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Disorders of consciousness (DoC) are the hallmark of severe acquired brain injuries

characterized by abnormal activity in important brain areas and disruption within and

between brain networks. As DoC’s therapeutic arsenal is limited, new potential therapies

such as transcutaneous auricular vagal nerve stimulation (taVNS) have recently been

explored. The potential of taVNS in the process of consciousness recovery has been

highlighted in recent studies with DoC patients. However, it is not clear how taVNS

plays a role in the recovery of consciousness. In this article, we first describe the

neural correlates of consciousness, the vagus nerve anatomy and functions, along

with the results of functional magnetic resonance imaging studies using taVNS. Based

on consciousness recovery and taVNS mechanisms, we propose the Vagal Cortical

Pathways model. This model highlights four consecutive pathways (A. Lower brainstem

activation, B. Upper brainstem activation, C. Norepinephrine pathway, and D. Serotonin

pathway) likely to have an impact on patients with a brain injury and DoC. Additionally,

we suggest six different mechanisms of action: (1) Activation of the ascending

reticular activating system; (2) Activation of the thalamus; (3) Re-establishment of the

cortico-striatal-thalamic-cortical loop; (4) Promotion of negative connectivity between

external and default mode networks by the activation of the salience network; (5) Increase

in activity and connectivity within the external network through the norepinephrine

pathway; and (6) Increase in activity within the default mode network through the

serotonin pathway. This model aims to explain the potential therapeutic effects that taVNS

has on brain activity in the process of consciousness recovery.

Keywords: disorders of consciousness, post-coma, transcutaneous auricular vagal nerve stimulation, brain injury,

non-invasive brain stimulation, brain network, functional magnetic resonance imaging

INTRODUCTION

Acquired brain injury is an umbrella term for any brain damage that occurs after birth and that is
not hereditary, congenital, degenerative, or induced by birth trauma (1). The mechanisms leading
to acquired brain injury include infection, anoxia and traumatic brain injuries, which can induce
global or focal injury pathophysiology (e.g., cerebral hematoma, contusion, diffuse axonal injury).
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All of these etiologies have the potential to generate disorders of
consciousness (DoC), especially since advanced medical care has
improved survivor rate after severe brain injuries (2).

DoC patients represent a clinical challenge because of
the difficulty of diagnosis [coma, unresponsive wakefulness
syndrome—UWS (3), and minimally conscious state—MCS (4)]
as, to date, no single assessment can lead to a definite diagnosis.
First, up to 40% of clinical misdiagnosis has been reported when
an appropriate and validated scale is not used (5, 6). Advanced
technologies and analytic approaches, such as high-density
electroencephalography (EEG), functional magnetic resonance
imaging (fMRI), and positron emission tomography (PET),
represent tools used to measure the level of consciousness in
patients with DoC (7), but none of them are able to ascertain
the level of consciousness. Consequently, diagnosis is often made
by combining clinical, neurophysiological and neuroimaging
evaluations in the hope of finding a consistent pattern among the
techniques used while being as accurate as possible. Nonetheless,
inconsistency is still a possibility (8).

Consciousness has been described as a combination of two
components: arousal and awareness (9). Arousal refers to the
degree of alertness or vigilance while awareness refers to the
capacity to interact with the environment or the self (10).
Coma is defined as the absence of both arousal and awareness.
UWS [previously called vegetative state (11)] is defined by
the absence of awareness of the environment or of the self,
observed at the bedside, despite the presence of intermittent
periods of wakefulness (arousal), either spontaneously or
following tactile, auditory or painful stimulations (3). MCS is
characterized by variations in arousal levels and recovery of
fluctuant, but reproducible signs of awareness such as visual
pursuit, object localization, or command following (4). In this
case, although awareness is fluctuating, remnants of willful
behaviors are present. While several behavioral scales have been
developed, the Coma Recovery Scale-Revised [CRS-R—(12)] is
currently the recommended scale for categorizing the level of
consciousness (13).

Over the last few years, a growing interest has been observed
in the development of therapeutic strategies to improve and
stimulate the cognitive and functional recovery of DoC patients,
both in the acute and prolonged states (14). One of the emerging
treatments is the vagal nerve stimulation (VNS). After the report
of clinical improvements following the use of VNS devices in four
articles [(15–18); see more details in sections Unique Case of an
Implanted Vagal Nerve Stimulation in a Patient With DoC for

Abbreviations: ACC, anterior cingulate cortex; ARAS, ascending reticular
activating system; CRS-R, coma recovery scale-revised; DBS, deep brain
stimulation; DMN, default mode network; DoC, disorder of consciousness; EEG,
electroencephalography; EMCS, emergence from minimally conscious state; ExN,
external fronto-parietal network; FDG, fluorodeoxyglucose; fMRI, functional
magnetic resonance imaging; GABAA, γ -aminobutyric acid type A; mA,
milliamperes; MCS, minimally conscious state; MDD, major depressive disorder;
mPFC, medial prefrontal cortex; NE, norepinephrine; NMDA, N-méthyl-D-
aspartate; PCC, posterior cingulate cortex; PET, positron emission tomography;
rTMS, repetitive transcranial magnetic stimulation; SN, salience network; taVNS,
transcutaneous auricular vagal nerve stimulation; tDCS, transcranial direct
current stimulation; UWS, unresponsive wakefulness syndrome; VNS, vagal
nerve stimulation.

VNS study and Studies in Patients With DoC for taVNS studies,
respectively], we here aim to explain the possible mechanisms
of action underlying transcutaneous auricular VNS (taVNS) in
DoC: (i) by presenting a model that describes the mechanisms
of action by which taVNS can modulate brain activity; and (ii)
by evaluating its potential role and efficacy in the processes of
consciousness recovery of brain injured patients.

An overview of the most described neural correlates of
consciousness and the vagal nerve anatomy and functions
is first presented to facilitate the understanding of the
model proposition and the mechanisms of action of taVNS
in consciousness recovery processes. We then describe the
current state-of-the-art for taVNS and its impact on brain
activity in healthy subjects and DoC patients. Then, the Vagal
Cortical Pathways model, i.e., our hypothesis about taVNS
general mechanisms of action on the brain, is described
and challenged by taVNS neuroimagery studies. Finally, when
applying this model to patients with DoC, six mechanisms
of action are proposed to explain the potential effects on
consciousness recovery.

NEURAL CORRELATES OF
CONSCIOUSNESS

Scientists have been searching for key structures of
consciousness. Our intention is to provide a comprehensive
overview of the main structures and networks involved in
consciousness processes and recovery.

Key Brain Areas
Three important structures have been described as cornerstone in
consciousness: the ascending reticular activating system (ARAS),
the thalamus and the posterior cingulate cortex. First, the upper
brainstem is a main structure involved in arousal and awareness.
As previously named by Moruzzi and Magoun (19), the ARAS
is divided in four groups of nuclei: (1) the classical reticular
nuclei (the nucleus cuneiforme, the deep mesencephalic nucleus,
part of the pedonculo-pontine tegmental nucleus, and the pontis
oralis nucleus), which send projections to the basal ganglia, the
hypothalamus (20) and the intra-laminar thalamic nuclei (21),
and then project to the cortex through the glutamate pathway; (2)
the monoaminergic neurotransmitter system, which involves the
locus coeruleus with norepinephrine (NE), the raphe nuclei with
serotonin and the substantia nigra and ventral tegmental area
with dopamine. This system directly targets the whole forebrain
[cortex and subcortex—(22)]; (3) the cholinergic nuclei which
include pedunculopontine and laterodorsal tegmental nuclei
and project toward several thalamic nuclei and to the basal
forebrain; and (4) the autonomic nuclei (parabrachial nucleus
and periaqueductal gray matter) which targets the intra-laminar
thalamic nuclei, the basal forebrain and other brainstem nuclei
(23). Altogether, the ARAS has a main effect on wakefulness and
vigilance (19, 24) and autonomic functions (25).

The thalamus is the second important structure involved
in consciousness. It presents a complex architecture of nuclei
organized as follows: from lateral to medial and from ventral
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to dorsal. Several specific thalamic relay nuclei communicate
with the cortex according to their sensory and motor functions,
and are a cornerstone of the contents of consciousness (23).
Other thalamic nuclei project widely influence arousal and
control the level of consciousness (23). Studies have shown
that simultaneous bilateral thalamic infarction, as observed in
the bilateral paramedian thalamic artery infarction or in the
occlusion of the artery of Percheron, can induce a transient loss
of consciousness at the onset of a stroke (26, 27). This temporary
loss of consciousness shows that the thalamus is likely one of the
primary sources for the ascending control of arousal.

Finally, the posterior cingulate cortex (PCC) is located in
the medial part of the inferior parietal lobe and lies within
the posteromedial cortex, which also includes the precuneal
and retrosplenial cortices (28). This group of structures has
been reported as the most metabolically active measured with
fluorodeoxyglucose (FDG) PET-scan (29) during resting state
(i.e., not performing any task) in healthy persons. The metabolic
activity of these structures, using FDG-PET-scan, has also been
associated to the level of consciousness in patients with DoC (30).

Key Brain Networks
In addition to the specific structures that have been shown to be
critical to consciousness, several brain networks have also been
identified as equally important for consciousness recovery, and as
a determining factor in the understanding of taVNS mechanisms
of action. These networks are the default mode network (DMN),
the external fronto-parietal network (ExN) and the salience
network (SN). In order to demonstrate the association between
brain structures outside these networks, which may also be
relevant in the understanding of taVNSmechanisms of action, we
also describe the Mesocircuit model (8), a theoretical model that
exposes how anatomical structures influence each other, and how
they may affect consciousness recovery [for a review see (31, 32)].

Default Mode Network, the Intrinsic Network
Raichle et al. (33) developed a hypothesis of a default mode in
the brain. These authors noticed an important task-dependent
decrease in activity in precise brain areas of healthy subjects;
namely the medial prefrontal cortex (mPFC) bilaterally, the PCC
and precuneal cortex. Later, they also included in the DMN
the retrosplenial cortex, the inferior parietal lobule, the anterior
cingulate cortex (ACC) and other brain regions, including the
temporal lobe and part of the hippocampal formation (34).
These structures were also highlighted in fMRI and diffusion
spectrum imaging studies and described as critical hubs of the
DMN (35, 36).

The DMN seems to be mainly active when people experience
a resting state. It has been referred to as self-awareness (37) but
also as the intrinsic network (38) because of its association to
mental events like inner speech (39), day-dreaming or mind-
wandering (40).

These correlations have encouraged the study of the DMN in
DoC patients. Loss of connectivity within the DMN and with
the thalamus (41) as well as altered patterns within the DMN
when measured with FDG-PET-scan (42) have been reported in
UWS patients. These observations have been confirmed using

diffusion tensor imaging (43) and could be used as an indicator
of consciousness state at the group level [coma < UWS < MCS
< controls—(44, 45)].

The External Fronto-Parietal Network
While the DMN is associated to internal awareness (38), the
lateral fronto-parietal network has been identified as the external
network because it seems to be responsible for the relationship
with the environment. The ExN, also called the task-positive
network, is intimately linked to attention, response and action
selection (46).

The ExN is characterized by the connectivity between the
bilateral superior parietal and the lateral frontal cortices, while
ipsilateral cortices are connected to each other by the ipsilateral
superior parietal fasciculus (31). Its principal role is to draw
attention to environmental stimuli in order to become aware
of their presence (46), making it work closely with sensory
subnetworks (38, 47–52). Due to the connections within these
sensory subsystems, the ExN has been associated to external
awareness [i.e., awareness of our environment—(53)].

Due to its relationship with the awareness of the environment,
the ExN is likely to play an important role in the recovery of
signs of consciousness in DoC patients. A (partially) preserved
metabolism in this network, as measured with FDG-PET-scan,
has been positively correlated with the CRS-R scores (42).

DMN and ExN Negative Connectivity
As defined by Fox et al. (54), the activity of the ExN
regrouping regions routinely activated during goal-directed task
performance, has been associated with a synchronized decrease
in the DMN activation (54, 55). In that framework, Boly et al.
(49) demonstrated that it is possible to predict a somatosensory
stimulus perception according to the recorded brain activity 3 s
before the stimulus presentation. More precisely, if the ExN
activity was high, the somatosensory stimulus was perceived.
However, if the DMN was the most active network, then
the stimulus was not perceived, showing the likely negative
correlation between both networks (49). This study confirmed
the hypothesis supported by Raichle et al.: decreased PCC,
precuneus and mPFC activity could be a way for the brain to
reduce the resources devoted for general or intrinsic information
(33). In other words, internal and external networks seem to be
part of a competing system that opposes extrinsic to intrinsic
information availability.

As negative connectivity between ExN and DMN seems to be
a hallmark of a healthy state of consciousness, the lack of such
a pattern is thought to play a role in DoC patients. Boly et al.
(41) reported a significantly reduced internal-external networks
negative connectivity in a single UWS patient compared to
controls (41). Erratic deactivation patterns (56) as well as
hyperconnectivity between DMN and ExN (45) have been
reported in UWS patients. MCS patients, on the other hand, tend
to have weak deactivation (56).

Therefore, recovering consciousness does not only require
that the connectivity between the regions of ExN and DMN be
preserved, but also that these two networks work in a particular
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synchronization, or rather asynchronously, in order to lead to self
and environmental awareness.

Salience Network
The SN, a limbic-paralimbic network, represents another large-
scale network. The fronto-insular cortex comprising the ventro-
lateral prefrontal cortex and the anterior insula as well as the
dorsal ACC form its core (57). The SN is involved in cognitive
and affective tasks as it may drive attention and working memory
resources to detect events and influence behavior (58, 59). In
other words, it helps the brain to prioritize its next action to
maintain homeostasis (60). Dynamic fMRI analyses showed that
the SN has high temporal flexibility and spatiotemporal diversity
which makes it uniquely positioned to facilitate interactions
with multiple functional systems (59). Task-based functional
neuroimaging studies have also identified a prominent role for
the SN in switching between functional systems, i.e., between
the ExN and the DMN (61, 62). Scientists have identified a
particular cell class named von Economo neurons which seems
to be present only in the SN (61) and have suggested that they are
responsible for the network switching process as they provide a
rapid relay to other parts of the brain (63).

A traumatic brain injury study by Bonnelle et al. (64)
highlighted the need of SN structural integrity to efficiently
regulate DMN activity. SN dysfunction has been reported to
lead to a failure in DMN deactivation during focused task
performance. Qin et al. (65) measured the SN’s functional
connectivity strength in DoC patients and in conscious patients
with brain lesions. They reported a reduced connectivity in
UWS patients compared to MCS and conscious patients when
taken as a group. In addition, they showed significantly higher
connectivity in MCS patients compared to UWS patients when
performing analyses at the individual level.

Mesocircuit
The Mesocircuit model (8) has been proposed to explain
long-term regain of consciousness after severe traumatic
brain injuries. This circuit is based on the main role of
the central thalamus (the intralaminar nuclei and related
paralaminar nuclei) and its connections to the striatum and
the frontal cortex (See the Mesocircuit representation in the
Supplementary Material). According to this hypothesis, the
loss of central thalamus excitatory state, and consequently its
excitatory cortical projections, is the cause of DoC. This state
is the result of striatum dysfunction. Because striatum’s neurons
are particularly vulnerable to anoxia (66), it becomes unable
to inhibit the globus pallidus internus which likely leads to
the inhibition of the thalamus and pedonculopontine nuclei.
Malfunction of the circuit reinforces the no-excitatory state
of the thalamus. Evaluation of glucose metabolism revealed
significantly higher metabolism in the globus pallidus and lower
metabolism in the central thalamus in patients with a brain injury
when compared to healthy subjects (67). Also, a significantly
higher fractional anisotropy has been reported in the left
hemisphere between the striatum and the globus pallidus of DoC
patients when compared to healthy controls (68). Furthermore,
the Mesocircuit model is able to integrate treatment mechanisms

to explain their potential positive effects on DoC patients’ clinical
improvement (14, 69).

Altogether, consciousness requires: (1) active key brain
structures; (2) within DMN and ExN connectivity; (3) a negative
connectivity between the DMN and the ExN which is likely
controlled by the SN; and (4) an intact cortico-striatal-thalamic-
cortical loop, as described in the Mesocircuit model. In other
words, to regain consciousness, these components have to be
at least partially re-established, and they should be targeted by
specific treatments to enhance patients’ recovery.

VAGUS NERVE

Anatomy and Functions
The vagus nerves are the tenth cranial nerve pair and are
the principal nerves of the parasympathetic system. They are
connected to four nuclei according to their different functions
[for more details see (70)]. Afferences (80% of the vagal
nerve sensory fibers) come from two main sources. The first
type of afferent fibers carry general visceral information input
from different sources such as lower pharynx, larynx, trachea,
esophagus, and thoracic and abdominal viscera (including stretch
and chemoreceptors). All visceral afferent fibers converge to the
esophageal plexus and travel up in the right and left vagus nerves.
They are joined by upper visceral afferences and together form
the inferior vagal ganglion. They then enter the medulla and
descend into the tractus solitarius to enter the caudal part of the
nucleus of the tractus solitarius (71). From the nucleus, important
connections are made with the spinal trigeminal nucleus and the
reticular formation, including the locus coeruleus, the thalamus
and the hypothalamus (72). The second type of afference comes
from general somatic input, such as posterior meninges, conchae,
skin on the back of the ear and in the external acoustic meatus
and part of the tympanic membrane. Cadaver dissection made
it possible to more precisely determine the vagal nerve branch
anatomy on the ear and to observe that the cymba conchae was
the only part consistently innervated by the auricular branch of
the vagus nerve (73, 74). The auricular branch passes through the
jugular foramen, enters the medulla and then ascends into the
spinal trigeminal nucleus (71). The second-order axons project
to the thalamus into two different nuclei; the first then projects
toward the somatosensory cortex and the second projects toward
the cingulate cortex (75, 76).

Efferences (20% of the vagal nerve sensory fibers) are also
divided in two categories. The first group refers to special visceral
efferent fibers that control swallowing and phonation. These
fibers initiate from premotor, motor and other cortical areas,
descend through the internal capsule and synapse onto motor
neurons in the nucleus ambiguus in the medulla. They supply
the striae muscles such as pharyngeal plexus, the superior, middle
and inferior constrictors, levator palati, salpingopharyngeus,
palatopharyngeus, palatoglossus, and the intrinsic muscles of
the larynx. Second, the general visceral efferent fibers innervate
smooth muscles and stimulate glands in the pharynx, larynx,
thoracic and abdominal viscera, cardiac muscle, and the aortic
bodies. These parasympathetic nerve cell bodies are located in the
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dorsal motor nucleus of the vagus nerve and in the medial side of
the nucleus ambiguus (77).

UNIQUE CASE OF AN IMPLANTED VAGAL
NERVE STIMULATION IN A PATIENT WITH
DoC

Implanted VNS has been investigated in a case-report of a
UWS patient for which a vagal nerve stimulator was surgically
implanted 15 years after a traumatic brain injury (15). The
device was switched on 1 month after surgery at a starting
intensity of 0.25mA and increased by 0.25mA each week
until it reached 1.5mA (pulse frequency: 30Hz, pulse duration:
500ms, stimulation cycle: intervals of 30 s of stimulation followed
by 5min of rest all day long). After 4 weeks of stimulation,
when the intensity reached 1mA, the authors noticed a clinical
improvement, i.e., reproducible and consistent progress in
general arousal, sustained attention, body motility and visual
pursuit (CRS-R improved from 5 to 10). Three months after
activation, a FDG-PET-scan study showed extensive increased
activity in the occipito-parieto-frontal cortices, the basal ganglia
and the thalamus regions. Between baseline and 6 month post-
VNS, EEG results showed a significant increase in theta band
power, which has been linked to consciousness (78). In addition,
theta network centrality correlated with tDCS response and
differentiated tDCS responders and non-responders (42). This
increase in theta power was distributed over the occipito-parietal,
inferior temporal and fronto-central regions, as well as at a
deeper level, most likely localized in the insula. The recovery (i.e.,
increase in CRS-R scores) was linked to a rise in thalamo-cortical
and fronto-parietal connectivity through a “bottom-up” fashion.

TRANSCUTANEOUS AURICULAR VAGAL
NERVE STIMULATION

With the aim of better understanding the effects of taVNS on
brain activity, studies that measured the effect of taVNS on the
brain using resting state fMRI were selected from two different
databases (Pubmed and Embase) and references were cross-
checked. The next two sections describe the studies performed
in healthy controls and in DoC patients respectively.

Studies in Healthy Controls
Seven studies on healthy subjects have been selected (79–86).
Stimulation parameters and methodological approaches were
very heterogeneous and are summarized in Table 1. All studies
reported brain activation or deactivation compared to sham
stimulation (or to baseline).

First, two feasibility studies looked at the taVNS effects on
the brain with small cohorts of participants (79, 81). Kraus et al.
(79) used the Adjective Mood Scale score and compared the
stimulation of the inner tragus to a controlled condition (i.e.,
no stimulation). The authors showed an improved average score,
suggesting a significantly improved mood following stimulation.
Then, they compared low and high intensity stimulations (low: 4
± 1.0mA, high: 5 ± 1.0mA) using fMRI. Activity modulations

were detected in a greater number of structures after high-
intensity stimulation compared to low-intensity stimulation.
Common modulated structure analyses led to higher BOLD
signal in the left hemisphere areas at high-intensity stimulations
compared to low-intensity stimulations, and to higher BOLD
signals in the right hemisphere areas at low-intensity taVNS
compared to high-intensity taVNS. Lastly, they compared the ear
lobe to the controlled condition and showed ipsilateral activation
of temporal gyrus, PCC, contralateral activation of the thalamus,
insular cortex and cingulate gyrus, and a deactivation of the
bilateral paracentral lobule and contralateral parahippocampal
gyrus. In another study, Dietrich et al. (81) reported activation
and deactivation patterns after inner tragus stimulations when
compared to the baseline, but they did not use a sham condition.
They also measured effects on blood pressure, heart rate and laser
Doppler flow without noticing changes in these parameters (81).

Three placebo controlled studies compared different
stimulation sites to the ear lobe (80, 82, 83). First, Kraus et al.
(80) designed a study to identify the best site to stimulate the
vagus nerve in the ear and compared stimulation effects of
the anterior or the posterior wall of the auditory canal. They
measured deactivation of the nucleus of the tractus solitarius
and the locus coeruleus after stimulation of the anterior wall. No
difference was shown when the stimulation was at the posterior
wall or at the lobe for these two structures. Then, Frangos et al.
(82) performed stimulation at low-intensity (0.3 to 0.8mA) at the
cymba conchae to modulate electrical activity of the brainstem
and the brain. The authors also reported that the greatest effect
of the stimulation was measured during the post-stimulation
period lasting up to 11min. Lastly, they showed an increase in the
activation of the nucleus of the tractus solitarius, not only in the
caudal part. The activation seemed to extend superiorly through
the medulla oblongata. The other study compared stimulation
localization sites: inner tragus, cymba conchae, infero-posterior
wall of the ear with the ear lobe (83). The fMRI results revealed
higher signals in the nucleus of the tractus solitarius and the locus
coeruleus and thus confirmed that the first two stimulation sites
were associated to the vagus nerve. This activation pattern was
not demonstrated after the stimulation of the infero-posterior
wall neither at the ear lobe (87).

One more study compared the tragus stimulation to the ear
lobe during two different sessions separated by at least 24 h (84).
They reported a significant difference in the activation pattern
produced by the inner tragus stimulation when compared to the
ear lobe after only 1min of stimulation.

Finally, another research group focused on taVNS’ brainstem
effects (85, 86). The authors matched stimulation with the
respiratory cycle and stimulated patients during the inhalation
or the exhalation phase on two different fMRI runs. A significant
difference between both phases was reported, with the exhalation
phase leading to a higher activation pattern in the nucleus
of the tractus solitarius, ambiguus, and olivary nuclei, as well
as in the locus coeruleus and the raphe nuclei. Then, they
investigated the effects of stimulation during the exhalation phase
at different frequencies (2, 10, 25, and 100Hz) and recorded
brainstem fMRI signal for each of them. Stimulation delivered
at 100Hz resulted in a significant increase in the fMRI signal
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TABLE 1 | Healthy subject’s fMRI activation/deactivation results after taVNS compared to sham (or to baseline) following anatomical order; brainstem, subcortical areas, and cortical areas.

Studies Kraus et al. (79) Dietrich et al. (81) Kraus et al. (80) Frangos et al. (82) Yakunina et al. (83) Badran et al. (84) Sclocco et al. (85) Sclocco et al. (86)

Objective of the study Feasibility Feasibility Compare

stim sites

Compare

to sham

Compare

stim sites

Compare

to sham

Brainstem evaluation Compare

frequencies

Number of subjects 8 4 8/8 12 37 17 16 30

Age (mean ± SD) years Range

20–37

30.0 ± 2.7 Range

20–37

32.6 ± 13.8 30.9 ± 8.2 25.8 ± 7.6 27.0 ± 6.6 29.0 ± 9.8

Gender (ratio F:M) 6:2 0:4 U 9:3 19:18 8:9 9:7 17:13

Design Parallel Crossover Parallel Crossover Crossover Crossover Crossover Crossover

Blinding Single None Single Single Single Single Single Single

Devices TENS EMP2 Custom TENS EMP2 NEMOS® Custom Custom Custom Custom

Stimulation site Inner tragus L Inner tragus

L

Inner tragus

L

Cymba conchae

L

Cymba conchae

L

Tragus

L

Cymba conchae

L

Cymba conchae

L

Comparative

Sham location – – Lobe

L

Lobe

L

Lobe

L

Lobe

L

Lobe

L

Cymba conchae L

(no current)

Baseline No stim Resting-state Resting-state Resting-state Resting-state – Resting-state

Frequency (Hz) 8 25 8 25 25 25 25 2, 10, 25, 100

Pulse width (µs) 20 250 20 250 500 500 450 300

Intensity (mA) Low: 4 ± 1.0

High: 5 ± 1.0

4.0–8.0 4.0–5.0

under pain threshold

0.3–0.8 0.2–1.8 0.1

under pain threshold

0.1–5.1 200%

sensation threshold

1.6 ± 2.4 4–5 on a

0–10 pain scale

Vary with fq

2: 7.2 ± 1.0

10: 6.5 ± 1.3

25: 5.9 ± 1.2

100: 5.6 ± 1.2

Duration 2min off

–

30 s on−60 s off

X 4

100 s off - 50 s on

X 4

–

100 s off

2min off

–

30 s on−1min off

X 4

2min off –

7min on−11min off

30 s on−60 s off

X 4

30 s off

–

60 s on−60 s off

X 2

–

60 s on−30 s off

Match the breathing

cycle for a

total of 8min

Match the breathing

cycle for a

total of 8.5 min

fMRI technique 1.5 T 1.5 T 1.5 T 3.0 T

12-Channel

head coil

3.0 T

32-Channel

head coil

3.0 T

32-Channel head coil

7.0 T

32-Channel and

birdcage transmit coil

3.0 T

64-Channel

head/neck coil

Brainstem areas

Spinal trigeminal

nucleus

– – – ↑ bilat – nd* ↑ ipsi ↑ ipsi

Nucleus of the tractus

solitarius

– – ↓ ↑ ipsi ↑ bilat nd* ↑ ipsi ↑ ipsi

Locus coeruleus – ↑ ipsi ↓ ↑ bilat ↑ bilat nd* ↑ cont ↑ cont (2Hz)

↑ bilat (100Hz)

Raphe nuclei – – – ↑ bilat – nd* ↑ cont ↑ bilat (2,100)

(Continued)
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TABLE 1 | Continued

Studies Kraus et al. (79) Dietrich et al. (81) Kraus et al. (80) Frangos et al. (82) Yakunina et al. (83) Badran et al. (84) Sclocco et al. (85) Sclocco et al. (86)

Subcortical areas

Thalamus (↑c) ↑ ipsi > cont nd ↑ bilat ↑ bilat nd – –

Caudate (nd) nd – ?(↑c) ↑ bilat ↑ cont – –

Nucleus accumbens (nd) ↓ cont – ↑ cont (↑b) – nd – –

Putamen (nd) nd – ?(↑c) nd (nd) nd – –

Amygdala (↓ b) nd – ↑ cont nd (↓b) nd – –

Hippocam-pus (↓ i) nd – ↓ bilat nd (↓b) nd – –

Parahippocampus (↓ b) nd ↓ ipsi (↓i) ↓ bilat nd (↓b) nd – –

Insula (↑ b) ↑ ipsi ↑ ipsi (↑i) ↑ bilat nd (↓i) nd (↑b) – –

Hypotha-lamus (nd) nd – ↓ bilat nd (nd) nd – –

Cerebellum (nd) ↓ cont – ↑ bilat ↑ bilat ↑ bilat (↑i) – –

Cortical areas

mPFC (↓b) ↑ ipsi ↑ bilat (↑b) – nd (↓b) ↑ ipsi – –

Orbitofron-tal cortex (nd) nd – ↑ cont – nd – –

Lateral

Frontal cortex

(↑i) – – – nd (↓c) nd (↑b) – –

ACC (↑c) nd nd (↑c) ↑ bilat nd (↓b) ↑ cont – –

Pre-central gyrus (↑b) nd – – nd (↓b) nd – –

Post-central gyrus ↑ bilat – ↑ bilat nd (↓b) nd (↑c) – –

Paracentral lobule (↓b) – ↑ bilat – nd – –

PCC/precuneus (↓b) ↑ ipsi nd (↓i) ↑ bilat nd (↓b) nd – –

Parietal cortex (nd) nd nd (↑c) – nd (nd) nd – –

Temporal middle (↓b) – – – nd (↓b) nd – –

Occipital lobe (nd) nd – – nd (↓i>c) nd – –

ACC, anterior cingulate cortex; Bilat/b, bilateral; Cont/c, contralateral to the stimulated ear; fq, frequency; Ipsi/i, ipsilateral to the stimulated ear; L, left; mPFC, medial prefrontal cortex; min, minutes; nd, not detected; PCC, posterior

cingulate cortex; s, seconds; stim, stimulation; ?, unknown; ↑, activation; ↓, deactivation; (), results between parentheses are taVNS vs baseline; results out of parentheses are taVNS vs sham; –, not analyzed; *, lack of results in the

brainstem results may be biased due to the methodological approach used (not accurate for the brainstem).
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in all targeted brainstem nuclei (ipsilateral periaqueductal and
ambiguous nuclei in addition to the nuclei described in the
Table 1) compared to no stimulation. Significant differences were
also reported at 2Hz, but only in the dorsal raphe and the
contralateral locus coeruleus (86).

Studies in Patients With DoC
One case-report investigated taVNS on a 73 year-old woman
in UWS (50 days post-cardiopulmonary resuscitation) (16).
Prior to taVNS, the patient was able to open her eyes without
stimulation and had a clear sleep-wake cycle. Her CRS-R total
score was 6 (out of 23) and stable over several weeks. The patient
then received 4 weeks of bilateral stimulation which led to an
improvement in the CRS-R score (from 6 to 13 in motor and
oromotor subscales) and a change in diagnosis (from UWS to
MCS). After 4 weeks of treatment, the authors reported that
the thalamus and PCC/precuneus were activated by taVNS as
measured by fMRI. They also showed that taVNS increased the
functional connectivity between the PCC/precuneus (used as
seed) and the thalamus, medial-ventral PFC, hypothalamus and
superior temporal gyrus, with a decreased functional connectivity
between the PCC/precuneus and the cerebellum.

A case study series also reported behavioral improvements
after taVNS stimulation (17) in 5 out of 14 patients who were
stimulated at the left tragus for 4 weeks. The six UWS and
eight MCS patients were in a prolonged state (more than 6
months), and had at least five consecutive stable CRS-R scores.
The CRS-R was administered at baseline during each week of
stimulation and 4 weeks after the end of stimulation. The authors
observed that the CRS-R score improved for one MCS patient
after 4 weeks of treatment. Furthermore, 4 weeks after the end
of stimulation, four additional MCS patients recovered at least
one sign of consciousness and were considered as responders.
At this time-point, the first patient who showed improvement
maintained his/her CRS-R score. Four of the responders showed
improvement in only one CRS-R subscale (motor subscale
for three of them; visual subscale for one of them) and one
patient improved in more than one subscale (unspecified).
No neuroimaging nor electrophysiological assessment was
performed to assess the mechanisms associated to taVNS and
improvements of consciousness.

Behavioral improvement was also reported in a study of five
traumatic brain injury participants (18). After 8 weeks of 4 h of
daily stimulation, four out of five participants improved their
CRS-R total scores and three of them presented a better diagnosis,
with two of them becoming EMCS. The majority of participants
achieved the full 4 h of daily stimulation (median: 43 days out of
56, range: 28–52). The main reported reasons to explain the lack
of stimulation were in case of medical complications not related
to the taVNS or loss of skin contact. The Table 2 summarized
sample characteristics and findings.

MODEL’S PROPOSAL

Based on the state-of-the-art presented above, we propose a
model to explain how taVNS influences brain activity that

TABLE 2 | Summary of taVNS studies in DoC patients.

Studies Yu et al. (16) Noé et al. (17) Hakon et al. (18)

Subjects 1 UWS 6 UWS

8 MCS

3 UWS

2 MCS

Age (mean ±

SD)

73 40.2 ± 16.1 Median: 67

Range: 21–80

Etiology Anoxic: 1 Traumatic: 7

Anoxic: 4

Vascular: 3

Traumatic: 5

Time since injury

(mean ± SD)

50 days 12.1 ± 6.4 months Median: 41 days

Range: 31–95 days

Stim site Cymba conchae

bilat

Left tragus Cymba conchae

Sham – – –

Device Custom Parasym®CE NEMOS®

Frequency (Hz) 20 20 25

Pulse width (µs) <1,000 250 250

Intensity (mA) 4.0–6.0 1.5 0.5 the first 3 days

and 1 afterwards

Duration 30min

twice a day

for 4 weeks

30min

twice a day,

5 days/week

for 8 weeks

4 h daily

interval of 30 s on and

30 s off

for 8 weeks

fMRI findings

(3.0T)

Thalamus ↑

PCC/

precuneus ↑

– –

Behavioral

findings

Baseline CRS-R:

6

CRS-R at 4

weeks: 13

Improvement in

motor and

oromotor

subscales

Diagnosis:

UWS→ MCS

Responders

(showed at least

one new sign of

consciousness)

0/6 UWS

5/8 MCS

Improvement in

- motor subscale:

3 patients;

- visual subscale:

1 patient

- >1 subscale:

1 patient

Diagnosis/

CRS-R score

UWS→ EMCS/

5→ 22

UWS→ MCS/

3→ 6

UWS→ UWS/

2→ 3

MCS→ MCS/

12→ 12

MCS→ EMCS/

10→ 23

CRS-R, coma recovery scale-revised; EMCS, emergence of minimal conscious state

MCS, minimal conscious state; UWS, unresponsive wakefulness syndrome; fMRI,

functional magnetic resonance imaging; Hz, Hertz; mA, milliamperes; µs, microseconds;

s, seconds; SD, standard deviation; T, Tesla.

can be applied to DoC patients and explain the process of
consciousness recovery.

The Vagal Cortical Pathways Model
Based on the vagus nerve anatomy, we proposed four consecutive
pathways to explain how taVNS may influence brain activity,
represented in the Vagal Cortical Pathways model (Figure 1).
First, we reasoned that taVNS leads to the activation of the spinal
trigeminal nucleus which, in turn, leads to the activation of the
tractus of the solitarius nucleus (88), both nuclei located in the
lower brainstem (pathway A of the vagal cortical model).

Second, these nuclei project to the upper brainstem, directly
to the locus coeruleus (89) and indirectly via the nucleus
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FIGURE 1 | The Vagal Cortical Pathways model: overall four consecutive pathways of the transcutaneous auricular vagal nerve stimulation. By stimulating the

auricular branch of the vagus nerve, it leads to (A) the activation of the trigeminal nucleus and tractus of the solitarius nucleus located in the lower brainstem (gold

arrows). Their activation leads to (B) the activation of the locus coeruleus and the raphe nuclei localized in the upper brainstem (red arrows). Then, (C) the locus

coeruleus produces norepinephrine and modulates global brain activity (pink arrows). Finally, (D) the raphe nuclei produce serotonin, which also targets the brain,

especially some structures of the limbic system and the frontal cortex (blue arrows).

paragigantocellularis (90), and to the raphe nuclei (91) (pathway
B of the vagal cortical model).

Third, activation of the locus coeruleus results in the release
of NE (92, 93) which, in turn, has widespread effects on many
brain areas (94) (pathway C of the vagal cortical model). NE
likely acts at different levels (synaptic, cellular, microcircuit
and network) and modulates sensory-motor responses, as well
as prefrontal activity (95). All levels of interaction facilitate
cognitive functions, such as attention, emotion, decision-making,
motivation, learning and memory (90, 96–99). The rise in NE
availability leads to large-scale brain network reconfiguration
in the areas densely innervated by the locus coeruleus (99).
A first cluster regroups the insular area, the ACC, the ventro-
medial striatum, the nucleus accumbens, the globus pallidus, the
thalamus, and the hippocampus, while a second cluster includes
the amygdala, the claustrum, the sub-thalamic nucleus, and the
zona incerta (99, 100). These networks are involved in stress
reaction (100) and should facilitate task performance (101).

Last, raphe nuclei activation causes serotonin release and
affects specific brain areas (pathway D of the vagal cortical
model). This neurotransmitter has an affinity for selective
brain areas, such as the hippocampus, hypothalamus, thalamus,
nucleus accumbens, cerebellum, anterior and posterior cingulate
cortices and dorsomedial prefrontal cortex (102). These
projections increase the activity in the DMN and decrease the
activity in the sensory-motor network (103, 104).

Hypothesis Challenge
To challenge the Vagal Cortical Pathways model, we looked at the
taVNS fMRI studies mentioned in Table 1 and used their results
to corroborate each of the four pathways of the proposed model.

The first pathway (pathway A) to challenge is the activation
of lower brainstem nuclei. Spinal trigeminal nucleus and tractus
of the solitarius nucleus have been reported in four and five fMRI
studies, respectively. Three studies supported the activation of the
spinal trigeminal nucleus (82, 85, 86) while one did not report
any difference in this structure (84). Activation of the tractus of
solitarius nucleus was identified in four studies (82, 83, 85, 86)
whereas no change was measured by Badran et al. (84).

According to our model, lower brainstem activation should
lead to the activation of the upper brainstem (pathway B),
especially the ARAS, through the locus coeruleus and the raphe
nuclei. As expected, locus coeruleus activation was reported in
five out of the seven studies (81–83, 85, 86). Three studies
showed an activation of the raphe nuclei following taVNS, either
contralateral to the stimulation (82) or bilaterally (85, 86), while
Badran et al. reported no difference (84). Altogether, the studies
that analyzed the brainstem with an appropriate protocol (82,
83, 85, 86) supported the activation of the lower and upper
brainstem, thereby confirming our hypotheses.

The NE (pathway C) and serotonin (pathway D) pathways
share some targeted brain areas: the thalamus, the striatum, the
hippocampus, the medial prefrontal cortex and the post-central
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gyrus (sensory cortex). Thalamic activation is important for both
pathways. A higher activation of the thalamus following taVNS
was reported in three out of four studies investigating this hub
(81–83). The striatum, which regroups caudate, putamen and
nucleus accumbens, were reported to be more active in at least
one striatum part (82–84). Dietrich et al. (81) did not show
any differences in the striatum, except for a deactivation in
the contralateral nucleus accumbens (81). For the hippocampus,
either no difference was reported (81, 83, 84) or no statement
results were made (82). Two studies showed an activation of
the ipsilateral medial prefrontal cortices (81, 84) while Yakunina
et al. (83) showed no difference, and Frangos et al. (82) did not
analyze these brain areas. All studies supported sensory cortex
activity: two of them demonstrated no difference between sham
and active stimulation (83, 84), while two others highlighted a
bilateral activation (81, 82). In summary, most of the studies
reported a higher activation in most of the shared structures,
except for the hippocampus. Altogether, the majority of these
results matches our hypothesis.

Specific brain areas associated to NE pathway (pathway C)
include the amygdala, the insula, the ACC and the lateral
prefrontal cortex. One out of four studies (82) mentioned a
significantly higher activation of the amygdala, while others
reported no difference when comparing taVNS to sham
stimulation (81, 83, 84). Regarding insula, a higher activation
was outlined in two studies (81, 82) but not in the other two
(83, 84). The ACC was reported to be more active in two studies
(82, 84) while no difference between sham and stimulation were
shown in the other two studies (81, 83). Finally, the lateral
prefrontal cortex was not influenced by taVNS (83, 84) or was
not analyzed (81, 82). Whereas, the results varied from one study
to another, with some of them supporting higher activation and
others highlighting no difference, no study reported deactivation.
However, when compared to baseline, results were not consistent.
These findings were only partially aligned with the hypothesis of
the NE pathway activation.

Last, the serotonin pathway (pathway D) projects to specific
brain regions, such as the hypothalamus, the PCC and the
cerebellum. One study detected a significant difference in the
hypothalamus, as a bilateral deactivation, when compared to
sham and baseline (82). Furthermore, all studies showed bilateral
activation of the cerebellum except for Dietrich et al. (81) who
reported a contralateral deactivation by taVNS. Overall, these
results were inconclusive with respect to the activation of the
serotonin pathway.

Due to methodological [stimulation site inconsistent with
the auricular branch of the vagus nerve innervation site (87)]
and data processing (uncorrected p-values in a cohort of eight
participants, and the report of a greater activation of the nucleus
of the tractus solitarius and locus coeruleus during the sham
condition compared to active stimulation) inconsistencies in two
studies (79, 80), we decided to exclude them from the hypothesis
challenge. Questioning of the results (79) has already been
raised (81, 87).

To summarize, most of the fMRI studies on healthy subjects
seemed to support the activation of the lower and upper
brainstem following taVNS (pathways A and B of the vagal
cortical model). Although not unequivocal in all fMRI studies,

the activation of neurotransmitter pathways by taVNS, especially
the NE pathway (pathway C), is likely promoted (pathways C and
D of the vagal cortical model).

Vagal Cortical Pathways Model Applied to
DoC
Based on the neural correlates of consciousness already discussed,
we think that it is possible to expand the suggested Vagal
Cortical Pathways model to explain recovery in patients with
DoC. We hypothesize that taVNS leads to an improved level
of consciousness of DoC patients following the four pathways
described above, and explained by six specific mechanisms of
action on brain activity and consciousness level (Figure 2).

First, according to the pathways A and B, there should
be an activation of the locus coeruleus and the raphe
nuclei. These nuclei are located in the ARAS and should
participate in the improvement of arousal and some autonomic
functions (mechanism 1). Once the upper brainstem is activated,
subcortical structures and neurotransmitter pathways should
be activated through direct projections. Specifically, the ARAS
projects directly to the thalamus and should favor its activation
(mechanism 2). The thalamus is a key structure that has the
potential to modulate arousal and consciousness and is part of
both the NE and serotonin pathways (pathways C and D of the
Vagal Cortical Pathways model).

The increase in thalamic activity suggests a consequent
stimulation of the striatum, which is also a direct projection of
the raphe nuclei, and consequently should help to re-establish
the cortico-striatal-thalamic-cortical loop (mechanism 3). This
should have a major impact on consciousness according to the
Mesocircuit hypothesis (8) (Supplementary Material).

In addition, the NE pathway (pathway C) may influence
consciousness in two ways. First, projections of this pathway
promote activity in many structures of the SN (105, 106).
Through activation, it facilitates the switch from DMN to
ExN (mechanism 4) which should also contribute to improve
attention (107). In other words, it could improve negative
connectivity between these two networks (108). As mentioned,
this dichotomy is correlated to higher levels of consciousness
and its enhancement is part of consciousness recovery in DoC
patients (42, 45).

Second, reports suggest that NE boost (pathway C) leads
to a better capacity of reaction to stimuli and is correlated
to an increase in gamma coherence (109). In DoC patients,
the gamma rhythm has also been studied (110–112). Gamma
coherence enhancement and higher connectivity within the ExN
is demonstrated in MCS and normal subjects in response to
the sensory stimuli, while no change is found in UWS patients
(110). Consequently, we believe that taVNS has the potential
to promote ExN activity (mechanism 5), which is essential to
improve interaction with the environment. It could also be a
possible explanation to the higher CRS-R scores measured in the
DoC’s case report and series involving taVNS (16–18).

Finally, the serotonin pathway (pathway D) could lead
to an enhancement of connectivity within the DMN. By its
projections to mPFC, ACC, and PCC, it has the potential to
promote connectivity between these structures (mechanism 6).
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FIGURE 2 | taVNS’ specific potential effects on consciousness recovery processes. This figure illustrates the effects of proposed pathways of transcutaneous

auricular vagal nerve stimulation on a damaged brain causing disorders of consciousness, leading to six mechanisms of action. By stimulating the auricular branch of

the vagus nerve, taVNS activates the caudal part of the trigeminal nucleus and of the tractus solitarius in the lower brainstem. Their neurons synapse and activate the

locus coeruleus and the raphe nuclei in the upper brainstem which synthetize NE and serotonin respectively. 1) Both nuclei are part of the ascending reticular

activating system (ARAS, purple rectangle), have a direct effect on arousal, and 2) project directly to the thalamus. Through their excitatory neurotransmitters and

direct projections, it leads to 3) re-establishment of the cortico-striatal-thalamic-cortical loop (dashed arrows), 4) promotion of negative connectivity between external

network (red diamonds) and internal network (blue diamonds) because of a higher activity of the salience network, 5) increase in external network activity and strength

connectivity through NE projections, and 6) increase in DMN activity through serotonin projections. Purple rectangles represent brainstem nuclei, green round shapes

represent subcortical structures and diamonds represent cortical structures, in blue the intrinsic network and in red the external network. ACC: anterior cingulate

cortex, ARAS: ascending reticular activating system, DMN: default mode network, lateral FC: lateral frontal cortex, loop c-s-t-c: cortico-striatal-thalamic-cortical loop,

mPFC: medial prefrontal cortex, PCC: posterior cingulate cortex, taVNS: transcutaneous auricular vagal nerve stimulation.

Higher DMN connectivity is correlated to a higher level of
consciousness (44, 113).

Hypothesis Challenge
Proposed mechanisms of action in DoC patients are supported
by fMRI studies mentioned above in Tables 1, 2. The ARAS
activation through the locus coeruleus and the raphe nuclei
(mechanism 1) has been demonstrated in the hypothesis
challenge of the pathway B detailed above.

Bilateral thalamic activation (mechanism 2) was reported in
most of the studies (16, 81–83). Badran et al. (84) reported no
significant difference and Sclocco et al. (85, 86) did not investigate
this structure. The taVNS studies that analyzed striatum activity
in healthy subjects are reported above in section Hypothesis
Challenge. Results concerning the thalamus (mechanism 2) and
striatum activation (mechanism 3) are not totally consistent
yet they suggest a thalamic activation (mechanism 2). Further
investigations are needed before reaching any conclusion about
the striatum (mechanism 3).

When we challenge changes in connectivity, conclusions
are more difficult to draw because no study was designed
for this purpose. However, activation of the insula was
reported following taVNS (81, 82, 84), which could be
suggestive of a higher activity in the SN and consequently
promote the negative connectivity between ExN and DMN
(mechanism 4).

It was not possible to confirm or disprove our hypothesis
about connectivity within the ExN (mechanism 5) by analyzing
the fMRI results. Indeed, fMRI data collections were acquired
in a resting state, promoting DMN over ExN. Furthermore, ExN
hubs have never been used as seeds to measure ExN connectivity
in the selected studies. One could extrapolate that behavioral
improvement is associated to an increase in ExN strength
connectivity (mechanism 5) or in the negative connectivity
with DMN (mechanism 4) or both. However, this was not
directly measured.

Finally, higher connectivity within the DMN (mechanism 6)
was reported in some studies (81, 82, 84). These studies showed
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activation of at least two brain areas among mPFC, ACC and
PCC. This could be an indirect evidence of higher connectivity
in the DMN core.

DISCUSSION

Based on existing anatomical and neurophysiological studies,
we developed the Vagal Cortical Pathways model. We
demonstrated that this model is supported by the majority
of the findings reported in taVNS-based fMRI studies on
healthy subjects. Moreover, we applied this model in the
context of DoC, hypothesizing six mechanisms of action
to explain the potential role of taVNS in the recovery
of consciousness.

The selected studies did not confirm or disprove all our
hypothesis on taVNS-induced activation pathways and how they
could be applied to DoC patients. One important limitation
of this article is the number of studies using taVNS and
neuroimaging published in the literature. This analysis only
includes fMRI studies because this technique provides one of
the most accurate spatial information allowing comparisons
between studies. Nevertheless, many methodological parameters
including stimulation site, comparative features (sham vs.
control), stimulation characteristics (duration, on-off pattern,
pulse width, and frequency) and the quality of fMRI data analysis
vary among studies. Consequently, the comparison between
studies was restrained.

To confirm the Vagal Cortical Pathways model and the
associated mechanisms of action, a double-blind crossover
study that combines clinical and neuroimaging measures
should be conducted. Cerebral activity measurements during
task performance and resting state should be the method of
choice. Moreover, fMRI studies should always include brainstem
analysis to confirm the activation of the vagal nerve pathway
(pathways A and B of the Vagal Cortical Pathways model).
This should be used as a guarantee of quality in studies
using taVNS because it proves without any doubt, that the
vagal nerve is stimulated (87, 114). In addition, subcortical
areas, such as the thalamus and the striatum should be
systematically analyzed. To estimate brain connectivity, the
thalamus, the frontal lateral cortex, the ACC or the insula and
the PCC should be used as seed regions in fMRI analyses.
Using this methodological approach, it should be possible to
confirm or refute the four taVNS-associated pathways proposed
in the Vagal Cortical Pathways model and its six specific
mechanisms of action explaining the recovery processes of
DoC patients.

The methodology may have a major influence on findings
related to the application of taVNS. After implanting VNS in
rats, Dorr and Debonnel (115) described different time periods
needed to increase the NE and serotonin firing rates. They
compared firing rates after 1 h as well as 1, 3, 14, 21, and 90
days of stimulation. After 1 h, the NE firing rate was significantly
increased while 14 days were required to observe a rise in the
serotonin firing rate. These differential firing rates are likely to

be similar in humans. In this situation, short stimulations such
as the ones applied in the healthy subject studies mentioned in
this article, might induce the NE pathway activation (pathway
C of the Vagal Cortical Pathways model), but not the serotonin
pathway activation (pathway D of the Vagal Cortical Pathways
model). A longer period of stimulation may be needed to
promote the serotonin pathway activation. Of note, taVNS has
been recommended for major depression disorders and some
studies showed mood improvement after four weeks of regular
use (116–119) which could be attributed to higher release of NE
and serotonin.

Other questions regarding the possible mechanisms of taVNS
remain unanswered. Are dopamine and gamma-aminobutyric
acid (GABA) implied in taVNS mechanisms of action? In
this case, how could they influence the pathways described?
Some studies have suggested that NE and serotonin may
modulate dopamine release (104). Furthermore, GABAA has
been hypothesized to be a NE modulator (120, 121). Dopamine
and GABAA agonists already showed positive effects on DoC
patients (122, 123) and were potentially part of another
mechanism of action involved in taVNS-induced consciousness
recovery. However, to date, only indirect signs of GABA
modulation by taVNS have been reported in healthy subjects
(124–126). Additionally, brain injury could disrupt structure
projections but could also have a more general impact on the
brain through changes in the blood brain barrier (127) and
inflammatory processes (128), also having an impact on the
neurotransmitter release (129). It remains unknown how these
brain dysfunctions, disconnected brain areas and acquired brain
injuries affect taVNS pathways.

CONCLUSION

The Vagal Cortical Pathways model describes four consecutive
pathways explaining the influence of taVNS on brain activity: (A)
direct activation of the lower brainstem nuclei; (B) activation of
the locus coeruleus and the raphe nuclei in the upper brainstem;
(C) NE projections with a general influence on the brain;
and (D) serotonin projections to limbic and DMN structures.
In the particular context of DoC patients, we went one step
further and proposed six specific mechanisms of action of taVNS
underlying consciousness recovery: (1) activation of the ARAS,
(2) activation of the thalamus, (3) activation of the striatum and
re-establishment of the cortico-striato-thalamo-cortical loop, (4)
improvement in DMN and ExN negative connectivity through
the NE pathway and the activation of the SN, (5) activity
and connectivity improvements within the ExN through the
NE pathway, and (6) connectivity enhancement within the
DMN through the serotonin pathway. Considering these six
components, we believe that taVNS represents a remarkable
potential approach to modulate arousal and awareness in DoC
patients. If the proposed Vagal Cortical Pathways model is
confirmed by prospective controlled clinical trials, taVNS should
be considered as a valuable bottom-up therapeutic approach for
DoC patients.
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