].

2.2.3. Community-Acquired Respiratory Distress Syndrome (CARDS) Toxin

The CARDS toxin encoded by MPN372 is a unique bacterial adenosine diphosphate
(ADP)-ribosylating and vacuolating toxin produced by M. pneumoniae [74,75]. The struc-
ture of CARDS toxin comprises a triangular molecule in which N-terminal mono-ADP
ribosyl-transferase (mART) and C-terminal tandem β-trefoil domains associate to form a
unique overall architecture different from other well-recognized ADP-ribosylating bacterial
toxins [53]. CARDS toxin demonstrates high binding affinity to human surfactant protein
A and annexin A2 when present in the airway epithelia and exhibits specific biological ac-
tivities including mono-ADP ribosylation and vacuolization [53,74]. CARDS toxin binds to
mammalian cell surface receptors and is internalized rapidly in a dose and time-dependent
manner. The internalization process is mediated by clathrin molecules, which form a
molecular scaffold for uptake of CARDS toxin [76]. The toxin is cytotoxic to mammalian
cells by activation of the NLRP3-associated inflammasome and further promotes the release
of IL-1β and IL-18 [77–79]. CARDS toxin increases the expression of the proinflammatory
cytokines IL-1β, IL-6 and TNF-α in a dose- and activity-dependent manner [80]. CARDS
toxin is capable of inducing an allergic-type inflammation in animals [81,82], but there is
no convincing evidence that CARDS toxin is a causal factor of M. pneumoniae-associated
asthma.

2.2.4. Lipids

The cell membrane of M. pneumoniae has a high lipid content (comprising primarily of
the acidic glycerophospholipids phospholipids and cholesterol), which can infiltrate the
host epithelial cells, disrupt the lipid bilayer of the cell membrane and cause leakage of
ionic metabolites [54,55]. Furthermore, some scholars speculate that these lipids may act as
potential TLR4 ligands for binding to TLR4 and elicit macrophage autophagy, eventually
leading to the secretion of proinflammatory cytokines [50,83] and triggering typical host
cell inflammatory responses [50,84].

2.2.5. Capsules

M. pneumoniae has a capsular structure made up of polysaccharides [52] which may
be potential virulence factors and are immunogenic, but its functional role in pathogenesis
remains unclear and needs to be further explored [85–87].

2.3. Immune Evasion

M. pneumoniae has multiple strategies to escape host immune responses in order to
ensure survival of the pathogen. Its survival includes immune evasion which may play
an important role in pathogenesis. Inadequate immune responses against the invading
pathogen results in uncontrolled proliferation and host tissue damage [88].

2.3.1. Molecular Mimicry

The term molecular mimicry can be described simply as “pathogens sharing a structural
relationship with the host are tolerated as self, just like constituents of the host” [2,88,89]. The
immune response targets the pathogen-peptide mimicking the host’s self-antigen, leading to
the activation of naive, autoreactive T-cells specific to the corresponding self-antigen [89]. M.
pneumoniae antigen mimics host cell components, thus the host immune response induced
by the pathogen causes auto-immune responses and injuries to multiple organs [2,90].

The C-terminal region of the P1 and P30 proteins in M. pneumoniae show high levels
of homology to troponin, cytoskeletal proteins, keratin and fibrinogen of the host [46,91].



Pathogens 2021, 10, 119 6 of 18

Antibodies produced in response to M. pneumoniae infections will target various host tissues
and form immune complexes, which aggravates the autoimmune response, leading to
inflammatory injuries in the extrapulmonary tissues [13,46].

2.3.2. IbpM

Immunoglobin binding protein (IbpM) is a surface protein encoded by MPN400 that
binds strongly to various immunoglobulins (IgM, IgG, and IgA) produced by the host [45].
Blötz et al. demonstrated that IbpM was required by M. pneumoniae to produce cytotoxic
effects in host cells and is thus regarded as a virulent factor [45].

2.3.3. Antigen Variation

It has been observed that the surface adhesins P1, P40, and P90 of Mycoplasma pneumo-
niae display sequence variation [92,93]. Sluijter et al. demonstrated that the RecA protein
homolog encoded by MPN490 promoted gene exchange between homologous DNA se-
quences (RepMP) in M. pneumoniae [94]. The RepMP are repetitive sequences present
within genes encoding surface proteins such as the adhesins. Homologous recombination
between these RepMP sequences generates sequence changes within the adhesin genes,
which results in variations of surface adhesins and facilitates evasion of host immune
surveillance [94–96].

The role of post-translational modifications of M. pneumoniae-specific proteins (e.g.,
P1, P40, P90) is a relatively new aspect of bacterial epigenetics [34]. The posttranslational
modification of cytoadherence proteins by the protein kinase PrkC is essential for the
development and function of the M. pneumoniae terminal organelle [97]. P1 adhesin of M.
pneumoniae M129 is subject to extensive post-translational processing forming 22 proteo-
forms, which are specific molecular forms of a protein product arising from a specific gene.
Each of the proteo-forms retain the ability to bind to host molecules or their structural
mimics and are surface accessible [31]. There are many issues that require further study,
such as whether the antigen variations caused by post-translational modifications can affect
the pathogenicity of M. pneumoniae.

2.3.4. Intracellular Survival

M. pneumoniae can survive for a long time in the human lung carcinoma cell (A549) [98],
but the pathways related to intracellular survival remain to be elucidated. Intracellular M.
pneumoniae has mechanisms to protect the pathogen against phagocytosis and antibiotics.
This may explain why M. pneumoniae infection can develop into chronic lung disease, such
as refractory pneumonia caused by macrolide-resistant M. pneumoniae due to the lack of
timely and effective antibiotic treatment.

2.3.5. Others

Moreover, M. pneumoniae has an antioxidant mechanism to protect against oxidative
reactions such as reactive oxygen species (ROS) damage [46,99]; A nuclease encoded by
MPN491 can degrade neutrophil extracellular traps (NETs), which helps the pathogen to
escape from the immune attack of host cells [44].

In summary, the pathogenesis of M. pneumoniae involves mainly the following four
factors: immune evasion, adhesion, inflammatory injury and cytotoxicity. Figure 2 shows
these four key pathogenic mechanisms of M. pneumoniae infection.
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the P1 adhesin protein binds to the sialic acid receptor on the host cell surface contributing to M. pneumoniae adherence
and gliding. Furthermore, elongation factor Tu (EF-Tu) can bind strongly to a diverse range of host molecules (such
as fibronectin), contributing to adhesion; (C) Inflammation-inducing factors (HapE enzyme, oxidase GlpO, membrane
lipids, lipoproteins, and capsular materials) activate host cell inflammatory pathways; (D) M. pneumoniae secretes cytotoxic
nuclease (catalytic protein encoded by MPN133) and CARDS toxin.

3. Development of Vaccines against M. pneumoniae Infections

M. pneumoniae is a significant bacterial pathogen causing CAP. The lack of cell wall in
M. pneumoniae greatly reduces the choice of current antibiotics. Furthermore, the increased
number of refractory infections caused by macrolide-resistant M. pneumoniae makes clinical
treatment extremely difficult, especially for children. Although the mortality and disability
rates caused by M. pneumoniae infection are low, complications, and even fatal pneumonia,
can occur in susceptible individuals (children of 5–15 years, adolescents, and the elderly of
>60 years) in an epidemic area. At present, no vaccine is available for protection against
M. pneumoniae infections. In view of the increasing importance of M. pneumoniae infection,
there is an urgent need for an effective vaccine.

The types of vaccines that are most studied in M. pneumoniae include inactivated,
live-attenuated, protein subunit and recombinant DNA vaccines. The vaccines are mainly
developed to be administered via the nasal or parental route. It has been reported that nasal
administration of inactivated vaccine elicited low levels of protection resulting in a high
reinfection rate [100]. For vaccinated individuals who did not produce protective antibod-
ies, M. pneumoniae reinfection could lead to an early hyper-accentuated histopathological
response [100,101].

3.1. Whole-Cell Vaccines

Various M. pneumoniae vaccines developed from whole-cell antigen, including both
inactivated and live-attenuated vaccines, have been reported since 1964. The protective
effects of these vaccines were tested on military personnel [102–106], a small number of
volunteers [107–110] and animal models [111,112]. These vaccines have been reported to
have low efficiencies in reducing the incidence and disease severity [113–115]. A meta-
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analysis suggested that inactivated vaccines reduced the incidence of both M. pneumoniae
(MPP) and respiratory infections by ~40% only [100]. Inactivated M. pneumoniae vaccines
supplemented with alum adjuvant and increased dosage of vaccines were found to improve
the immunogenicity and protective efficiency [116]. However, the improvement in vaccine
efficiencies was observed in animal models, but still less effective in humans [113–115].
After inoculating with inactivated vaccines, most of recruited subjects showed no significant
adverse reactions (including autoimmune responses) and vaccination did not exacerbate
disease upon subsequent homologous challenge [117–119]. However, disease was more
severe in human subjects who lacked an antibody response following vaccination [110].

In comparison, there were less studies of live-attenuated vaccines against M. pneumoniae.
Live-attenuated vaccines were often prepared by continuous passage in vitro [107,111,120]
and/or produced by temperature-sensitive mutants [121,122]. Live-attenuated vaccines
were found to induce protective effect in hamsters. Clinical trials for efficiency evaluation of
live-attenuated vaccine were never performed in humans because of the significant health
risk involved [107,109,110].

3.2. Recombinant Protein Subunit Vaccines

As a group of important adhesion factors in M. pneumoniae, P1, P30 and other adhesion-
associated protein have immunogenicity and immunoreactivity and are able to induce
specific neutralizing antibodies. Currently, the strategies involved in the preparation of
recombinant protein subunit vaccines include the employment of cell or cell-free protein
synthesis system. So far, a number antigen targets for vaccine development were identified
(Table 1). Among these virulence factors, cytoadherence proteins (including P1, P30, P116,
CARDS toxin), polysaccharides, lipids and lipoproteins have immunogenicity and are
likely to be potential candidates for vaccines antigens.

3.2.1. P1 Adhesin Protein Vaccine

P1 plays an important role in the pathogenesis of M. pneumoniae infection by mediating
the attachment of the pathogen to host cells [123], and the p1 gene is used as target to
detect M. pneumoniae by qRT-PCR, as well as to perform genotyping [124,125]. Although
it is unclear whether genotype-specific antibodies have an influence on re-infections due
to different genotypes of M. pneumoniae, genotyping is also crucial for the molecular
epidemiological studies and the development of an effective vaccine [126]. Protein P1 is a
transmembrane adhesin, and it has high immunogenicity and antigenic specificity [127,128]
which means its epitopes were not or rarely found in other bacterial species. Intramuscular
or intranasal inoculation of BALB/c mice with a DNA vaccine encoding amino acid 1125–
1359 of the M. pneumoniae P1 protein C-terminal region (P1C) led to detectable protection
against M. pneumoniae infection. The levels of IgG (IgG1, IgG2a, and IgG2b isotypes) and
cytokines (IFN-γ and IL-4) were significantly elevated [129]. However, the effect of P1C
DNA vaccine in humans remains unknown and requires further research.

3.2.2. P30 Vaccine

P30 is a transmembrane protein and is required for host receptor binding [58]. Similar
to P1, P30 is also an important immunogenic factor [130]. Mutant M. pneumoniae without
the gene encoding P30 is noninfectious and unable to adhere to host cells [45], which
suggests that P30 could potentially be an ideal candidate target for a clinical vaccine.
Szczepanek et al. created an avirulent P30 adhesin mutant for assessing its efficacy as
a live-attenuated vaccine candidate in mice [112]. However, the live-attenuated vaccine
caused severe complications in BALB/c mice, which appears to be driven by responses
of the T helper type 17 (Th17) cells. In the recent years, a large number of studies have
reported that Th17 cells play an important role in antimicrobial immune responses and
causing autoimmune diseases in mouse models [131,132].

On the other hand, vaccine produced from recombinant P30 adhesin was found to
elicit immune protection. Hausner et al. (2013) created a recombinant protein by combining
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protein P30 (amino acids 17 to 274) with the C-terminal of P1 adhesin (amino acids 1287–
1518 of P1) [133]. When this recombinant vaccine was injected into guinea pigs, protective
IgA were secreted in the respiratory tracts of the animals. These results provide insights into
vaccine development for effective protection against M. pneumoniae infection in humans.

3.2.3. P116 Vaccine

P116 protein is another major antigen of M. pneumoniae and an important cellular adhe-
sion factor [36,134]. It is a 116kDA protein consisting of 1030 amino acids. Svenstrup et al.
has purified the P116 protein and found that polyclonal antibodies raised against this
protein prevented M. pneumoniae adhesion to Hep-2 cells [135]. Additionally, the serum ob-
tained from M. pneumoniae-infected patients contained antibodies that specifically reacted
with P116 [136].

3.2.4. CARDS Toxin Vaccine

As mentioned elsewhere in this review, CARDS toxin is a specific virulence factor
associated with M. pneumoniae pathogenesis. The amount of toxin produced is positively
correlated with the severity of pulmonary disease [46,76]. In a BALB/cJ mouse model,
CARD toxin dosage was correlated with inflammatory responses characterized by airway
restriction and decreases in lung compliance [81]. Antibody against CARDS toxin was iden-
tified in the serum of M. pneumoniae-infected patients during both the acute infection and
recovery periods, with higher levels in the recovery period. Analysis of serum antibodies
on day 28 after the onset of M. pneumoniae infection showed that antibody against CARDS
toxin was positive, while low levels of CARDS toxin-reactive antibodies were identified in
the serum of healthy controls [75]. There was study showing that, the C-terminal region
of CARDS toxin triggered an antibody response upon M. pneumoniae infection [137], this
provides insights into the development of vaccine using attenuated CARDS toxin.

3.2.5. Recombinant Combined Vaccines

As described earlier, some apical organelle-localized proteins (P1, P30, P116, etc.) had
immunogenicity [22,130]. Hence genetically engineered recombinant proteins by screening
antigen dominant epitopes to stimulate the humoral immune response are promising
vaccine candidates for preventing M. pneumoniae infection. Chen et al. designed a chimeric
protein (P116N-P1C-P30), designated MP559, which contained various antigen epitopes
of three antigens [138]. Vaccination with MP559 stimulated the same humoral immune
response as the three antigens alone. The study showed that chimeric protein MP559 has
the potential to replace the three individual protein subunit vaccine candidates.

3.2.6. Other Vaccines

In addition, the success of capsular polysaccharide vaccines against Streptococcus
pneumoniae and Neisseria meningitidis provides enlightenment for the use of purified specific
polysaccharides to develop a M. pneumoniae vaccine. But a recent study has revealed
that antibodies to protein but not glycolipid structures are important for host defense
against M. pneumoniae [139]. So, vaccines using other virulence factors as antigens (such as
polysaccharides, lipids, glycolipid) may be unable to induce persistent protective immunity
and the molecular mimicry-induced cross-reactive immunity may cause injury to multiple
organs.

3.3. DNA Vaccines

DNA vaccines are emerging biotechnology products that involve novel approach to
induce immune responses against the target immunogens. The immunogen is expressed
in vivo from a DNA vector carrying the gene encoding the immunogen [140]. Compared
with traditional vaccines, DNA vaccines have certain obvious advantages. First, they can
be easily constructed and pose no infection risk. Second, they trigger immune responses
corresponding to those produced against natural antigens. Third, the cost of producing,
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storing, and transporting DNA vaccines is lower than the cost associated with protein
vaccines. DNA vaccines for preventing M. pneumoniae infection was shown induce both
strong humoral and cell-mediated immunity (Th1 and Th2 responses), although antibody
production by B-cells has been shown to be lower than that associated with traditional vac-
cines [141–143]. In addition to the P1C DNA vaccine [129], another DNA vaccine produced
by fusing P1C with the E. coli heat-labile toxin B subunit (LTB) gene has been studied [144].
The LTB-P1C fusion DNA vaccine was shown to stimulate immune protection against M.
pneumoniae infection in a BALB/c mouse model, with less pathological inflammation [144].
Besides, the study also demonstrated that production of M. pneumoniae-specific IgA and
IgG2a/IgG1 ratios in the bronchoalveolar lavage fluid and sera were significantly higher
in mice vaccinated with the LTB-P1C fusion DNA vaccine than in mice vaccinated with
the P1C DNA vaccine [144]. Of course, there are also multiple obstacles that need to be
overcome before DNA vaccines can be used in humans. These hurdles include target gene
selection, fate of the injected DNA, immune tolerance, potential integration of the injected
DNA material with human chromosomes and uncontrolled expression in vivo.

3.4. Live Vector Vaccines

In 1980, a Swiss scholar first reported DNA (SV40 DNA) can be transferred from
bacteria to higher organisms (e.g., CV-1 cells), which also laid the foundation for research
of live vector vaccines (LVVs) [145]. LVVs are produced by introducing a specific antigen
gene into known bacteria using plasmid vector or by integrating into the bacterial chromo-
some. When the live bacteria are being taken orally by the vaccine recipient, the antigen
gene is being expressed by the bacteria inside the recipient’s body to produce an antigen
and then stimulate a specific immune response. The bacterial strains used in LVVs are
avirulent organism (e.g., Bacillus subitilis), probiotics (Lactobacillus) or attenuated strains
(e.g., attenuated Listeria monocytogenes strains) [146]. LVVs are associated with several
advantages, including safety, stimulation of long-term humoral and mucosal immunity,
and multivalent vaccines, making LVV promising candidates for successful vaccination.
There are also certain issues, including unstable expression of foreign genes and reversion
of the live-attenuated vector to a virulent form.

In the recent years, there are more LVVs that have been studied and some of them
exhibited the potential for infection prevention, which makes the idea of developing an
LVV to prevent M. pneumoniae infection more promising. Currently, there is no LVVs for
preventing M. pneumoniae infection, but there is one for preventing infection of pigs with
Mycoplasma hyopneumoniae [147]. Vectors for constructing LVVs mainly involve symbiotic
bacteria, probiotics (e.g., Lactobacillus spp.), normally harmless bacteria and attenuated
microorganisms [148–151]. Examples of harmless bacteria include Bacillus subtilis [152,153]
and Saccharomycetes [154,155]. Examples of live-attenuated microorganisms that have
been widely used as live vaccine vehicles include Salmonella [156,157], Listeria [158,159],
poxvirus [160] and influenza virus [161]. Li et al. constructed a recombinant Lactobacillus-
derived vaccine that displayed influenza epitopes (sM2 and HA2) [162]. Ferreira et al.
also explored the immune efficiency of a recombinant Lactobacillus casei-derived vaccine
that expressed a fusion protein involving pneumococcal PspA and PspC [163]. Based on
the findings of these studies, LVV is a promising strategy for development of multiple
epitopes-vaccine for M. pneumoniae using probiotics as vehicles.

4. Summary and Future Prospects

M. pneumoniae is the most common pathogen leading to atypical CAP, occasionally
with extrapulmonary manifestations. Worse still, chronic refractory MPP can lead to
serious complications. Refractory M. pneumoniae infections caused by macrolide-resistant
M. pneumoniae have become more common in China, especially in children, which makes
treatment more difficult. Owing to these reasons, there is an urgent need for development
of effective vaccines for preventing M. pneumoniae infections.
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There are various types of M. pneumoniae vaccines including inactivated, live-attenuated,
and subunit vaccines. These vaccines are mainly administered via the nasal route or hypo-
dermic needle. Whole-cell vaccines can be either inactivated or live-attenuated vaccines.
Inactivated vaccines were found to elicit weak immune responses, and some individuals
who did not produce antibodies after vaccination experienced severe immune responses
on reinfection with M. pneumoniae. Vaccines based on M. pneumoniae adhesion proteins
(P1, P30 and P116) have been considered as promising options. Hypodermic inoculation
with a protein subunit vaccine results in effective immune protection [164]. However, the
generation of a protein subunit vaccine can be challenging because they are accompanied
by several inevitable shortcomings and technical difficulties. (1) The protein expression
level in vitro is usually very low. Besides, purification of recombinant proteins is a compli-
cated process [165,166]. (2) Protein subunit vaccines do not have a self-replicating ability
compared with live attenuated vaccines or DNA vaccines, so multiple immunization is
usually required [167]; (3) The protein subunit may lose its natural conformation when being
expressed in heterologous systems [168]. DNA vaccines trigger both cell-mediated and
humoral immunity, but the injected DNA cannot be consistently replicated in mammalian
cells. These challenges need to be overcome in the future to develop effective vaccines.

M. pneumoniae infections in immunocompetent patients induce antibody responses
that mainly direct against the terminal organelle-associated proteins in M. pneumoniae [169].
Thus, vaccine based on this adhesin can induce specific immunoglobulins that inhibit the
adherence of M. pneumoniae to the respiratory epithelium of the host [169]. However, due
to their weak humoral immunogenicity when used alone without aluminum adjuvant, a
fusion protein with an adjuvant, such as hepatitis B virus capsid HN-144 fragment, is a
preferred immunization strategy. Although LVVs using probiotics as expression vectors
are still in its exploratory stage, it is believed that LVV could be a promising vaccine
strategy against M. pneumoniae infections in the near future. The use of living probiotics as
expression vector of LVVs enables vaccine delivery through pulmonary atomization and/or
oral ingestion. We regard protein vaccines (usually manufactured by means of genetic
engineering) are the most promising vaccines for the prevention of M. pneumoniae infections.
Single-antigen protein formulated with vaccine adjuvant and multi-epitope fusion protein
are promising vaccine candidates. Regardless of the vaccine type, the immunogenicity,
safety, effectiveness, and functional mechanisms of vaccines used in humans need to be
thoroughly researched before further clinical trials can be commenced.

At present, Coronavirus disease 2019 (COVID-19) has spread to almost every part
of the world. COVID-19 co-infection with other common respiratory pathogens such as
M. pneumoniae is not unexpected [170,171]. COVID-19 co-infection with M. pneumoniae
may exacerbate clinical symptoms, delay recovery time, and increase morbidity and mor-
tality [172,173], while vaccines for COVID-19 is on the way. There is no knowledge so
far about whether co-infection of COVID-19 and M. pneumoniae will affect the outcome
of vaccination. Although viral infection and bacterial infection are essentially different
in terms of pathogenesis, some clinical manifestations of COVID-19 are similar to MPP,
such as fever, dry cough, fatigue, ache all over, chest tightness, etc. [174,175]. Clinical
practice indicates that reactive lymphocytes are frequently seen in COVID-19 infection,
while in M. pneumoniae infection cold agglutination is common [172,174]. There are only
subtle differences in radiographic features (chest X-ray and CT imaging) between these
two diseases [171,174,176]. Genetic and serologic tests (e.g., serum IgM/IgG antibody
rapid test) have definitely helped clinicians to diagnose and manage COVID-19 patients
during the COVID-19 pandemic [173]. There are some questions as to whether COVID-19
or COVID-19 co-infection with M. pneumoniae will be in existence in humans for a long time.
What is the mechanism via which COVID-19 co-infection with M. pneumoniae increases
morbidity and mortality? We can speculate from our research experience: human cellular
immunity may be suppressed by one pathogen with an immune escape mechanism, which
causes a declining antigen reactivity to another pathogen. Is this true? Are there other
mechanisms? These topics may be research hotspots in the future.
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