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Confidence maps provide complementary information for interpreting cryo-EM

densities as they indicate statistical significance with respect to background

noise. They can be thresholded by specifying the expected false-discovery rate

(FDR), and the displayed volume shows the parts of the map that have the

corresponding level of significance. Here, the basic statistical concepts of

confidence maps are reviewed and practical guidance is provided for their

interpretation and usage inside the CCP-EM suite. Limitations of the approach

are discussed and extensions towards other error criteria such as the family-wise

error rate are presented. The observed map features can be rendered at a

common isosurface threshold, which is particularly beneficial for the

interpretation of weak and noisy densities. In the current article, a practical

guide is provided to the recommended usage of confidence maps.

1. Introduction

The 3D structure obtained from an electron cryo-microscopy

(cryo-EM) experiment corresponds to the Coulomb potential

in 3D space of the macromolecule of interest in three

dimensions (Frank, 2006). Electron micrographs of ice-

embedded macromolecules are generated by the interaction

of elastically scattered and unscattered electrons with the

biological specimens in the cryo-microscope (Glaeser, 2016).

At the core of the structure-determination process is the 3D

image-reconstruction procedure, which requires the compu-

tational determination of the orientations of thousands of

individual particle images with respect to a 3D model. Owing

to noise from solvent scattering, optical aberrations, imperfect

detectors and other sources, inaccuracies arise in the align-

ment process and the reconstructed maps contain errors in

addition to the electrostatic potential. Moreover, inherent

molecular flexibility and heterogeneity such as the incomplete

stoichiometry of protein complexes contribute to incoherent

averages and systematic variation in map values. Compensa-

tion for the resulting decay of amplitudes at high resolution is

therefore required. For the interpretation of high-resolution

map features, a B-factor sharpening approach is applied and

combined with a signal-to-noise based weighting of the

amplitudes (Rosenthal & Henderson, 2003). While this

approach enhances the relevant map signal, it also bears the

danger of enhancing noise by oversharpening. Local map

variation exacerbates this problem as the optimal sharpening

B factor varies across the map. Therefore, recent sharpening

approaches take into account local amplitude information

from a refined atomic model (Jakobi et al., 2017).

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798320002995&domain=pdf&date_stamp=2020-03-25


The interpretation of cryo-EM maps is most challenging

initially when atomic reference structures are missing.

Regardless of the applied sharpening or filtering routine, the

precise map values have to be treated with caution in order to

avoid the interpretation of noise artefacts as true density

variation. Commonly, maps are visualized by thresholding to

create 3D isosurface renderings. These are overlaid with

atomic models or used to build polypeptide chains by using a

series of interactive map tools (Goddard et al., 2018; Emsley &

Cowtan, 2004). Ideally, the threshold is chosen such that signal

is displayed and noise is removed, which is generally expressed

as a multiple of the standard deviation � beyond the map

noise. In contrast to crystallographic maps, however, this �
value varies strongly for different cryo-EM maps owing to the

dependence on the ratio of particle to volume size, which

prevents � values from being used universally. Moreover,

thresholding the cryo-EM map reduces the information

content to a binary detection of the voxel and discards more

accurate representations of the electrostatic potential of the

macromolecule. Once the atomic model has been initially

built, atomic coordinate refinement requires the complete

dynamic range of the determined cryo-EM densities in order

to accurately model different atomic masses, positions and

conformations.

To develop a more robust framework for associating the

values of a cryo-EM map with significance, we have recently

presented a statistical framework based on multiple hypoth-

esis testing and false-discovery rate (FDR) control, which

transforms the cryo-EM map into a new volume that we term a

confidence map (Beckers et al., 2019). Similar approaches are

routinely used in other imaging domains, for example fMRI

imaging (Genovese et al., 2002; Lohmann et al., 2018). Confi-

dence maps contain detection errors with respect to back-

ground noise and can be thresholded by controlling the FDR

in the detected signal. Confidence maps provide complemen-

tary cryo-EM map information that is particularly helpful for

the interpretation of weak and ambiguous signal close to

background-noise levels. In this CCP-EM Spring Symposium

article, we review the basic principles of confidence maps and

focus our presentation on practical aspects and extensions of

the procedure as it is now integrated in the CCP-EM software

suite.

2. Testing for significant signal with respect to
background noise

We refer to noise in cryo-EM maps as any incorrect modifi-

cation of the signal from the true electrostatic potential of the

structure of interest. Multiple sources of noise that accumulate

in a cryo-EM experiment have been discussed previously

(Penczek et al., 2006). For a concise treatment of cryo-EM

noise in the context of confidence maps, we refer readers to

Beckers et al. (2019). Although noise levels in the solvent

region can be assumed to be higher than the noise in the

particle region owing to solvent displacement, we show that

we can use solvent map values outside the particle to estimate

the noise for the following statistical analysis (Beckers et al.,

2019). For each voxel in the 3D map, we conduct a statistical

hypothesis test for positive deviations from background noise.

Given an estimate of the cumulative distribution function of

the background distribution, which is obtained by assuming a

Gaussian distribution or using a nonparametric procedure,

p-values are calculated for each voxel as the probability under

the null hypothesis of having an intensity at the respective

voxel at least as great as the observed background.

3. False-discovery rate control of cryo-EM maps

Conducting a statistical test for each voxel within the map

results in a multiple testing problem. A consequence that

arises from the multiplicity is that many tests can give rise to

false-positive detections, and this problem is more severe for

large numbers of tested hypotheses. A widely used framework

to deal with the large-scale multiple testing problem is false-

discovery rate (FDR) control (Benjamini & Hochberg, 1995).

The approach adjusts the statistical significance level to set an

upper bound on the expected proportion of false discoveries.

Mathematically, the FDR is defined as

FDR ¼ E
V

V þ R

� �
V þ R 6¼ 0

0 V þ R ¼ 0

(
; ð1Þ

where V is the number of false positives and R is the number

of true positives. In the statistical literature it is usually stated

that the FDR is ‘controlled at level �’ if the true FDR is

smaller than �. Typical FDR-controlling approaches take the

p-values of the individual tests and transform them to satisfy

the FDR criterion. These FDR-adjusted p-values can then be

thresholded at a specified FDR level. For confidence maps, we

further invert the adjusted p-values for visualization purposes,

i.e. thresholding of a confidence map at 0.99 means a

maximum FDR of 1%. As an FDR-controlling procedure, we

use by default the method of Benjamini and Yekutieli, which

has the advantage of controlling the FDR under arbitrary

dependencies between the p-values (Benjamini & Yekutieli,

2001). Cryo-EM maps possess artificial correlations as a result

of the 3D reconstruction and post-processing, which statisti-

cally can be considered arbitrary dependencies.

4. Generation of confidence maps

The only required input for computing a confidence map is

an unmasked and globally sharpened cryo-EM map. The

approach is applied to sharpened EM maps, as unsharpened

maps lack high-resolution features as well as noise. Therefore,

using unsharpened maps will result in underestimated back-

ground noise estimation. Typically, the required input is

generated by common post-processing procedures in the

respective image-processing programs (Rosenthal &

Henderson, 2003; Scheres, 2012; Punjani et al., 2017; Desfosses

et al., 2014). Within this map, the default background esti-

mation uses a total of four map cubes from the solvent area

outside the particle (Fig. 1). In principle, the size of the map

cubes should be maximized to increase the sample size for
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reliable background noise estimation. At the same time, one

should avoid including particle density into the cubes as this

will bias noise estimation. Identifying regions outside the

structure is straightforward for single-particle maps, whereas

cryo-EM densities obtained by subtomogram averaging often

do not have a clearly solvent-isolated structure. Therefore,

particular care needs to be taken to specify the location of the

cube for noise estimation in such nonstandard cases. We

implemented the option to specify a manual cube location as

well as the volume size (Fig. 1). The CCP-EM GUI allows

interactive adjustment of the noise cubes; clicking the ‘Check

noise box’ button opens an image with three slices through the

map with noise areas labelled in white. In this way, the cube

parameters can be adjusted to select suitable background

regions. Moreover, the slice views can be used to identify cases

when noise levels are not uniform over the map and when,

therefore, confidence-map generation should be avoided.

5. Local resolution measurements can be included for
the generation of confidence maps

The statistical power of the FDR thresholding approach can

be increased by the incorporation of local resolution infor-

mation, which is available as an extended option in the CCP-

EM GUI. The procedure of specifying the noise cube location

and the size of the cubes is identical to that described above.
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Figure 1
The graphical user interface (GUI) for confidence-map generation in CCP-EM. The main GUI, visualization of noise slices and extended options are
shown. A simple ‘Check noise box’ button allows direct visualization of the noise cubes.



In addition to the cryo-EM map, the user provides a map

containing the local resolution values at the respective voxel

positions, which is the standard output of a series of programs

for local resolution estimation (Heymann & Belnap, 2007;

Scheres, 2012; Hohn et al., 2007; Kucukelbir et al., 2014). Using

local resolution estimates, the cryo-EM map can be locally

low-pass filtered, which improves the appearance of the map

features as dominant noise in local regions is removed

(Cardone et al., 2013). Consequently, the signal-to-noise ratios

are also increased locally. Tracking the positional background-

noise levels after local filtering enables the generation of

confidence maps using local resolution information. Very low-

resolution artefacts can arise, leading to smeared densities in

the confidence maps extending over the whole box. To avoid

this, it can be beneficial to restrict the resolution range of the

local resolution map to reasonable values, for example from

2 to 20 Å for a 3 Å map. The incorporation of local resolution

information is particularly useful in the presence of substantial

local resolution variations, as global sharpening and filtering

usually lead to the undersharpening of lower resolution

features and the oversharpening of higher resolution features.

The resulting confidence maps capture such areas side by side,

including the highest resolved parts of the structure, and guide

the user through the density-interpretation steps within a

single confidence map. Owing to the increase of statistical

power, we find that more stringent error levels can be applied

for thresholding confidence maps generated using local reso-

lution information.

6. Case studies: Tobacco mosaic virus, a bacterial ATP
synthase and a eukaryotic ribosome

In a recent article (Weis et al., 2019), confidence maps were

used to assign the structural details of the disassembly switch

of Tobacco mosaic virus (TMV). Several decades earlier, Don

Caspar had proposed a switch mechanism of conformational

changes driven by carboxylate interactions (Caspar, 1964), but

the precise residue location was still missing owing to the

flexibility of the respective residues and the absence of two

comparative structures in the ON/OFF switch states. Structure

determination of two data sets acquired under conditions

mimicking the extracellular and intracellular conditions

resulted in two maps at 2.0 and 1.9 Å resolution in water and

at high Ca2+/acidic pH, respectively. The confidence maps

allowed the assignment of significant cryo-EM density for the

respective residues and showed that multiple conformations of

the involved residues are supported by the map recorded in

the water condition. Further analysis and validation by means

of an additional Ca2+/acidic pH cryo-EM map revealed that

the switch exists in two distinct structural states. Moreover,
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Figure 2
Confidence maps facilitate the interpretation of cryo-EM maps. (a) Comparison of cryo-EM and confidence maps at different thresholds for a 1.9 Å
resolution TMV reconstruction (EMD-10129). While the cryo-EM map has a strong threshold dependence (top), leading to different map peaks for
water molecules (red arrows), the confidence map allows reproducible assignment of water molecules over different significance levels (bottom). (b)
Locally filtered cryo-EM map (EMD-9333) of a bacterial ATP synthase (left) with the corresponding confidence map (right), including two magnified
views corresponding to the red boxes in the molecule overview. The arrow points to density that is likely to correspond- to a 10�His tag. (c) Cryo-EM
map of a eukaryotic ribosome (EMD-0194, left) together with the confidence map (right), including two magnified views.



using the confidence maps the authors were able to place 71

and 91 water molecules per monomer. In these cases, we

placed the water molecules based on the detected confidence

map peaks, the expected molecular size and the proximity to

the protein structure. Even in high-resolution regular cryo-

EM maps this is still a daunting task, as noise peaks can be

easily mistaken for waters without further validation (Fig. 2a,

top). The confidence maps, however, enabled placement by

means of statistical significance (Fig. 2a, bottom).

To further illustrate the utility of confidence maps including

local resolution information, we generated two maps for

examples from the EMDB with local resolution variation from

near-atomic up to nanometre. Comparison of the map of a

locally filtered bacterial ATP synthase map (EMD-9333; Guo

et al., 2019) with the corresponding confidence map shows

improved overall interpretability using the statistical

thresholding approach (Fig. 2b). For the locally filtered map,

low-resolution parts such as the stalk domain remain missing

at low � thresholds, while at the same threshold high-

resolution parts have already become noisy. The confidence

map enables the interpretation of the complete complex at a

low FDR of 0.01%, showing the appearance of significant low-

resolution density corresponding to a 10�His tag (Fig. 2b,

bottom right). In another example, given by a eukaryotic

ribosome (EMD-0194; Juszkiewicz et al., 2018), the expansion

segments and the ribosomal stalks display lower resolution, as

is typical for eukaryotic ribosome structures (Fig. 2c). In the

deposited map, these parts are oversharpened and appear

discontinuous owing to noise, which is a result of the global

sharpening and filtering. Generating the confidence map by

including local resolution information shows the respective

domains clearly, including both high- and low-resolution

features visible at a single threshold of 0.01% FDR.

7. Visualization of confidence maps

Confidence maps can be displayed at a given FDR threshold

in common visualization programs that use an isosurface

rendering approach. A typical property of such a map is that

when density can be clearly distinguished from background

noise, voxels assume values close to 1, which results in a close-

to-binary distribution of signal versus background. Conse-

quently, when visualizing confidence maps, for example in

UCSF Chimera (Pettersen et al., 2004), they appear different

from common cryo-EM maps. Confidence maps will display

very sharp voxel features, with almost all values close to the

extremes of 1 and 0. In order to make them appear like typical

cryo-EM maps, the displayed surface can be oversampled and

smoothed (Fig. 3). Alternatively, a �log10 transformation of

the FDR values leads to more shallow gradients and allows

detailed analysis at very small FDRs (Fig. 3, bottom).

8. Assessing additional error criteria for confidence
maps

Multiple testing is a major field of research in statistical

inference (Wilson, 2019; Zhang et al., 2019; Ignatiadis et al.,

2016), and several additional error rates and error-controlling

procedures beyond Benjamini–Yekutieli FDR control have

been proposed. The family-wise error rate (FWER) specifies

the probability of having false positives at all (Lehmann &

Romano, 2005). We have implemented FWER for confidence-
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Figure 3
Visualization of confidence maps with additional smoothing. Confidence maps have an almost binary contrast, which can lead to sharp edges when
rendered as an isosurface (top), as shown for the map EMD-3061. The appearance can be improved in most visualization programs. For example, in
UCSF Chimera, additional surface smoothing can be used to make the appearance less sharp and more cryo-EM map-like (middle, bottom).
Additionally, a �log10 transformation of the FDR values can be used to smoothen the gradients for visualization.



map generation as an additional option within the CCP-EM

suite. In contrast to FDR, FWER is considered to be the

strictest criterion to rule out false-positive detection. Proce-

durally, background-noise estimation and p-value calculation

remain identical, while only the FDR correction is replaced by

a FWER-controlling routine. With respect to FWER-based

confidence maps, thresholding at a value of 0.99 then means a

probability of 1% of having any false positives at all.

Mathematically, the FWER is defined as

FWER :¼ PðV > 0Þ; ð2Þ

where V denotes the number of false-positive hypotheses.

Although controlling the FDR in confidence maps already

facilitates the interpretation of voxels in terms of significance,

we still expect false positives, i.e. up to as many as is specified

by the FDR threshold: in the case of 100 000 significant voxels,

1% FDR corresponds to an expected maximum of 1000 false-

positive voxels. Controlling the FWER instead of the FDR

may be desirable in cases where no false positives can be

tolerated for the interpretation. Generic methods for the

control of FWER and FDR are given by the Bonferroni–Holm

(Holm, 1979) and the Benjamini–Yekutieli (Benjamini &

Yekutieli, 2001) approaches. It can be shown that both criteria

control the respective error rates under arbitrary dependen-

cies between the tested p-values (Benjamini & Yekutieli, 2001;

Holm, 1979).

In order to investigate the different error criteria from the

multiple testing approaches in the context of cryo-EM maps,

we compared the FDR and FWER using the 3.4 Å resolution

cryo-EM map (EMD-3061) of �-secretase (Bai et al., 2015). As

expected, FWER control is more stringent at 1% as less

density is declared significant compared with 1% FDR (Figs. 4a

and 4b). For example, the presumably false-positive density

below the lipid declared by the 1% FDR thresholding is not

present after 1% FWER thresholding. In addition, signal is

assigned to the head of the embedded lipid (top arrow) using

the FDR criterion, whereas this density appears smaller at 1%

FWER. In order to assess the performance of different error-

rate thresholding criteria more quantitatively, we applied

them to a simulated map of 4194 water molecules (taken from

PDB entry 6cvm; Bartesaghi et al., 2018). The simulated map

was generated using UCSF Chimera and we included Gaussian

white noise with a standard deviation of 0.5. The resulting

signal-to-noise ratio is 1.75 for the density peaks and corre-

sponds to common noise levels in cryo-EM maps in the high-

resolution shells. We compared the detected false-positive

map peaks that do not originate from water molecules and

also the number of missed water molecules for the different

procedures at 1% FDR or 1% FWER, respectively. At 1%

FWER we did not detect any false positives, whereas at 1%

FDR some false-positive peaks were identified, which could

be mistakenly interpreted as water (Table 1). However, the

decreased number of false positives in the case of FWER

control comes at the price of missing a small number of water

molecules (i.e. there are some false negatives). With respect to

the analysis of cryo-EM maps, FWER provides the error

criterion that is most useful for the interpretation of weak and

isolated signal, as occurs for water molecules and bound

ligands in high-resolution structures (Table 1). To compare

FDR-based and FWER-based confidence maps, FDR is

usually more useful for initial interpretation and FWER for the

in-depth analysis of more ambiguous parts. Both error criteria

provide complementary information in addition to cryo-EM

maps that can be used during the model-building process.

9. Discussion

Confidence maps are based on the statistical framework of

multiple hypothesis testing. Applying global error rates in a

multiple testing setting such as cryo-EM maps is a complex

task as dependencies between the individual voxels have to be

considered (for the treatment of dependencies, see Beckers et

al., 2019). Thus, control of the errors should only be carried

out rather conservatively, which means that a confidence map

at an FDR of 1% will have a true FDR of below 1%. When

applying a threshold to confidence maps, the FDR provides an

error criterion that is theoretically interpretable: for example,

1% FDR corresponds to 1% of the thresholded density being

background noise. Using a series of test cases of deposited

cryo-EM maps, we demonstrated that the 1% FDR threshold

was sufficient to visualize the relevant molecular details

(Beckers et al., 2019). When incorporating local resolution

information, lower FDRs of down to 0.01% can be used

successfully (Fig. 2).

The stringency of the FDR criterion is, in principle, also

related to the types of features to be interpreted. For clear

continuous density stretches such as polypeptide conforma-

tions, the occurrence of single false-positive voxels rarely

complicates the interpretation. However, when interpreting

point densities such as water and ions the cost of false-positive

hits can be substantially higher. In these cases, more restrictive

thresholds should usually be chosen. This will be particularly

relevant as higher true atomic resolution cryo-EM maps

become available. An additional possibility to aid the inter-

pretation of atomic resolution densities may be the FWER

criterion introduced here, which further minimizes the

expected rate of false positives. Taken together, we conclude

that lower FWER or more stringent FDR thresholds should

be applied when more confident statements about the

observed densities are to be made. Although the threshold of

a confidence map can be adjusted by the user, it is much less

sensitive to the inclusion of noise compared with threshold

adjustments of cryo-EM maps. For common cryo-EM maps,
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Table 1
Comparison of detected false-positive voxels and false-negative H2O
molecules for a simulated map of 4194 H2O molecules (taken from PDB
entry 6cvm).

The numbers of false-negative H2O molecules and false-positive voxels
together with the true FDR that this corresponds to are given.

Controlling procedure
False-positive
voxels

False-negative H2O
molecules

Holm FWER 1% 0/FDR: 0.00% 18 of 4194
Benjamini–Yekutieli FDR 1% 7/FDR: 0.05% 0 of 4194



the applied threshold is difficult to interpret in terms of

significance. Specific � thresholds remain highly subjective

owing to the multitude of errors in the cryo-EM experiment

and the subsequent 3D image-reconstruction procedure, as

described in Beckers et al. (2019). Confidence maps, however,

suppress noise, and the associated FDR threshold provides a

quantitative error criterion with

respect to background noise and

gives feedback on the validity of

the detected density features.

Confidence maps provide

complementary information that

should be used together with the

original density map. As confi-

dence maps contain detection

probabilities, information about

scattering strength and occu-

pancies is no longer present.

Therefore, confidence maps must

not be used for atomic coordinate

refinement. However, for manual

building and initial assignment of

the atomic model, confidence

maps directly provide informa-

tion on which density parts can

be faithfully analyzed, and

incorporation of this additional

information into automated

model-building protocols may

prove to be beneficial in the

future.

Confidence maps aim to sepa-

rate signal from background

noise. If significant signal is

detected in a voxel, it means that,

up to the specified confidence

level, it is neither background

from the amorphous ice nor shot

noise. As such, signal corresponds

to every feature that contains

contributions beyond background

noise. However, the following

limitations need to be considered

where confidence-map generation

including background estimation

was procedurally successful but

claimed incorrect features as

signal. In the case when a large

fraction of particles were mis-

aligned and included in the

reconstruction, they will inevi-

tably give rise to statistical

assignment of signal in a gener-

ated confidence map with no

structural meaning. Similar

effects will occur in cases of

highly preferred orientations and

overfitting of noise. As confidence

maps are able to detect very weak

signal, in particular in cases where
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Figure 4
Comparison of FWER- and FDR-controlling procedures in confidence maps. Confidence maps based on
(a) Holm FWER and (b) Benjamini–Yekutieli FDR are compared for a �-secretase map (EMD-3061).
Respective inset enlargements in the interior of the transmembrane domain are shown on the right. (c)
Comparison of detected false-positive voxels and false-negative water molecules for a simulated map of
4194 water molecules (taken from PDB entry 6cvm).



local resolutions are provided, this type of incorrect signal will

be more prominent in confidence maps compared with regu-

larly sharpened cryo-EM maps. Although this property of the

signal-detection approach bears the danger of over-

interpretation, it is also sensitively reveals more general

problems of the computed cryo-EM structure. Owing to the

significant recent progress in improved image quality and

image-processing routines in cryo-EM, these cases are

becoming less prominent, but internal image-processing vali-

dation criteria still need to be applied to ensure the determi-

nation of reliable cryo-EM structures. Background-noise

determination is critical and is still a step that requires user

intervention when confidence maps are generated. Estimation

of noise levels in the solvent area can only provide accurate

measurements if the background noise is homogeneous over

the whole map. This remains an approximation owing to

various factors discussed in our previous work (Beckers et al.,

2019), but it controls the significance level even when the

background-noise level is overestimated.

Moreover, the manual selection of noise areas may affect

this process and adds a level of subjectivity, especially for the

case of subtomogram averages. Although guidelines can be

given to the user on how to carefully apply the parameters (see

above), in the future we envision the full automation of these

parts of confidence-map generation. Once automated routines

are available, the process of confidence-map generation can be

seamlessly integrated into the initial building of atomic

models. The first step towards this goal is the implementation

of confidence-map generation in the CCP-EM suite (available

now in version 1.4). This way, the complementary map infor-

mation from confidence maps is available at little computa-

tional cost and integrated in common map interpretation and

atomic modelling tools.
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