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1 Introduction: PPIs, Past and Present

Proteins are polymers composed of amino acids that gener-
ally fold into a highly specific tertiary structure. Proteins
can interact with basically all types of molecules, from
small organic compounds, inorganic salts and metals,
sugars, fatty acid, nucleotides, peptides to phospholipids of
cell membranes and with other proteins. Short overviews
of some key events in the field of protein science and pro-
tein�protein interaction (PPI) have been reported recent-
ly.[1–3] We here briefly report some key dates that have con-
tributed to the field of PPIs (Figure 1).

The term “protein” seems to have been first mentioned
in a scientific correspondence on the 10th of July 1838 be-
tween two scientists, Berzelius and Mulder (identification of
a new unknown large molecule and two theories are asso-
ciated with the term “protein”: this substance could be con-
ceived as a primordial substance and linked with the name
Proteus, a Greek mythological character, possibly the first
son of Poseidon, or the term “protein” could be linked to
Proteus because this ancient god could assume a variety of
shapes although this fact about protein was not known at
that time). Around 1920, the interaction between the
enzyme trypsin and one protein inhibitor was anticipated
and so was the concept of antibody (Antikçrper) binding
some other substances (Ehrlich). Important advances also
came around 1920 with the invention of ultracentrifugation
(Svedberg, 1927), the realization that proteins could be pu-
rified and around 1950, it was possible to determine the
amino acid sequence of insulin (Sanger) and alpha helix
and beta sheet were pointed out by Pauling and Corey. Ad-
ditional breakthroughs came from the determination of the
3D structure of proteins by X-ray crystallography: myoglo-
bin (Kendrew) and hemoglobin (Perutz, Fersht, Simon, Rob-
erts), in 1959 and 1960, respectively. Interestingly, the X-ray
structure of hemoglobin is composed of four subunits non-
covalently bound (i.e. , tetramer, obligate complex, see
below) and such work laid the groundwork for understand-
ing quaternary structures (nomenclature of Linderstrom-

Lang and Schellman, 1959) at the structural level and
helped in gaining new insights about allostery (developed
by Monod and collaborators around 1963). At about the
same time, the concept of DNA and of mRNA for the syn-
thesis of proteins was demonstrated by Monod, Jacob and
Lwoff. Another major biophysical approach to investigate
the 3D structure of proteins and in some cases of protein�
protein interactions is NMR, first applied to proteins around
1982[1] while around 1978, Wodak and Janin implemented
the first modeling algorithm for protein�protein docking.
As our knowledge increased, it was more and more obvi-
ous that proteins were not acting alone. Clarification about
networks of interactions yet required the development of
large-scale tools together with global collective decisions
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Abstract : Fundamental processes in living cells are largely
controlled by macromolecular interactions and among
them, protein�protein interactions (PPIs) have a critical role
while their dysregulations can contribute to the pathogen-
esis of numerous diseases. Although PPIs were considered
as attractive pharmaceutical targets already some years
ago, they have been thus far largely unexploited for thera-
peutic interventions with low molecular weight com-
pounds. Several limiting factors, from technological hurdles
to conceptual barriers, are known, which, taken together,
explain why research in this area has been relatively slow.
However, this last decade, the scientific community has
challenged the dogma and became more enthusiastic

about the modulation of PPIs with small drug-like mole-
cules. In fact, several success stories were reported both, at
the preclinical and clinical stages. In this review article, writ-
ten for the 2014 International Summer School in Chemoin-
formatics (Strasbourg, France), we discuss in silico tools (es-
sentially post 2012) and databases that can assist the
design of low molecular weight PPI modulators (these tools
can be found at www.vls3d.com). We first introduce the
field of protein�protein interaction research, discuss key
challenges and comment recently reported in silico pack-
ages, protocols and databases dedicated to PPIs. Then, we
illustrate how in silico methods can be used and combined
with experimental work to identify PPI modulators.
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of launching large-scale scientific projects such as the
Human Genome project (1990) and various structural ge-
nomics initiatives (launched around 1998–2000). The yeast-
2-hybrid (Y2H) method reported in 1989[4] is an example of
a large-scale approach that greatly facilitated the identifica-
tion of binary interactions. The first systematic PPI interac-
tion maps were published in 2000, using Y2H while maps
resulting from the use of another method, namely affinity
purification-mass spectroscopy (AP-MS), started to be re-
ported around 2002. Indeed, the term interactome (coined
by a group of French scientists headed by B. Jacq) ap-
peared in the literature in 1999.[5] During the 1990s, the
2000s, and up to now, an impressive amount of experimen-
tal efforts has been dedicated to PPIs, using known ap-
proaches tuned to PPIs or developed for the direct (mea-
sure the actual concentrations of the bound and free pro-
tein forms, eg. , gel filtration, ultracentrifugation, etc) or in-
direct (imply the concentrations from an observed signal,
e.g. , many optical methods like fluorescence-based meth-
ods) analysis of interaction including PPIs. In addition, sev-
eral methods were applied to investigate affinity such as
isothermal titration calorimetry, surface Plasmon resonance,
and fluorescence-based methods. At the same time, since
1990 and up to now, realizing that such complex system
could not be assessed with experimental approaches alone,
many in silico methods were developed. These approaches
allow prediction of protein�protein complex by text
mining, visualization of dynamic PPI networks, assessment
of the PPI interfaces up to the screening of thousands of

small molecules and the design of novel compound collec-
tions dedicated to PPIs (Figure 2).

Around the year 2000, as a tremendous amount of work
on PPIs has already been carried out, as it was noticed that
PPIs were playing a major role in many disease conditions[6]

(e.g. , in cancer[7]) and because new drug targets were
needed, new projects aiming at identifying low molecular
weight drug-like compound modulators of PPIs (in addition
to the traditional ways of acting on PPIs such as with mon-
oclonal antibodies and other types of proteins and pep-
tides) got started in several academic and private laborato-
ries. However, it is important to note that during many
years up to around 2000–2005, it was essentially consid-
ered by the scientific community that PPIs could not be
modulated (inhibitors or stabilizers) by drug-like com-
pounds. Since then, the situation as changed and remark-
able efforts are now being made to rationally design PPI
modulators (see for instance the literature[8–29]). Many data-
bases and in silico tools that assist drug discovery and
chemical biology have been developed and most URLs for
these services can be found at www.vls3d.com.[30] Of major
importance for the research teams working on methodo-
logical developments and applications of in silico tools in
the areas of Health and Biology, the 2013 Nobel prize in
Chemistry was awarded to Karplus, Levitt and Warshel (see
some recent reviews from these scientists[31–33]). It is indeed
the first Nobel Prize given to work carried out in the field
of computational biology and chemistry.
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Figure 1. Timeline of Protein Science and PPI research.
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The present review will primarily focus on in silico ap-
proaches (focusing somewhat more on software packages
and databases reported in 2013–2014) that can assist the
rational design of “drug-like” orthosteric PPI inhibitors,
while the readers can find recent reviews about other types
of molecules able to modulate PPIs such as peptides, mac-
rocycles and antibodies.[21,34–40] Fragment-based technolo-
gies are well-suited to target PPIs but will be only briefly
commented upon here as recent reviews on the topic have
been reported.[37,41,42] We will discuss some aspects of PPIs,
from networks to structural analysis of the interface with
notes on diseases and target selection. Key in silico meth-
ods that assist the rational design of PPI modulators are
then introduced with a special emphasis on PPI inhibitors.
We illustrate PPI hit discovery on two recently investigated
biological systems, the VEGF-VEGFR complex[43] and the an-
ticoagulant activated protein C.[44]

2 PPI Studies Combining In Vitro and In Silico
Approaches: from Network to Structural
Features and Mutations of the Interfaces,
a Short Overview

It is important first to select the right protein�protein com-
plex among several hundred thousands of known or antici-
pated interactions. In order to perform this step in a rational
manner, knowledge about PPI networks can be critical. Yet,
to gain additional knowledge about the selected com-
plexes, structural analysis and predictions are usually
needed. Several of these aspects can be investigated exper-
imentally but in silico strategies can greatly assist the pro-
cess.

2.1 PPI Network

The explosive growth of PPI data derived from small-scale
to genome-scale studies implied the development of over
100 databases and in silico services dedicated to PPIs.

These many public PPI databases are important because
they help the scientific community to gain new insights
about PPIs (i.e. , data have to be collected, integrated, cura-
ted and translated into knowledge). At present, some data-
bases focus on some specific species and can be very speci-
alized, others may contain data coming from large-scale
studies. Overall and at present, many databases contain re-
dundant information. Some databases contain data about
“experimentally” identified protein�protein complexes (e.g. ,
with Y2H, gene co-expression, split ubiquitin, protein com-
plementation assays, AP-MS…each method has strengths
and weakness and there are known artifacts[45]) while
others are built using interactions collected from literature
searches; some databases contain the 3D structures of pro-
tein complexes (please see for example[45–47]). One major
difficulty with some large-scale data is that PPIs detected
using the same methods or with different methods by dif-
ferent research groups but on the same organism can dis-
play very limited overlap (false positives: detectable interac-
tions but functionally irrelevant; false negatives: miss inter-
actions that do occur) calling for major curation efforts to
filter out unreliable interactions (remove the noise) and
quantification of errors. These differences also suggest that
the techniques could be providing complementary descrip-
tions.[48] There are in fact many reasons for such discrepan-
cies including the obvious differences between the experi-
mental methods used (i.e. , some methods can capture tran-
sient interactions, others are geared towards identification
of stable interactions, etc), but yet, at present, these differ-
ences represent a serious concern for the PPI field as down-
stream analyses of the resulting networks can preclude
meaningful estimates of the size of the functional interac-
tome or of the importance of some interactions in a given
disease condition. Adoption of the Proteomics Standards
Initiative Molecular Interaction (PSI-MI) format[49] and the re-
lated directives of the IMEx consortium should help im-
prove the quality of the data,[50] but much work is needed
in this area. It has been assumed until recently that litera-
ture curated PPI data were of higher accuracy than those
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Figure 2. In silico tools and PPIs. Main in silico tools that assist the investigation of PPIs and the rational design of PPI modulators.
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produced by high throughput studies because they were
derived from focused investigations, but recent analyses
are suggesting that this is not longer the case.[51]

Some well-known databases include, the Database of In-
teracting Proteins (DIP),[52] the Biomolecular Interaction Net-
work (BIND),[53] the Molecular Interaction (MINT),[54] the
Mammalian Protein�Protein Interaction (MIPS),[55] the host-
pathogen interaction database (HPIDB),[56] IntAct,[57] Bio-
GRID,[58] STRING.[59] Structural information can be found at
the Protein Data Bank (PDB) and for instance PISite collects
interface data from the PDB.[60] Structures of domain-
domain interactions are available from 3did,[61] and
iPfam,[62] while a spatial classification of 3D protein domain
interaction database, KBDOCK, has recently been report-
ed.[63] The database Instruct contains high-quality 3D struc-
turally resolved protein interactome networks.[64] Homology
models can also be used to study further PPIs and increase
coverage. The Interactome3D database[46] provides 12 000
structurally resolved PPIs in 8 organisms while Instruct con-
tains over 6500 human PPIs.[64] Another resource, the Pro-
tein Interaction and Molecule Search (PRIMOS) platform,
represents a novel web portal that unifies six primary PPI
databases (BIND; DIP; HPRD (Human Protein Reference Da-
tabase); IntAct; MINT and MIPS, Munich Information Center
for Protein Sequences) into a single consistent repository.[65]

Along the same line, iRefWeb is a bioinformatics resource
that offers access to a large collection of data on protein�
protein interactions in over a thousand organisms. This col-
lection is consolidated from 14 major public databases.[51]

Similarly, curated PPI data can also be found via the PSIC-
QUIC Web service, which provide access on the fly to files
made available by over 28 source databases.[66] Also, the
DASMIweb service currently has access to 36 distributed
data sources. Ten of these provide interaction data that
have been experimentally determined or curated from the
scientific literature, 24 data sources contain computational
predictions, and 2 data sources can be used for scoring the
quality of the interactions.[67] Another example is UniHI 7
(Unified Human Interactome). The online tool integrates
about 350 000 molecular interactions for more than 30 000
human proteins. Besides protein�protein interactions from
12 different resources (including HPRD, BioGrid, IntAct, DIP,
BIND and Reactome databases) as well as four interaction
maps produced by computational predictions and two
high-throughput yeast-2-hybrid screens, UniHI 7 also com-
prises curated transcriptional regulatory interactions from
three complementary databases TRANSFAC, miRTarBase
and HTRIdb. In addition to these interactions, the service
also integrated drug target information from DrugBank
that can be mapped and visualized online without having
to download, manually process and load the data into an
external standalone application.[68] The data can be filtered
by the users (e.g. , number of PubMed references, small-
scale or large-scale experiments, direct or indirect connec-
tion, binary or complex interaction).

PPI networks can be derived from data collected by the
above-mentioned methods, namely, methods that probe
binary interactions (e.g, Y2H), and approaches that detect
multi-protein complexes (e.g. , AP-MS). Both, AP-MS and
binary detection methods probe non-native protein con-
structs, where tags are appended to the native polypep-
tides, potentially altering their properties.[45] As mentioned
above, networks can also be built from curated PPI data
collected from the literature. All these data can be visual-
ized using, for example, the Cytoscape package.[69] Such PPI
networks, comprising in human approximately 130 000 to
650 000 protein interactions (only a small subset has been
fully experimentally identified)[70,71] can shed new light on
human diseases.[72,73] Further, monitoring portions of the
network that change when cellular states and conditions
are altered could also give new insights about the health
and disease states.

Analysis of PPI networks using computational and statis-
tical tools help to understand how networks mediate geno-
type to phenotype relationships. If we take as example
binary interactome maps, structurally, these maps were
found to have a so-called scale-free topology with hierarch-
ical modularity.[74] In networks of this topology, proteins are
depicted as nodes and interactions as edges and in general,
only some proteins, so called hubs, have a very large
number of interaction partners (see the literature[75,76] for in
depth discussion of PPI networks and network visualization)
(Figure 3). This also means that such networks are resilient

against failure of random nodes (e.g. , by mutation) but sen-
sitive to targeted attack of the hubs. Fascinatingly, in both
plants and human, proteins of viral, bacterial, and fungal
pathogens were all found to target such hub proteins.[2] Es-
sential proteins tend to be more interconnected than non-
essential proteins. It would seem that human disease-asso-
ciated proteins too, are more interconnected than non-dis-
ease proteins.[74]

Finally, as whole genome and transcriptome sequencing
gets cheaper and faster, gene expression profile analyses of
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Figure 3. PPI network representation. A simple illustration of part
of a PPI network with the serine protease thrombin at the center.
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normal and pathological conditions should also contribute
to the initial identification of clinically relevant PPIs that will
then require further in depth investigation. For instance,
the pro-survival IAP and BCL-2 proteins represent highly at-
tractive PPI targets since their over-expression is associated
with tumor progression and maintenance. Many compara-
tive gene expression databases have therefore been devel-
oped, that allow the retrieval, analysis and comparison of
gene expression patterns within or among species (see for
instance the literature[77–79]). Although it is not exactly
known how many PPIs would have a therapeutic potential,
such picture strongly suggests that the design of small mo-
lecular weight compounds targeting PPIs could have
a major impact in the near future. With regard to drug dis-
covery endeavors, even if at present PPI networks do not
fully reveal the topologies of networks truly operating in
the cells because of the limitations mentioned above, such
analysis can still help to propose a list of potentially inter-
esting PPI targets that then need to be explored further
and/or could pinpoint several proteins that would need to
be targeted at the same time following, for example, the
concept of rational polypharmacology design.[80–83]

2.2 Structural Analysis of Protein�Protein Interfaces: from
Experimental Structures to Point Mutations Involved in the
Disease State

By introducing atomic resolution knowledge (e.g. , using X-
ray, NMR, high resolution electron miscroscopy) in PPI net-
works and by small-scale in depth analysis of protein�pro-
tein interfaces, new insights can be gained with regard to
the rational design of PPI modulators. General principles
about PPIs at the atomic levels have been proposed for in-
stance by Janin and Chothia in 1990[84] or by Jones and
Thornton in 1996.[85] The range of Kd values observed in
biologically relevant processes that rely on PPIs is wide and
extends over about 12 orders of magnitude from 10�4 to
10�16 M (overall, the binding energy DG between proto-
mers does not appear to be correlated with the size of the
interface or other interface parameters such as the planarity
and polarity for most PPIs[86]). A key fundamental distinction
between PPIs is by their duration (that is whether the inter-
action is permanent or transient and this one can be fur-
ther divided into weak and strong transient interactions). A
slightly different definition expresses the duration as well
as the functional aspect, dividing protein�protein interac-
tions in terms of obligate (the protomers are not stable on
their own in vivo) and non-obligate complexes[1,25,86–89]

(Figure 4).
It is important to note that many PPIs do not fall into dis-

tinct types, rather, a continuum usually exists. Depending
on the types of complexes (permanent, transient…), the
nature of the interface usually differs. For instance, non ob-
ligate protein�protein complexes have been analyzed and
the interface size measured by the buried surface area ap-
proach has a mean value of 1910 �2, with an average of

204 atoms contributing to this region belonging to 57
amino acids, that is about 28 residues per protein.[3] Analy-
sis of a novel PPI dataset suggest that the minimum pro-
tein surface that must be buried to form a functional com-
plex is in the order of 900 �2 (about 500 �2 provided by
each partner) and involves about 12 residues on each part-
ner (of course these values can differ slightly depending on
the datasets and the way the computations are carried
out). A large majority of atoms in non-obligate interfaces
are usually still accessible to the solvent. Relative to the ac-
cessible protein surface, the interfaces of such complexes
are depleted in Glu, Asp and Lys and enriched in Met, Tyr
and Trp. The rim made of residues in which none of the in-
terface atoms are fully buried has a composition close to
the protein accessible surface. The core comprises buried
atoms and about 55 % of all interface residues. This core
region is enriched in aromatic residues and to a lesser
extent, in aliphatic residues (but not Val, Ala and Pro). Arg
residues can be present in both the core and the rim re-
gions. Another region was also recently described, the so-
called support zone that seems similar in composition to
the protein interior.[90] By comparisons with other types of
interfaces, like for instance homodimers, these complexes
tend to have on average a buried surface area twice that of
the non-obligate complexes.[3] The interface is here more
hydrophobic and tends to be enriched in aliphatic and aro-
matic residues, on average, by a factor of 2 as compared to
non-obligate interfaces. Analysis of interfaces can also be
carried out in term of proteins involved in a given disease,
and/or in term of hub versus non-hub proteins. For in-
stance, it was shown that protein�protein complexes and
hub proteins in cancer have smaller, more planar, less tight-
ly packed binding sites compared to non-cancer proteins
(and non-hub proteins), indicating low affinity and high
specificity of the cancer-related interactions.[91,92]

Further, within interface regions, in general, not all resi-
dues are equally important and it is possible to use the
concept of hotspots (the binding energy is not equally dis-
tributed among all amino acids participating in the interac-
tion, some residues are directly responsible for the stabiliza-
tion of the complex, these residues confer most of the
binding energy to the interaction, typically they are defined
as those residues contributing to at least 2 kcal mol�1 to
the total binding energy of the complex).[93] These hotspots
(hotspots tend to occur in clusters and can belong to the
different protein partners, these ones are in contact with
each other and form a network of interactions often called
hot regions[25]) can be identified experimentally but
a number of computational approaches can also be
used.[94] It should be remembered that hotspot residues are
not easy to identify experimentally (e.g. , alanine-scanning
experiments) or in silico (see for instance discussions about
possible misconceptions of alanine-scanning results[89,95]).
Hotspot residues (among the most conserved amino acids)
are generally located around the center of the interface,
and are protected from bulk solvent by energetically less
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important residues forming a hydrophobic O-ring. Trypto-
phan (21 %), arginine (13.3 %) and tyrosine (12.3 %) are
often hotspot residues whereas leucine, serine, threonine
and valine tend to be disfavored.[96–98] The surface area of
a region containing some hotspot residues is around
600 �2, a size that is compatible with a small molecule (NB:
traditional protein-small ligand interaction ~300–1000 �2

and the solvent accessible surface of many small molecule
drugs usually ranges from 150–500 �2), and much smaller
than a typical protein�protein interface (e.g. , 1200 to 2000
to well over 3000 �2).[3] In addition, molecular dynamics
studies have shown that hotspots are relatively rigid as
compared to the surrounding interface residues.[99] Of im-
portance also is the recent estimation of the number of
possible protein interaction types, estimated to be around
4000.[100] By looking at the structure of the interface area
and through investigations of the Protein Data Bank,[101] it
seems that the interface space is limited and even chains
with different folds often have similar interfaces. Possibly,
the interface space is close to complete at present, sug-
gesting that templates for interfaces are probably available

in the current version of the Protein Data Bank (about
100 000 protein structures in 2014).[102–104] Further, it is im-
portant to note that many protein complexes seem to be
dominated by a hot segment where the interaction is do-
minated by a continuous epitope and as such hot seg-
ments could be good predictors of PPI druggability.[34] Still
along this line of attempting to predict PPI druggability in
term of a region capable of binding a small molecule, a re-
cently reported study attempts to define classes of PPIs
that could be more easily modulated by low molecular
weight compounds and suggests that the “tight and
narrow” and “weak and narrow” protein�protein complex
categories are good candidates.[105] PPIs can also be classi-
fied from a secondary structure-centric approach but the
links with druggability of the interface are not fully under-
stood at present,[106] yet, the interactions involving one
helix with a binding groove might be easier to modulate
with a small compound than other types of interfaces.[107]

Additional information about the importance of a pro-
tein�protein complex and about interfaces could come
from non-synonymous single nucleotide polymorphism
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Figure 4. Transient and permanent interactions. A permanent interaction is usually very stable and thus generally exists only in its com-
plexed form.[86,269] A transient interaction associates and dissociates in vivo. In an obligate PPI, the protomers are not found as stable struc-
tures on their own in vivo. Structurally or functionally obligate interactions are usually permanent, whereas non-obligate interactions may
be transient or permanent (often antibody-antigen and enzyme-inhibitor systems). It is important to note that many PPIs do not fall into
distinct types. Rather, a continuum exists between non-obligate and obligate interactions. The strong transient category of interactions il-
lustrates the continuum that exists between the weak and the more permanent interactions. This category includes interactions that are
triggered/stabilized by an effector molecule or conformational change. Some examples are given here to illustrate these concepts. Obli-
gate: the Arc repressor dimer (PDB file: 1ARQ) (the Arc repressor of Salmonella bacteriophage P22 is a dimeric sequence-specific DNA-bind-
ing protein, one chain is shown in dark and the other is painted in grey); Non-obligate permanent heterodimer: insect derived double
domain Kazal inhibitor Rhodniin in complex with thrombin (PDB file: 1TBQ) (thrombin (black) is a key serine protease of the coagulation
system, the inhibitor is painted in grey) ; transient (weak): red abalone lysin dimer (PDB file: 2lyn) (Abalone sperm uses lysin to make a hole
in the egg’s protective vitelline envelope, one chain is in dark, the other is in grey).
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(nsSNP) studies (i.e. , single base changes leading to
a change to the amino acid sequence of the encoded pro-
tein) data because many of these variants are associated
with disease. Clearly, the development of affordable tech-
niques for sequencing genomes and the application of
these approaches will generate vast amount of new data,
including SNPs. Thus far, studies looking at the effects of
nsSNPs were performed on individual proteins but now,
the impact of nsSNPs on protein�protein interactions starts
to be investigated.[108,109] It seems that when a disease-caus-
ing nsSNPs do not occur in a protein core region, they are
preferentially located at a protein�protein interface rather
than on non-interface regions.[110] These studies could help
find rules that assist the selection of a target. Along this
line, the manually curated SKEMPI database has been de-
veloped and contains the effects of mutation on binding
energies for about 2792 mutations across 85 protein�pro-
tein complexes.[111] New insights should definitively come
from the analysis of such repository.

2.3 Protein�Protein Interfaces and Zones that Could be
Drugged

Many different in silico tools can be used to probe PPIs at
a structural level. There are tools that predict hotspot resi-
dues and methods that suggest regions of protein most
likely to be in an interface region. Other algorithms attempt
to predict the structure of a protein�protein complex,
either by docking (guided or not by in silico prediction
methods of protein�protein interface regions) or by com-
parative modeling. As interfaces can be flexible, simulation
tools such as molecular dynamics and normal mode analy-
sis are of major importance. Further, as small ligands tend
to bind in cavities, tools to predict binding pockets, to pre-
dict the druggability of a binding pocket and simulation
tools (that can unravel transient binding pockets) are also
needed. Further, it can be of interest to compare and clus-
ter PPI interfaces to facilitate the design of a compound
that could bind to several protein complexes or to gain
knowledge about druggable PPIs. Several of these methods
will be briefly presented below and it is important to note
that some tools can be used for several purposes, for in-
stance, predict interface residues and hotspots or define
most likely binding pockets for a small compound and hot-
spots.

2.3.1 In Silico Predictions of Hotspots and Residues Present at
the Protein�Protein Interfaces

Diverse protein�protein binding site prediction methods
have been reported (see discussions about these tools
in[97,112]) (Figure 5), mostly based on sequence conservation,
residue propensities, surface topology (planarity and pro-
trusion), electrostatics, hydrophobicity and solvent accessi-
bility.[16,21,23,97,112–114] Some protein�protein binding site pre-
diction approaches are based on the protein sequence

alone like the ISIS (interaction sites identified from se-
quence, neural network approach) approach[115] and PPI-
cons (even if the tool used some structural information
during training)[116] or SPPIDER (it runs with or without in-
formation about the 3D structure).[117] It has however been
noted that methods that use structural information tend to
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Figure 5. In silico tools to study protein interfaces. a) Examples of
software packages that predict interface residues and hotspots. b)
Some tools to predict the 3D structure of protein�protein com-
plexes.
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be more accurate than sequence-based approaches (see
for instance the literature[46]). Other tools aiming at predict-
ing interface regions require the structure of the protein(s).
Some methods use empirical scoring functions like ODA
(see for review the literature[97]), other approaches use se-
quence conservation among other parameters like Pro-
mate,[118] while others make use of machine learning tech-
niques like SPPIDER.[117] Meta-servers, combining different
tools have also been developed such as meta-PPISP.[119] Pro-
tein interface can also be probed by docking.[113]

Other tools developed to predict specifically hotspots
(the experimental approach commonly used is alanine-
scanning) require in general the 3D structure of the protein
complex and can use, for instance, an empirical scoring
function to assess the interface (e.g. , HotPoint[120]) while
others are energy-based like ROBETTA (or ROSETTA),[121] or
FoldX,[122] or iPred.123] Other methods for hotspot prediction
use the unbound protein structures of each partner of
a complex and docking e.g. , the module pyDockNIP of the
pyDock software package[97,124]). Hotspots can also be inves-
tigated by molecular dynamics in water and in isopropa-
nol/water cosolvent environment (see for instance the liter-
ature[125]). Very few methods based on the sequence alone
have been reported to predict hotspots, yet the method
ISIS mentioned above has been also applied to predict hot-
spot residues.

2.3.2 Protein�Protein Docking and Template-Based (and
Threading) Structural Predictions of Protein Complexes

A major difficulty in the field of PPI modulation by small
molecules has been the lack of structural knowledge about
the individual proteins forming the complex or about the
macromolecular complex itself and the fact that some PPIs
involve at least one partner (or one region) that is intrinsi-
cally disordered.[126,127] At present, about 100 000 experi-
mental structures are reported at the PDB (the % of pro-
tein�protein complex is still very low) and it is possible to
build homology models for numerous individual proteins
while the second generation structural genomics initiatives
together with advances in in silico protein�protein interac-
tion predictions should improve the situation with regard
to getting structural information about protein complexes
in the coming years.[46,112,113,128] Protein�protein docking ap-
proaches and template-based structure modeling of PPI
tools can indeed be used to propose reliable (at least some
possible solutions that will need to be validated experimen-
tally) models of the complex[129–131] (Figure 5). Yet, because
of the complexity of the problem, these tools usually bene-
fit from the knowledge of predicted interacting residues
(e.g. , such as to perform docking under restraints), site di-
rected mutagenesis and other experimental information
such as SAXS or electron microscopy. Many protein�protein
docking engines have been reviewed like for instance
in[23,128] while some new protein�protein docking tools re-
leased (or optimized) in 2013 include DockTrina (for dock-

ing triangular protein trimers),[132] ATTRACT,[133] MEGA-
DOCK,[134] pyDockWEB,[135] F(2)Dock 2.0 and GB-rerank,[136]

and SwarmDock (incorporating flexibility).[137] These ap-
proaches can also benefit from new scoring functions as il-
lustrated by the combination of DockRank and the pro-
tein�protein docking tool ClusPro.[138] The other approach
to build a protein complex is to use template-based model-
ing which constructs a complex by copying and refining
the structural framework of related protein�protein com-
plexes known experimentally. A list of in silico methods has
been recently reported by the literature[130,131] and include
for instance TACOS (Template-based Assembly of Complex
Structures)[139] or the Struct2Net server.[140]

2.3.3 Binding Pocket Prediction for Small Molecules and
Hotspots, Druggability and Clustering of PPIs

Most therapeutic targets (e.g. , enzymes, GPCR, ion chan-
nels) usually display a clear concave binding pocket that
can bind a small molecule. While having at hand the 3D
structure of a protein�protein complex is very useful, it is
still possible to design small PPI modulators even if one
has only the 3D structure of one partner (experimental or
homology model) of the complex. Several tools have been
developed to predict binding pockets and to access the
druggability (here defined as the likelihood of finding high-
affinity low molecular weight binders (i.e. , also called li-
gandability[87] first coined by Edfeldt et al. ,[141] yet the term
bindability can be used[142]) of these pockets. The tools
were essentially developed for regular targets but such
methods can still be applied (with cautions) on PPIs. In
general, PPIs have not evolved to bind a low molecular
weight chemical compound; interfaces tend to be flat, rela-
tively large, often lacking a clear ligand-binding cavity but
protein�protein interfaces that bind small molecules are
often found to possess regions with 3 to 5 subpockets (see
below)[143] and it has also been found that binding pockets
may not be directly at the interface but within 6 � of the
interface[102] (of interest we also found that small ligand
binding pockets can be found near the amino acids of
a protein domain interacting transiently with a membrane
surface,[144] could small ligand binding pockets be present
next to most macromolecular interfaces ?). Also, protein�
protein interfaces tend to dynamically adapt to upcoming
ligands (small- or large macro-molecules), and transient
cavities not visible in some experimental structures can
appear on the molecular surface during (or prior to) the
binding event.[126] In such cases, while the flexibility at the
interface poses a significant challenge for structure-based
drug design approaches, molecular simulation tools can
assist and complement X-ray or NMR studies.[145–148]

Binding pocket detection algorithms are essentially sub-
divided into two major classes, geometry-based and
energy-based tools.[149] In addition to predict binding pock-
ets, some tools also provide a druggability score, that is,
they give a score and rank the pockets for their likelihood
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to bind a low molecular weight drug-like compounds
(which can be different from reporting a list of cavities). In
general, methods work on a static protein structure but
some also take into account protein flexibility. Several
recent articles or reviews describe these tools and the un-
derlying concepts.[112,149–156] Of importance is the observa-
tion that protein-ligand binding hotspots in PPIs seems to
correlate with protein�protein hotspots.[88]

Because, the identification of small molecular binding
sites within or nearby protein�protein interfaces can be dif-
ficult with conventional methods, other tools geared
toward PPIs were developed. For example, methods based
on probing a protein surface (that can be tuned for PPIs)
with organic fragments and predicting the locations of
likely binding regions based on where fragments interact
with high affinity were developed. Tools like FTMAP[157]

(computational mapping with 16 different chemical probes)
and the FTFLEX extension of FTMAP (which takes into ac-
count side chain flexibility on the fly)[158] can be used to
pinpoint a region that can be explored by structure-based
virtual screening approaches and for hotspot prediction
while if multiple structures are available (or obtained via
molecular dynamics), FTProd[159] could be applied. In fact, it
has been shown that when a main hotspot region at a pro-
tein�protein interface has a concave topology, with one or
two additional hot-spots close enough to be reached from
the first main hotspot site by a drug-sized molecule, then
the region is likely to be druggable.[95,157]

Related to hotspots and about tools that could help
target PPIs with small organic molecules is the concept of
‘anchor’ sites, which contrary to hotspots have explicit con-
cave/convex geometries appealing for pharmaceutical in-
tervention (i.e. , anchors can also be hotspots). The
ANCHOR tool was developed along this concept to assist
the design of small molecule modulators of PPIs.[160] Anoth-
er related concept is the notion of druggable interface. The
2P2I scoring function has been specifically designed to in-
vestigate interfaces and suggests interfaces that could be
drugged.[161]

Another tool dedicated to PPI identifies and ranks clus-
ters of interface residues in a PPI that are most suitable as
starting points for rational small-molecule design. These
clusters are called Small-Molecule Inhibitor Starting Points
(SMISPs) and the approach is complementary to methods
that identify binding sites through an analysis of the recep-
tor surface (either through shape descriptors or chemical
probes). The PocketQuery web service has been developed
around this concept to predict hotspots, anchor residues
and hot regions.[162] In the same study, the authors expect
after a PDB-wide analysis, that about 48 % of the protein
complexes could be modulated with a low molecular
weight molecule. A related concept involves the investiga-
tion of overlaps between small-molecules and protein bind-
ing sites within families of protein structures (i.e. , bi-func-
tional sites, so far about 8000 proteins from the human
proteome have been annotated with bi-functional resi-

dues[163]). Davis et al.[164] reported the HOMOLOBIND soft-
ware,[163] a tool that identifies residues in protein sequences
with significant similarity to structurally characterized bind-
ing sites.

These tools tend to work on a static structure (although
one can generate alternative conformations prior to the
computations) while some others combine identification of
hotspots by MM-PBSA free energy decomposition on the
basis of the structural ensemble generated by molecular
dynamics (MD) and generation of transient pockets using
molecular dynamics and FRODA simulations.[165]

Tools to compare traditional binding pockets have been
developed[149] and some examples of recently reported ap-
proaches include PocketAnnotate,[166] APoc[167] and Site-
Comp.[168] All these pockets have been stored in databases
like for instance the pocketome.[169] Somewhat related, in
a recent study, interfaces were defined and clustered lead-
ing to the identification of 22 604 unique interface struc-
tures in the PDB.[170]

3 PPIs are Challenging but Should be
Tractable Molecular Targets: Supports from In
Silico Methods

Despite their therapeutic relevance, most small molecule
drugs do not in general hit PPIs but rather enzymes, ion
channels, nuclear hormone receptors and G-protein cou-
pled receptors. In fact, these last 50 years, PPIs have been
essentially modulated by therapeutic antibodies, therapeu-
tic proteins and peptides (or modified peptides or more re-
cently stapled peptides).[7,13,20,35,106,171] However, while bio-
logics can possess outstanding qualities and be valuable in
some pathological conditions,[38] , some of these molecules
tend to be problematic for at least three reasons:[40,172] (a)
most of them are difficult or impossible to administrate
orally with our present knowledge and can be unstable, (b)
adverse immune reactions can occur,[173] and (c) biologics
are usually expensive to develop, and/or produce, and/or
store with treatment for one patient easily reaching over
$100 000 per year[174] (a cost that most healthcare systems
are not able to afford, and the associated problem of align-
ing the cost of small chemical compounds to the cost of bi-
ologics; the cost of drugs is a very controversial issue and
it should be mentioned here that now, small chemical com-
pounds can also be extremely expensive such as the re-
cently approved prodrug Sofosbuvir for the treatment of
hepatitis C infection, thus the debate about cost is far from
being closed). Although significant advances have been
made and will take place in the coming years,[175] several
obstacles will have to be overcome, from cost to delivery
issues.[21] It is here interesting to note that small-molecules
and biologics can be combined (e.g. , a small molecule can
be given with a monoclonal antibody (mAb), or the graft-
ing of a small molecule to a protein including mAb can be
valuable in some cases). Along the same line, small-mole-
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cules could be given together with biologics, not to gain
a synergistic effect but rather to allow proper functioning
of the biologics like for instance to avoid aggregation of
a monoclonal antibody by using a small molecule PPI inhib-
itor (e.g. , proof of concept study with the mAb bevacizu-
mab or Avastin).[176]

There are many reasons that have led to the widespread
perception that modulation of PPIs could not be addressed
by small drug-like molecules, as mentioned earlier in this
review: PPI interfaces are often considered as large, flat,
lacking a well-defined ligand-binding cavity characteristic
of conventional targets[12,22,23,87,177] (these obviously do not
apply to all interfaces) ; the lack of appropriate high-
throughput screening (HTS) technologies and/or the very
low hit rates observed upon running HTS experiments[26,28]

(in our hand, several PPI targets were screened experimen-
tally with a “traditional compound collection” and the hit
rates were around 0.01 % compared to 0.1 to about 5 % for
the screening of a traditional target, yet it can be higher,
see some examples in the recent review of Nero et al.[107]).
Another type of problem concerns the compound collec-
tions used to screen PPIs. Indeed, the paucity of small-mol-
ecules in traditional screening libraries dedicated to PPIs re-
inforced by the observations that small PPI hit molecules
often have physicochemical characteristics slightly outside
of what would be expected for a typical oral drug starting
point suggest that novel screening collections have to be
designed for PPIs.[15,21,22,128,178,179] Thus, many in silico meth-
ods have been developed to assist the design of novel
compound collections.

If we take as example PPI inhibitors, there are 3 main
ways a small compound can block an interaction, the direct
orthosteric inhibition where the compound binds at sites
that overlap with the area of the protein that interacts with
the other protein of a complex, allosteric inhibition where
the small compound binds away from the interface area (it
can be close to the interface or at a very different site) and
interfacial inhibition, where the ligand binds to a transient
pocket appearing for example during a conformational
change and locks the protein complex in a nonproductive
conformation (the targeted complex is a transient kinetic
intermediate that is characterized by unbalanced energetic
and structural conditions that create the binding site for
the drug).[180,181] All approaches have pros and cons and
have to be considered, but definitively, some types of allo-
steric inhibitions and in general interfacial inhibitions are
difficult to predict in silico.[18,24,180,182,183]

3.1 PPI Compound Collections and ADMET

The earliest efforts to develop small protein�protein modu-
lators were based on the mimicry of secondary structure el-
ements of the interacting partners and thus at compounds
able to mimic beta-turns, alpha helices and beta
strands.[13,20] Such approaches are still valuable today.[171]

Indeed, the greatest successes for HTS have been with PPIs

in which a helix of one protein binds into a groove of the
interacting partner (e.g. , the Bcl family)[107] illustrating the
potential of compounds mimicking such secondary struc-
ture elements. As low molecular weight molecules address-
ing PPI were identified and collected, it became possible to
characterize the key properties and structural features of
these compounds (a principal component analysis of chem-
ical vendor collections versus PPI inhibitors and allosteric
inhibitors is reported in Figure 6, it should be mentioned
that at least 4 chemical vendors now provide collections
dedicated to PPIs, Asinex, Chemdiv, Life Chemicals and
Otava, but in our hands, a preliminary PCA analysis indi-
cates relatively similar trends even with these specialized
collections). At present, at least 3 databases are dedicated
to modulators of PPIs, the 2P2Idb (manually curated),[161]

TIMBAL,[184] and iPPI-DB (manually curated).[185] Exploring
and navigating these collections should help gaining in-
sights into privileged scaffolds or substructures particularly
well suited to bind at the PPI interface as well as required
physicochemical thresholds and could help to derive new
rules to design ADMET-friendly collections dedicated to
PPIs.[12,15,18,22,177–179,184,186] Two research groups provide in
silico filters that help to design PPI-focused libraries en-
riched in PPI inhibitors starting from large traditional com-
pound collections. A decision tree approach was used by
Reynes et al.[187] (PPI-HitProfiler which is now available
online via the ADME-Tox filtering tool FAF-Drugs2,[188]) while
support vector machines were used by Hamon et al.[189]

(2P2IHUNTER). Two studies reporting the rational design of
compound collections dedicated to PPI that contain alpha
helical binding epitopes integrating the concept of increas-
ing the three-dimensionality of the compounds have been
reported recently.[27,171] Along the same line but combining
5 physicochemical properties, a filter to select potential al-
losteric inhibitors was published together with an online
server.[190]

With regard to the main physicochemical properties of
known PPI inhibitors and potential ADME-Tox problems, in-
vestigation of known PPI binders showed that the mole-
cules tend to have a higher molecular weight (average MW
of 421 Da for protein�protein inhibitors versus 341 Da for
regular drugs), higher log P (a mean value of ~5.1 for pro-
tein�protein inhibitors was found while it is around 3.5 for
enzyme inhibitors) and a more complex three-dimensional
structure than typical drugs, underlining further the need
of rationally designing the screening collection. Yet, this
general view does not apply to all PPI modula-
tors.[18,22,177,178,185,191] For example, many compounds that are
known to inhibit PPIs (because of some known physico-
chemical properties e.g. , high lipophilicity) tend to violate
several rules of thumb commonly used to select com-
pounds after screening, or to prepare compound collec-
tions or to predict bioavailability or toxicity.[128,192–195] Such
rules can be, the Lipinski rule of five (initially related to oral
administration)[196] or the 3/75 rule (related to in vivo toxici-
ty) which states that compounds with high lipophilicity
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(computed log P>3) and low topological polar surface
area (TPSA<75) can have an increased risk of generalized
toxicities (about 6 times more likely to be toxic in short-
term animal studies)[197] In fact, because of some of these
physicochemical properties, some PPI modulators may fit
the so-called class II (low solubility, high permeability) or

class IV (low solubility, low permeability) category of the Bi-
opharmaceutics Classification System (see for review the lit-
erature[198]). Along the physicochemical properties line of
reasoning and rules of thumb, a GSK team showed that in-
creasing lipophilicity usually contributes to lower drug effi-
ciency and consequently such molecules tend to require
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Figure 6. Principal Component Analysis (PCA) on a commercial and allosteric databases and a database of inhibitors of protein�protein in-
teractions. A chemical vendor database, an allosteric database (version 2013)[270] and the protein�protein interaction inhibitor iPPI-DB (ver-
sion 2013)[185] were used in this analysis. Redundant compounds, amino acids, salts, compounds with less than 10 or more than 140 heavy
atoms, compounds with a molecular weight less than 150 g/mol, or more than 1000 g/mol, compounds with a logP less than �10 or more
than 10, carbocation, compounds with phosphorus, and non-organic compounds were removed with PipelinePilot v.8.5. A diversity criteri-
on was applied on our dataset using Bemis and Murcko assemblies on PipelinePilot v.8.5. The dataset contained 421 522 compounds for
the commercial database, 5141 allosteric compounds and 685 protein�protein inhibitor compounds. The PCA calculations were run using
18 physico-chemical properties. (a) PCA of commercial database, allosteric database and iPPI-DB: individual map of compounds, PPI inhibi-
tors are represented as color dots, commercial compounds are represented as black dots and allosteric compounds are represented in
grey. (b) PCA of commercial database, allosteric database and iPPI-DB: variable map of axes 1 and 2. (c) PCA of commercial database, allo-
steric database and iPPI-DB: variable map of axes 1 and 3. (d) IPPI family colors used for the PCA. The three first axes of the PCA represent
62 % of the total variance. The first axis is represented by the compound’s aromaticity (number of benzene-like rings and number of sp2
carbon) and the compound’s complexity (number of sp3 carbon and Csp3 Ratio). The second axis is characterized by the number of hydro-
gen bond donors/acceptors. The third axis is characterized by the compound’s polarity (here evaluated by TPSA, topological surface area).
The global position of the protein�protein interaction inhibitors population is the upper part of the individual map showing that these
compounds seems to be more hydrophobic and more aromatic. According to the global position of the commercial and the allosteric
compounds, the two dataset seems to share the same chemical space, even if, a small number of allosteric compounds presents an unusu-
al profile. This tendency was confirmed on 5 similar analyses with different commercial datasets from different chemical vendors.
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higher doses which in turn can increase the risk of adverse
drug reactions (e.g. , increased promiscuity leading to in-
crease binding to anti-targets).[199] Further, knowing that
starting hits usually have to grow in size during the com-
pound optimization phase with in general a further in-
crease in log P (in fact compounds that have more chance
to succeed tend to preserve a relatively low lipophilicity
during the optimization program),[200] a clever design of PPI
screening collection is required such as to obtain com-
pounds with balanced ADME-Tox properties still compatible
with the binding site features present at or near the pro-
tein�protein interfaces. Other difficulties could occur if
a PPI compound has to hit a CNS target since, in general,
the CNS physicochemical property ranges for molecular
weight are around 300 and for log P, they are around
2.8.[201] However, although the ADME-Tox properties of PPI
modulators are a legitimate concern, we have recently re-
viewed several PPI interfaces that can be modulated by hits
that match the generally accepted rule of five-like guide-
lines.[18,185] For the remaining molecules, it is true that some
PPI modulators have a higher log P (but many have an ap-
propriate log P to start drug discovery) and molecular
weight than many drug candidates that hit traditional tar-
gets, yet for the PPI modulators that have reached clinical
trials, several seem to be orally available.[202] In addition,
many studies highlight that some of these physical chemis-
try rules might be too restrictive (e.g. ,[203,204]) as, for in-
stance, larger compounds could reduce their effective size
and lipophilicity through hydrophobic collapse or by form-
ing internal hydrogen bonds, thereby enhancing mem-
brane permeability and possibly impacting the overall bio-
availability.[204–207] Furthermore, it has been stated that small
PPI inhibitors tend to use more aromatic interactions than
the corresponding protein partners that utilize also several
charged residues, suggesting that new PPI modulators
could possess more charged groups (this could improve
some ADME-Tox properties while deteriorate others like
permeability, but this information is important to ex-
plore).[208] Tremendous amount of work is needed in this
area while inspiration from natural compounds could help
understanding how to rationally go beyond several ADME-
Tox rules of thumb.[209,210] Overall, it is likely that such obsta-
cles will be overcome in the coming years.[18,183] In silico ap-
proaches that make use of multi-parameter optimization
protocols should indeed facilitate the design of molecules
with balanced ADME-Tox properties, adequate potency and
relevant selectivity tuned to the disease type.[211] Definitive-
ly, gain in knowledge will come from the analysis of com-
pounds that are in advanced preclinical stages and in clini-
cal trials. At present only around 30–50 compounds[185] are
at these stages but the increase research activity in this
area should rapidly bring new insights that will favor ration-
al and quality by design approaches.

3.2 Virtual Screening of PPIs

PPIs can be probed using HTS or virtual screening experi-
ments followed by in vitro assays of a small selected list of
molecules resulting from these computations. The term
“virtual screening” (or in silico screening) was first reported
in the scientific literature in 1997;[212] it can be defined as
a set of computer methods that analyzes large databases
or collections of compounds in order to identify and priori-
tize likely hit candidates.[128,213–223] In silico screening search
can be performed on libraries that contain physically exist-
ing compounds, on PPI enriched focused collections or on
virtual libraries, and thus on compounds that are not yet
synthesized. Noteworthy is the fact that virtual screening
can be used on very large databases that no experimental
approaches can tackle. It is important to remember that
the easily accessible drug-like space contains about 1033

molecules[224] and that with 17 atoms and simple chemistry
rules, it is already possible to generate 166 billion com-
pounds.[225] Yet, it should be noted that in silico screening
goes much beyond number crunching, it helps to generate
ideas, to reduce the cost and to gain knowledge. In silico
screening experiments can be performed to complement
HTS (and are indeed often integrated in screening cam-
paigns), prior to experimental screening, or after HTS to
rescue some compounds potentially missed by the in vitro
readouts (see latent hits by[226]).[227] The complementarity
between HTS and virtual screening has been shown in
many studies, like for instance by screening both in silico
and experimentally the same 198 000-compound collection
against cruzain, a cysteine protease target for Chagas dis-
ease.[228] Along the same line, a computer screening experi-
ment performed on a subset of the ChemBridge compound
collection (about 500 000 molecules) and a study making
use of HTS (50 000 molecules using also molecules from
ChemBridge) found quasi-identical hit molecules for the
proteasome cancer target.[229,230]

Virtual screening approaches have been traditionally sub-
divided into two main methods[231–236] (Figure 7): first,
ligand-based screening, in which 2D or 3D chemical struc-
tures or molecular descriptors of known actives (and some-
times inactive molecules) are used to retrieve other com-
pounds of interest from a database using some types of
similarity measure or by seeking a common substructure or
pharmacophore between the query molecule and the com-
pounds in the database; and second, structure-based (or
3D receptor-based) screening in which compounds from
the database are docked into a binding site (or over the
entire surface) and are ranked using one or several scoring
functions. Structure-based virtual screening also includes
tools to perform binding site-derived pharmacophore
search. There are some slight differences on how the meth-
ods are classified but the nomenclature used here is gener-
ally well accepted.[217] Of importance for PPIs is that struc-
ture-based screening can be carried out on homology
models or on low-resolution structures.[237–239]
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The structure-based virtual screening process can then
be continued if deemed appropriate using different types
of post-processing approaches (see for instance the litera-
ture[214,215,236,240–242]). Ligand- and structure-based methods
can be combined if the necessary information is avail-
able.[243] Virtual screening methods are relatively well-estab-
lished, and numerous success stories in terms of hit identifi-
cation, contribution to the development of drug candi-
dates, or marketed products have been recently re-
viewed.[233,244] This does not mean that the methods have
no flaws but yet they contribute significantly to the identifi-
cation of interesting molecules.[231] Over 100 commercial
and free tools are available to carry out virtual screening,
many of these approaches have been discussed in several
recent reviews.[30,128,232,242,245,246]

A compound collection is required to perform virtual
screening and its preparation is as mentioned above critical
in the case of PPI screening.[22,178] Physicochemical proper-
ties, structural alerts and flags for promiscuity should in
general be considered. This is also important because mol-
ecules have to be optimized[234] and as it has been noticed
that artifact compounds (e.g. , PAINS, pan assay interference

compounds) are reported at a growing rate[128,247,248] (warn-
ing, some authors do not find that some PAINS molecules
are that problematic[249]). In silico tools such as the FAF-
Drugs online server[188] can assist in the preparation of
a compound collection and, for instance, evaluate physico-
chemical properties, search for the presence of PAINS and
toxicophores as well as assess the potential of a compound
(the molecule has to be in 3D) to be a protein�protein in-
teraction inhibitor according to the rules defined in the lit-
erature.[187] It is important to note that when searching for
PPI modulators it might be necessary to apply soft in silico
ADME-Tox filters to prepare the collection. For example,
chemical groups that could react with a protein to form
a covalent bond are usually not welcome in a drug discov-
ery program, yet this could be useful when probing a PPI
like in the case of inhibitors of the thyroid hormone recep-
tor and co-regulator proteins.[250]

While all virtual screening approaches can be used for
PPIs, some like pharmacophore derived from protein�pro-
tein interfaces[246] seems well-suited. Other tools like dock-
ing-scoring can be used although they have not been de-
signed to target PPI pockets (the docking step can be af-
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Figure 7. Main virtual screening methods. The two main virtual screening methods are ligand-based methods and structure-based meth-
ods. Some approaches can be considered to be at the interface between the two main screening concepts, such as some types of pharma-
cophore modeling that use information derived from co-crystallized target-ligand complexes or in the case of proteochemometric model-
ing, QSAR and systems pharmacology. Abbreviations: LIE: linear energy interaction; MM-PB(GB)SA, molecular mechanics-Poisson Boltzmann
(Generalized Born) Solvent accessibility; QM/MM, quantum mechanics/molecular mechanics; QM, molecular mechanics. Additional informa-
tion can be found in some recent reviews about virtual screening,[217] fragment-based approaches,[271] structure-based tools for screening
and compound optimization,[272] or systems pharmacology,[128] or pharmacophore.[246]
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fected by the lack of well defined binding cavity and the
scoring step is always sensitive). In a recent study per-
formed over several ligand-docking engines, it was found
that good docking solutions could be obtained using con-
ventional docking-scoring tools (yet a drop of about 10 %
has been noticed as compared to regular pockets[251]), sug-
gesting that structure-based screening can already assist
the design of PPI modulators although additional methodo-
logical developments are required.[252]

4 PPI Low Molecular Weight Hit Discovery by
Combining In Silico and In Vitro Approaches

Modulating PPIs with a small molecule could be beneficial
in many cases, even more so if the small molecule can be
administered orally.[12,19,253] First, this could open new
avenue for therapeutic intervention (see some recent re-
views discussing the combination of in silico, in vitro and in
some case in vivo studies to assist the design of hits and or
clinical candidates or even PPI drugs such
as[18,22,23,29,171,178,181,183]). Further, as discussed in recent re-
views, designing catalytic site inhibitors can be limited by
high structural similarity among enzymes of the same
family whereas the greater structural variability of protein�
protein interfaces may provide a real opportunity for selec-
tivity. Also, PPI modulators could be less prone to drug re-
sistance than catalytic site inhibitors. In addition, even if
two proteins bind with high affinity, they could be success-
fully out-competed by a weak small molecule binder.
Indeed, in some cases, the mere alteration of a binding
equilibrium will be sufficient to produce a significant bio-
logical effect without the need to completely inhibit the se-
lected PPI. Several drugs (which target PPIs) are already in
clinical use such as tirofiban (mainly orthosteric) targets in-
tegrins (glycoprotein (GP) IIb/IIIa receptors on platelets) to
treat cardiovascular disease; maraviroc (mainly allosteric) in-
terferes with the HIV gp120 interaction with the CCR5 re-
ceptor and blocks HIV viral entry (see for instance the litera-
ture[23]). At least 30 molecules are in preclinical or clinical
stages[185] and target systems such as the IL2 and IL2R, Bcl2
and Bcl-XL, HDM2 and p53, the E2 viral transcription factor
and the viral helicase E1, the ZipA membrane anchored
protein and the FtsZ tubulin, and the TNF (tumor necrosis
factor) trimers. These pioneered PPI systems have been dis-
cussed extensively in numerous recent reviews and we will
thus focus here on two new complexes.

4.1 Inhibition of the VEGF-VEGFR Interaction

Modulation of PPI by small molecules has been applied in
several therapeutic areas and given the pivotal roles of PPIs
in many processes relevant to malignant development, the
concept has been used very actively in the field of
cancer.[107,253,254] Among the many PPIs important in cancer
is the vascular endothelial growth factor (VEGF)-VEGF re-

ceptor (VEGFR) signaling pathway. Vascular endothelial
growth factor (VEGF) plays a key role in angiogenesis, one
of the hallmarks of cancer.[255] VEGF binds to several recep-
tors including two major tyrosine kinase receptors (TKR),
VEGFR-1 and VEGFR-2, on the surface of endothelial cells,
thereby activating signal transduction and regulating both
physiological and pathological angiogenesis. Whereas
VEGFR-1 has been shown to stimulate endothelial cells mi-
gration.[256] , VEGFR-2 is known to be a main initiator of sig-
naling pathways in endothelial cells.[257] The VEGF-VEGFR
system is a validated and promising target for anti-angio-
genic treatments. Although the VEGF-VEGFR interface was
found to be one of the flattest protein�protein interfaces
available in the investigated dataset (the interface is rela-
tively large >800 �2 with a planarity value of 1.7 �[43]), well
below those of most transient protein�protein complexes
(mean planarity value = 2.7 �,[258] successful structure-based
in silico screening was performed by targeting the VEGF-
binding zone of the extracellular domain D2 of VEGFR-1. As
flexibility is known to be important at protein�protein in-
terfaces, the DFprot server was used to investigate the pos-
sible plasticity of the D2 domain of VEGFR-1.[259] Analysis of
the X-ray structure (with the probe mapping algorithm Pro-
toMol implemented in the screening package Surflex and
with LigBuilder) and of the simulation suggested that this
region of the D2 domain was essentially rigid and as such
docking experiments were performed on only one 3D
structure of the D2 domain. Then, 8000 proprietary drug-
like molecules (a subset of the French National Compound
Collection) were docked with Surflex[260] onto the predicted
binding pockets of the target (Figure 8).

After the in silico analysis, 206 compounds were selected
for in vitro assays. Twenty compounds inhibiting the forma-
tion of the VEGF-VEGFR complex in the micromolar range
were identified. The bioactive molecules contained a (3-car-
boxy-2-ureido)thiophen unit and the best IC50 was ~10 mM.
Moreover, the most potent compound (compound ID 4321)
decreased the auto-phosphorylation of VEGFR-1 induced
by VEGF, inhibited HUVE cells capillary formation and dis-
rupted the actin and tubulin networks. These findings sug-
gest that the best hit could be a promising scaffold to
probe this macromolecular complex and used as a starting
point to develop new treatments of diseases linked to
VEGFR-1.

4.2 Protein�Protein Interaction Inhibition Involving the
Anticoagulant Protein C

The blood coagulation pathway comprises a series of effi-
cient enzyme-cofactor complexes assembled on the surface
of negatively charged phospholipids that are exposed on
activated cells at sites of vascular damage. Activation of the
pathway results in the generation of high concentrations of
thrombin, which clots the blood. Several anticoagulant
mechanisms control the coagulation pathway and under
normal conditions the systems are balanced and bleeding
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and thrombosis are avoided.[261–264] Inherited and acquired
conditions can tip the pro- anti-coagulant balance resulting
in bleeding or thrombosis. The therapeutic principle used
for treatment of bleeding disorders such as hemophilia is
to supplement the missing coagulation factor, whereas in-
hibition of coagulation factors is the dominating approach
for treatment of thrombosis. An alternative approach for
treatment of hemophilia could be to inhibit the anticoagu-
lant pathways. This could decrease the demand for re-
combinant factor concentrates (e.g. FVIII) and be also bene-
ficial for the treatment of hemophilia patients with inhibito-
ry antibodies. Protein C circulates as a vitamin K-dependent
zymogen serine protease that is activated to an active
form, activated protein C (APC), by the thrombin-thrombo-
modulin complex on the surface of endothelial cells. APC
has multiple substrates cleaving at several positions in both
coagulation cofactors FVa and FVIIIa and in addition APC
cleaves also the membrane-bound PAR1 receptor. The
cleavage of PAR1 on endothelium results in cytoprotective
effects. Thus, APC, is a key component of the protein C an-
ticoagulant pathway and a key regulator of the coagulation
cascade. A point mutation in the FV gene (FV Leiden) re-
sulting in the APC-resistance phenotype due to the replace-
ment of Arg506 with Gln is a highly prevalent thrombophil-
ic risk factor.[261–263] The observation that hemophilia pa-
tients carrying this mutation have a milder bleeding ten-
dency suggests that inhibition of APC could potentially al-
leviate the bleeding tendency in hemophilia patients. We

have used a structure-based virtual screening approach to
discover drug-like molecules that bind to an exosite of APC
(the catalytic site should remain functional as much as pos-
sible to carry out the cytoprotective effect) and inhibit the
interaction between APC and its substrate FVa.[44] Such mol-
ecules could potentially be developed into drugs to treat
bleeding disorders. The experimentally determined 3D
structure of APC was used and druggable binding pockets
were search using several different in silico tools (FTsite,
DoGSiteScorer and MetaPocket which combines 8 predic-
tors: LIGSITEcs, PASS, Q-SiteFinder, SURFNET, Fpocket,
GHECOM, ConCavity and POCASA). Potentially interesting
sites on APC were identified in one exosite located next to
the active site (Figure 9).

Structure-based screening (with the package Surflex) of
50 000 compounds (ChemBridge Diversity set) resulted in
the identification of 624 compounds that were then experi-
mentally tested. The ability of these compounds to inhibit
the degradation of FVa by APC was used as mean to fur-
ther select the most potent compounds. After several re-
peated rounds of testing, the best 20 compounds were
tested for direct binding to APC using surface plasmon res-
onance (SPR). To verify that the compounds specifically
bound to the targeted exosites, we took advantage of
available recombinant APC variants (i.e. , mutations in the
exosite) in the SPR analysis. The majority of compounds in-
fluenced cleavages in FVa. It remains to investigate whether
the compounds affected the degradation of FVIIIa and the
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Figure 8. In silico-in vitro screening of the VEGF-VEGFR complex. The crystal structure of residues 8 to 109 of VEGF (cartoon diagram) in
complex with VEGFR-1 D2 domain (shown here in solid surface representation; yellow, hydrophobic/aromatic; red, oxygen atom and/or
negatively charged; blue, nitrogen atom and/or positively charged) is shown. A probe-mapping algorithm was used to analyze the inter-
face area (green sphere highlights regions where carbon atoms can bind with reasonable affinity, blue spheres represent nitrogen atoms
and red spheres, carbonyl groups). Three pockets (A, B, C) could be identified (dashed circles) and are surround by dashed circles. Struc-
ture-based virtual screening was carried out over this entire zone and 20 molecules were identified after in vitro studies. The best com-
pound binds directly to the VEGFR-1 D2 domain and inhibits protein�protein interaction.
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cleavage of PAR1. At this stage, these molecules bind to
APC with Kd values in the range of 10�3–10�5 M and will
clearly require optimization. Yet, this work provides a first
proof of principle that it may be possible to rationally
design small molecules targeting the exosites of APC to
achieve inhibition of the anticoagulant protein C system.
The future will tell whether this strategy will be a useful ap-
proach for the treatment of bleeding disorders.

5 Summary and Outlook

Currently, most small molecule drugs on the market (about
70 % of the about 3500 available drugs) hit only about 400
to 500 targets (most of them being proteins) while func-
tional genomics predicts about 3000 to 10 000 disease
modifying “traditional” proteins as potential targets (GPCRs,
enzymes and ion channels… many traditional proteins are
druggable but unfortunately many are of poor quality with
respect to disease rationale).[265,266] As discussed in this
review, ongoing investigations of PPI research teams
should contribute to expand considerably the number of
potential drug targets, much beyond the traditional

ones.[87,267] Small molecules can be used as chemical probes
to explore biology and definitively, small compounds dedi-
cated to PPIs will be of great interest to get new insights in
the health and disease states. Indeed, most disease-modify-
ing proteins exert their functions through interactions with
other proteins. Although PPIs are essential for cellular func-
tions, targeting such interactions with low molecular
weight compounds (and if possible orally available mole-
cules) was considered impossible during many years, but,
fortunately, several research groups have challenged the
dogma. As we gain knowledge about macromolecular com-
plexes, about PPI networks, about the chemistry required
to hit such targets, we expect to see more and more mod-
ulators of PPIs entering clinical trials and most likely, new
drugs acting on this target class will get approved in the
coming years. We have also discussed in this review several
in silico tools that can be used to assist the rational design
of PPI modulators (a simple flowchart is provided
Figure 10) and combined with in vitro-in vivo experiments.
These in silico methods include PPI network analysis, struc-
tural analysis and prediction of the interfaces, druggability
predictions, rational design of focused compound collec-
tions and various virtual screening computations. Drug re-

S
p
e
c
ia

l
Issu

e
S
T
R

A
S
B

O
U

R
G

Figure 9. Inhibition of the APC-FVa interaction. A schematic diagram represents the anticoagulant activated protein C (APC) (left). APC is
composed of a Gla domain allowing interactions with the appropriate cell membranes, two EGF-like modules and a serine protease (SP)
domain. Such organization positions the active site far above the membrane, in the right location to interact with its substrates and part-
ner proteins. A diversity set containing 50 000 molecules was docked in an exosite of APC (right, top) and a possible pose for one active
compound is shown (right, bottom). The position of this docked molecule seems reasonable as the compound was not binding properly
a mutant protein C that had mutations in the exosite area. This exosite region is known to be important for interacting with the blood co-
agulation cofactor Va.

� 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2014, 33, 414 – 437 431

Review www.molinf.com

www.molinf.com


positioning could also be applied to PPIs as illustrated by
the discovery of raloxifene and bazedoxifene as novel in-
hibitors of the IL-6-GP130 interface.[268] With regard to drug
discovery, clearly, some biological systems are going to be
easier to address with low molecular weight compounds
than others just like in the case of enzymes or of other tar-
gets in general. The many ongoing in silico developments
worldwide combined with the right in vitro-in vivo experi-
ments, and many ongoing clinical studies should definitive-
ly contribute to a more efficient and rational discovery of
new types of PPI modulators against an ever-increasing
number of protein�protein complexes in all therapeutic
areas.
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