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Simple Summary: Hepatocellular carcinoma is a life-threatening disease. Despite many efforts to
understand the exact pathogenesis and the signaling pathways involved in its formation, treatment
remains unsatisfactory. Currently, an important function in the development of neoplastic diseases
and treatment effects is attributed to changes taking place at the epigenetic level. Epigenetic studies
revealed modified methylation patterns in HCC, dysfunction of enzymes engaged in the DNA
methylation process, the aberrant function of non-coding RNAs, and a set of histone modifications
that influence gene expression. The aim of this review is to summarize the current knowledge on the
role of epigenetics in the formation of hepatocellular carcinoma.

Abstract: Hepatocellular carcinoma (HCC) remains a serious oncologic issue with still a dismal
prognosis. So far, no key molecular mechanism that underlies its pathogenesis has been identified.
Recently, by specific molecular approaches, many genetic and epigenetic changes arising during
HCC pathogenesis were detected. Epigenetic studies revealed modified methylation patterns in
HCC tumors, dysfunction of enzymes engaged in the DNA methylation process, and a set of histone
modifications that influence gene expression. HCC cells are also influenced by the disrupted function
of non-coding RNAs, such as micro RNAs and long non-coding RNAs. Moreover, a role of liver
cancer stem cells in HCC development is becoming evident. The reversibility of epigenetic changes
offers the possibility of influencing them and regulating their undesirable effects. All these data can
be used not only to identify new therapeutic targets but also to predict treatment response. This
review focuses on epigenetic changes in hepatocellular carcinoma and their possible implications in
HCC therapy.
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1. Introduction

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths
worldwide [1]. It represents the most common form of liver cancer, responsible for over
90% of primary liver cancers. Current treatment options, such as hepatic resection, radio-
frequency ablation, chemoembolization, or liver transplantation, are relatively effective
in the early stages of HCC, when patients retain liver functional reserve. However, many
patients are diagnosed at a late stage and, therefore, are not eligible for such a treatment.
A high percentage of patients die because of metastases or recurrence. Alternative or
palliative treatment is very limited due to resistance to chemotherapy or radiotherapy.
Thus, the average survival rate of the treated patient is approximately two years [2].

2. HCC Etiology and Prevalence

The most important risk factor of HCC is liver cirrhosis, present in up to 90% of
patients [3]. This condition usually develops as a result of infection with hepatitis B
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(HBV) or hepatitis C (HCV) virus, aflatoxin B uptake, or alcohol consumption. In some
cases, the etiology is associated with cirrhosis that results from a coexisting liver disease,
such as non-alcoholic fatty liver disease (NAFLD), or some hereditary diseases, such as
hemochromatosis [4].

The HCC prevalence is more common in Eastern Asia and sub-Saharan Africa; how-
ever, in Western countries (northern Europe, North America, and Australia), HCC incidence
is rising, which is associated not only with hepatitis or high alcohol intake but also with the
growing percentage of obese people in these populations [5]. Meta-analysis data suggest
that a high body mass index increases the relative risk of liver cancer [6]. An additional
factor affecting the incidence of HCC is gender. In fact, HCC occurs more frequently in
men, with a male-to-female ratio ranging from 2:1 to 4:1 [4]. This difference was assigned
to steroid sex hormones and their nuclear receptors [7]. Although significant differences in
nuclear androgen and estrogen receptors functioning have been found in men and women
with HCC, no significant clinical implications have been identified. The high technologies
currently used to study changes occurring during cancer pathogenesis at the cellular and
molecular levels have brought much important information regarding HCC. In this review,
we summarize the most crucial dysfunctions of signaling pathways and factors that lead to
and facilitate the development of this most common primary liver cancer.

So far, no single key signaling pathway has been found to represent the molecular
switch leading to the development of HCC, but numerous signaling pathways modifica-
tions implicated in other neoplasms are also important in this condition. Most of them
affect cancer cell proliferation, invasiveness, migration, resistance to apoptosis, and changes
in the microenvironment that facilitate tumor survival. As recent reports show, changes in
the behavior of tumor cells occur at many levels of cell functioning (Figure 1).

Figure 1. Epigenetic processes implicated in hepatocellular carcinoma development. Dnmt DNA methyltransferase, HDAC
histone deacetylase, siRNA small interfering RNA, lncRNAs long noncoding RNAs, and miRNAs micro RNAs.

3. DNA Methylation Pattern in HCC

One of the key epigenetic processes found to promote tumorigenesis is an aberrant
DNA methylation pattern. Regions that are usually affected by aberrant hypermethylation
are promoter sequences of genes responsible for cell cycle regulation, apoptosis, DNA
repair, metabolism of carcinogens, and angiogenesis (Table 1) [8]. Genome-wide analy-
ses revealed frequently decreased hypomethylation of cancer genomes when compared
with non-cancerous liver tissue [9–11]. A comprehensive genome analysis also revealed
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that within such hypomethylated regions, somatic mutations may occur with a higher
frequency [11]. In HCC, hypomethylation was found to activate such proto-oncogenes as
c-Jun and c-myc [12]. In addition, this type of gene regulation may promote carcinogenesis
by influencing mitotic recombination, which may lead to increased genomic instability [12].
The same authors have shown that global hypomethylation in liver cancer is independent
of various etiological factors.

Table 1. Summary of key epigenetic changes in HCC and their consequences.

Epigenetic Changes Mechanism Affected Reference

DNA methylation

Hypomethylation
Protooncogene c-Jun and c-myc activation [12]

Mitotic recombination/genomic instability [12]

Hypermethylation

WNT/β-catenin signaling activation [13]

APC inactivation [13]

p16INK4A activation [14]

RASSF1A and NORE1A activation [15]

Mismatch repair system genes (hMLH1, hMSH2, and hMSH3) inactivation [16]

Cardiotrophin-1 (CTF1), FZD8, pyruvate dehydrogenase kinase 4 (PDK4),
and ZNF334 activity [17]

MAD2L1, CDC20, CCNB1, CCND1, AR, and ESR1 [18]

p53 and MAPK signaling regulation [18]

Histone modification

Upregulated HDAC2 Dysregulation of cell cycle, apoptosis, and differentiation via p27,
p53, BCL-2, or PPAR γ

[19]

Downregulated HDAC3 An increase in p21WAF1/cip1 expression;
G1-phase arrest [20]

Downregulated HDAC3 STAT3-dependent cell proliferation [21]

Downregulated HDAC3 c-Myc protein synthesis and stability [22]

Downregulated HDAC3 Defective double-strand breaks repair [23]

HDAC3 and HDAC1 Cell migration, epithelial-mesenchymal transition (EMT),
and tumor metastasis regulation [24]

Upregulated HDAC8 Downregulation of RB1 [25]

Upregulated HDAC5 Increased cell proliferation [26]

Downregulation
of HDAC5

Cell apoptosis via antiapoptotic proteins (p53, bax, bcl-2, cyto C, and caspase 3),
G1-phase cell cycle arrest via cell cycle regulators (cyclin D1 and CDK2/4/6) [26]

Upregulated HDAC9 Epithelial–mesenchymal transition process activation; cellular stemness
properties regulation [27]

Non-coding RNAs

miR-221/222 Enhanced cell growth via p27 regulation
mTOR kinase regulation [28]

miR-369 Zinc finger E-box binding homeobox 1 regulation [29]

miR-3174 FOXO1 regulation [30]

miR-383 IL-17 via STAT3 signaling pathway regulation [31]

miR-361-5p CXCR6, VEGFA, or MAP3K9 regulation [32]

miR-186 CSCs self-renewal [33]

miR-186 Protein tyrosine phosphatase non-receptor
type 11 regulation [34]

miR-122 Tumor growth regulation [35]

HOTAIR Proliferation, regulation of pluripotency, metastasis, and sensitivity
to chemotherapeutics [36]

HOTTIP Survival, tumor grade, and prognosis [37]
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Table 1. Cont.

Epigenetic Changes Mechanism Affected Reference

MALAT1 Regulation of mitochondrial metabolism [38]

HULC

Growth of liver cancer stem cells [39]

Chemosensitivity of anti-cancer drug oxaliplatin inhibition [40]

Regulation of miR-383-5p/vesicle-associated membrane protein-2 pathway;
miR-377-5p/HIF-1α pathway and

miR-134-5p/FOXM1 pathway
[41,42]

On the contrary, hypermethylation may disturb the function of another group of
genes. One of the signaling pathways affected by hypermethylation is the WNT/β-catenin
signaling. In over 80% of human HCC, the tumor suppressor gene adenomatous polyposis
coli (APC) is inactivated by hypermethylation [13]. This causes aberrant accumulation
of β-catenin in cell nuclei and activation of its oncogenic properties. Another protein
whose gene is aberrantly methylated in HCC is one of the cell cycle regulators, p16INK4A.
Multiple studies revealed frequent (in up to 85% of the cases studied) methylation of
the p16INK4A gene [14]. The absence of p16INK4A, a potent cell checkpoint regulator,
promotes aberrant cell proliferation. Since it can be detected not only in tissues but also in
the serum of patients, it can serve as a potentially useful marker for early HCC diagnosis.

The other important signaling pathway affected during HCC development by epige-
netic disturbances is the methylation of the tumor suppressor genes that regulate Ras, i.e.,
RASSF1A and NORE1A [15]. Uncontrolled Ras activation in HCC influences cell growth
and differentiation.

Another group of genes that are aberrantly methylated and may promote tumorige-
nesis are those encoding the DNA repair system. In HCC, promoter methylation of the
mismatch repair system genes (MMR) is commonly detected, and the inactivation of their
proteins is observed [16]. The most important enzymes of this family are hMLH1, hMSH2,
and hMSH3. [16]. Abnormal methylation of their genes may occur at a frequency of up
to 75% [16,43]. Since this type of aberration is also found in cirrhotic liver, surrounding a
tumor mass, this aberration may represent a rather early step of hepatocarcinogenesis [44].

Research based on bioinformatic analysis has the advantage of integrating many data
sources. In such a study by Liang et al., methylation-regulated differentially expressed
genes (DEGs) of potential prognostic value in HCC were presented [17]. A total of 9
upregulated and 72 downregulated genes were identified in this study. Among them,
4—CTF1 (cardiotrophin-1), FZD8, PDK4 (pyruvate dehydrogenase kinase 4), and ZNF334—
were found to be negatively associated with overall survival. In addition, the methylation
status of CDF1 and PDK4 was identified as an independent prognostic factor. In a study of
Fan et al., 19 hypomethylated and 14 hypermethylated genes were identified, among which
6 key hub genes (MAD2L1, CDC20, CCNB1, CCND1, AR, and ESR1) were specified [18].
These aberrantly methylated genes were associated with the cell cycle process and with
p53 and MAPK signaling. Further analysis revealed that MAD2L1, CDC20, and CCNB1
play an oncogenic role, whereas CCND1, AR, and ESR1 are associated with favorable
patient survival. Qiu et al. have found that the CpG methylation signature can be useful in
predicting recurrence in early-stage HCC [45].

An integrated bioinformatic analysis may also help to identify diagnostic biomarkers
to differentiate between different types of liver cancer. For instance, Bai et al. described
methylation sites typical for HCC but not cholangiocarcinoma [46]. Future research may
allow the estimation of the prognostic and diagnostic value of integrated bioinformatic
data from HCC cells and tissues.

4. Function of DNA Methyltransferases in HCC

The reaction of transferring a methyl moiety to the 5-carbon of cytosine is catalyzed
by a class of DNA methyltransferases (Dnmts), of which mainly three enzymes play a role
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in cancer development and progression: Dnmt1, Dnmt3A, and Dnmt3B. Dnmt1 functions
mainly during cell division and is called maintenance Dnmt while Dnmt3a and Dnmt3b
methylate DNA de novo during cellular differentiation [47]. Studies on HCC have revealed
that overexpression of the genes encoding methyltransferase family members is associated
with poor patient survival [48]. Increased expression of DNMT3A and DNMT3b was asso-
ciated with poorer differentiation and shorter metastasis-free survival of HCC patients [49].
Pre-clinical studies showed that Dnmt inhibitors, such as 5-azacytidine or zebularine,
exert an antitumor effect on HCC cells in vitro. This effect was induced by both an epige-
netic reversion of the malignancy-associated phenotype and an efficient re-sensitization
to apoptosis-inducing substances, such as TRAIL [50,51]. In HCC cell lines, 5-azacytidine
and the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A (DZNep) enhance
the efficacy of immunotherapy for HCC by the activation of transcriptionally repressed
genes [52].

5. Histone Modifications

Histones may undergo posttranslational regulation via many processes, such as acety-
lation, deacetylation, methylation, ubiquitylation, or sumoylation of lysine residues. The
acetylation and deacetylation processes are regulated by two classes of enzymes: histone
acetyltransferases (HATs) and histone deacetylases (HDACs) [53]. HATs catalyze the trans-
fer of an acetyl group to the histone side chains of lysine and thus relax the interaction
between the histone and chromatin. HDACs, in turn, reverse lysine acetylation and thus
stabilize chromatin structure, making it less available to transcription factors. Histone
modification can accompany cancer pathogenesis, possibly due to the influence on the
expression of oncogenes and tumor suppressor genes or to the alteration of chromatin
structure, enabling/disabling the access of transcription factors to the gene regulatory sites.
HDAC1 and HDAC2 are related to HCC development; however, each of them exerts this
role in a different way. HDAC1 expression was correlated with moderately and poorly
differentiated tumors [54], whereas HDAC2 expression was identified as an independent
negative prognostic factor of survival [55]. HDAC2 is involved in the epigenetic regulation
of cell cycle, apoptosis, and differentiation and was found to be commonly upregulated in
HCC [19]. Small interfering RNA (siRNA)-mediated silencing of HDAC2 inhibited HCC
growth in vitro (accompanied by the deregulation of HDAC-regulated genes, such as p27,
p53, BCL-2, or PPAR-γ) and in vivo in mouse xenograft models [19]. HDAC3 regulates the
cell cycle and proliferation. Its downregulation increased the p21WAF1/cip1 expression and
hence induced G1 phase arrest [20]. Additionally, HDAC3 plays a role in STAT3-dependent
cell proliferation in liver regeneration and cancer [21]. HDAC3 silencing induces a num-
ber of effects on STAT3; it impairs its transition from acetylation to phosphorylation and
inhibits its nuclear translocation. It also decreases growth of HCC xenografts. Studies on
HDAC3 function in HCC pathogenesis revealed also its dependence on tumor necrosis
factor receptor-associated factor 6 (TRAF6). TRAF6 ubiquitinates HDAC3, which results in
the blockage of HDAC3-mediated histone H3 and oncoprotein c-Myc deacetylation, lead-
ing to c-Myc mRNA expression and enhanced c-Myc protein stability and, consequently,
enhanced liver tumorigenesis [22]. HDAC3 function is also related to double-strand breaks
repair via targeting the H3K9ac/H3K9me3 transition [23]. HDAC3 ablation interrupted
the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in
double-strand break repair, and led to the accumulation of damaged DNA.

HDAC3 and HDAC1 were also shown to jointly regulate cell migration, epithelial–
mesenchymal transition (EMT), and tumor metastasis. As Hu et al. showed, both HDACs
suppressed the expression of the gene encoding the zinc-finger transcription factor Snail2
through deacetylation of H3K56 and H3K4, which triggered the repression of Snail2-
mediated EMT [24].

HDAC8 was also found to be significantly upregulated in both HCC cell lines and
tumor tissues when compared with human normal hepatocytes and corresponding non-
tumor tissues. In addition, HDAC8 inhibition significantly inhibited hepatoma cell prolif-
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eration and transformation activity via the upregulation of RB1 in vitro and in vivo [25]. In
a study by Fan et al., it was reported that the mRNA and protein levels of HDAC5 were
upregulated in human HCC tissues and cells, whereas the downregulation of HDAC5
inhibited cell proliferation in HepG2, Hep3B, and Huh7 cell lines and tumor growth in a
xenograft model [26]. In addition, the suppression of HDAC5 resulted in cell apoptosis
and induced G1-phase cell cycle arrest in HCC cells by altering the levels of pro- and anti-
apoptotic proteins (p53, bax, bcl-2, cyto C, and caspase 3) and cell cycle regulators (cyclin
D1 and CDK2/4/6). The HDAC9 overexpression, relative to normal liver, was also docu-
mented in HCC tissue [56]. HDAC9 expression level is an independent negative predictor
of poor prognosis and survival. HDAC9 also functions in the epithelial–mesenchymal
transition process and acts as a regulator of the differentiation and acquisition of stemness
properties in HCC cells. A study of Kanki et al. revealed that the level of HDAC9 mRNA
positively correlated with the markers of mesenchymal phenotype and stemness and neg-
atively correlated with hepatic differentiation markers [27]. The inhibition of HDAC9 in
undifferentiated HCC cells decreased its ability of anchorage-independent cell growth and
self-renewal. In general, HDAC expression seems to be increased in HCC, but there appear
to be differences among patients and among particular HDACs. As most pharmacological
HDACs inhibitors non-selectively block various HDACs, a thorough understanding of
the expression and function of specific HDACs is key to effectively targeting them in
HCC therapy.

6. Non-Coding RNAs

Non-coding RNAs, such as miRNAs, have now a well-defined position as develop-
mental regulators in numerous diseases, including cancer [57]. Several miRNAs were found
to be involved in liver cancer pathogenesis, including let-7, miR-34a, miR-221, miR-222,
and miR-122. In a study on HCC tumor samples and their corresponding nontumorous
counterparts, the expression profiles of miRNAs were assessed. It was found that, among
several miRNAs studied, miR-221/222 was the most upregulated in tumor samples. The
upregulation of miR-221/222 led to enhanced cell growth in vitro by targeting the CDK
inhibitor p27 [28]. Further analysis led to the identification of its target, DDIT4, a regulator
of mTOR kinase, whose downregulation may result in HCC pathogenesis. Additional
functional studies on a mouse model of liver cancer demonstrated that miR-221 over-
expression stimulated the growth of tumorigenic murine hepatic progenitor cells [28].
Another study showed that miR-369, which targets zinc finger E-box-binding homeobox 1,
is downregulated in liver fibrosis and liver cancer tissues, and can predict a poor prognosis
in HCC patients [29]. Additionally, when miR-369 expression was restored, proliferation
and metastasis of HCC cells in vitro and in vivo were inhibited. Numerous other miRNAs
were related to HCC cells proliferation, apoptosis, as well as chemoresistance: miR-3174 by
targeting FOXO1, miR-383 by targeting IL-17 via STAT3 signaling pathway, and miR-361-5p
by targeting CXCR6, VEGFA, or MAP3K9 [30–32,58,59]. Another important property of
miRNA molecules is their effect on cancer stem cells. miR-186 knockdown facilitates liver
CSCs self-renewal and tumorigenesis [33]. miR-186 is a newly discovered miRNA that
directly targets protein tyrosine phosphatase non-receptor type 11 (PTPN11) by binding to
its 3′UTR. PTPN11 is upregulated in liver CSCs and promotes liver CSC expansion [34]. It is
required for miR-186-mediated liver CSC expansion and chemoresistance of HCC cells. The
expression of miR-186 was lower in cisplatin-resistant HCC cell lines when compared with
non-malignant cells, as well as in cisplatin-resistant patient-derived xenograft tissues [33].

The malfunction of specific miRNAs can be targeted using synthetic inhibitors, such
as antisense oligonucleotides or AntimiRs. For instance, oligonucleotides targeting miR-
221 reduced tumor cell proliferation and increased markers of apoptosis and cell cycle
arrest in an orthotopic xenograft mouse model [60]. An miRNA cocktail encapsulating
miR-199a/b-3p mimics (miR199) and anti-miR-10b was found to effectively inhibit HCC
cells proliferation and tumor growth by targeting mTOR, PAK4, RHOC, and epithelial–
mesenchymal transition pathways both in vitro and in vivo [61]. Moreover, miR-423-5p
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treatment sensitized HCC cells to sorafenib therapy [32]. Stiuso et al. found the secretory
miR-423-5p upregulated both in vitro and in vivo after sorafenib treatment, and its increase
correlated with response to therapy. In 75% of patients in which such an increase in
secretory miR423-5p was found, partial remission or stable disease after six months from
the beginning of therapy was observed [62]. miR-122 expression was reduced in a subset
of HCC patients, including hepatitis B virus (HBV)-positive patients with highly invasive
and metastatic cancer [35]. As previous studies showed, mice with depleted miR-122,
systemically or only in the hepatocytes, developed spontaneous HCC after one year of
life [63]. This implies that miR-122 plays a role as a tumor suppressor in HCC, and its
restoration may inhibit tumor growth. Such studies in animal models have already shown
promising results [35].

An increasing body of evidence points out the involvement of long non-coding RNAs
(lncRNAs) in HCC pathogenesis [36]. lncRNAs make up a broad group of RNA transcripts
that can change gene expression via various mechanisms: by recruiting transcription fac-
tors to chromatin regions or preventing their binding or by affecting other factors that
can change the structure of chromatin [36,64]. lncRNAs represent a very potent group of
molecules that can act by binding both RNA (including miRNAs) and proteins and thus can
change gene expression at the transcriptional and protein levels [36]. In a large study based
on The Cancer Genome Atlas, it was revealed that dysregulation of lncRNA is specific to
the cancer type [65]. Several lncRNAs are related to HCC development by affecting cell
proliferation, motility, metastatic ability, and angiogenesis. Such molecules have a positive
correlation with patients’ clinicopathological parameters but also affect patients’ sensitivity
to chemotherapeutics. An example of an lncRNA with a well-established role in HCC is
the HOX transcript antisense intergenic RNA (HOTAIR), implicated in HCC proliferation,
regulation of pluripotency, metastasis, and sensitivity to doxorubicin and cisplatin [36].
Another molecule from this group whose expression affects survival, tumor grade, and
poor prognosis, is HOTTIP [37]. Interestingly, HOTTIP expression was found to be pro-
gressively upregulated in the transition from cirrhotic liver to HCC [66]. Another lncRNA
whose expression correlates with advanced tumor stages and reduced overall survival of
HCC patients is MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) [67].
In addition, its expression levels correlated with increased risk of HCC recurrence after
liver transplantation [68]. Another interesting study showed that the nuclear genome-
encoded lncRNA MALAT1 functions as a critical epigenetic player in the regulation of
mitochondrial metabolism in HCC cells [38]. The authors demonstrated that MALAT1 is
enriched in the mitochondria, affects both their function and their number, and its knock-
down induces alterations in the structure, transcriptome, and function of mitochondria.
MALT1 dysregulation together with another lncRNA, HULC (highly upregulated in liver
cancer), promotes the growth of liver cancer stem cells [39]. On the other hand, HULC
overexpression promotes the progression of HCC cells and inhibits the chemosensitivity to
the anti-cancer drug oxaliplatin [40]. The mechanism of its action involves an increase in
cell proliferation, protective autophagy, and inhibition of apoptosis. HULC knockdown
increased the chemosensitivity to oxaliplatin through the repression of cell growth and the
acceleration apoptosis in HCC cells. Further analysis confirmed its mode of action through
the regulation of the miR-383-5p/vesicle-associated membrane protein-2 axis, the miR-
377-5p/HIF-1α pathway, and the miR-134-5p/FOXM1 axis [41,42]. Emerging evidence
provides new insights on the role of other lncRNAs in HCC development, such as NEAT1,
ANRIL, SNHG1, or H19 [36,69]. Since lncRNAs expression, similarly to that of miRNAs,
can be regulated by silencing through siRNA or antisense oligonucleotides, they are a
possible target for anticancer therapy. However, it needs to be noted that the therapeutic
use of RNAi presents several obstacles, including incomplete suppression of target genes,
efficient in vivo delivery to target cells, and nonspecific immune responses [70].
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7. N6-Methyladenosine mRNA Modification

Emerging evidence highlights the role of RNA methylation in cancer development [71].
N6-methyladenosine (m6A) is the most abundant form of mRNA modification. Under
physiological conditions, it plays a role in various aspects of RNA metabolism, such as
nuclear export, translation, decay, and alternative splicing [72]. The correct functioning of
m6A is controlled by two classes of enzymes, methyltransferases and demethylases. Once
their balance is disturbed, m6A function is abnormal, which can lead to numerous effects
including tumorigenesis. As was demonstrated by Shen et al., m6A plays an essential role
in the molecular pathogenesis of HCC [71]. These authors showed m6A modifications
to be related to the infiltration of immune cells into the HCC microenvironment and the
regulation of the anti-tumor immune response.

8. HCC Risk Factors and Epigenetics

HBV, a major HCC etiologic factor, is able to induce epigenetic alterations in the host
via multiple mechanisms. Among viral proteins, HBx was found to play a significant role as
an epigenetic regulator [73]. HBx can upregulate members of the DNA methyltransferase
family, such as Dnmt1, Dnmt3A1, and Dnmt3A2, and selectively promote the regional
hypermethylation of specific tumor suppressor genes (i.e., RASSF1A, GSTP1, and CDKN2B).
Additionally, HBx expression correlates with genomic hypomethylation, as documented
both in vitro and in vivo, and with the regional hypermethylation of insulin-like growth
factor binding protein-3 (IGFBP-3). It is noteworthy that this effect on IGFBP-3 appears
to be an early event during HBx-mediated hepatocarcinogenesis, as it is observed even in
HBx-positive nontumor tissues adjacent to the tumor tissues [73].

A number of tumor suppressor genes have also been reported to be hypermethylated
in HCV-infected HCC (RASAL1, EGLN3, CSMD1, CDKN2A, BCORL1, SFRP1, ZNF382,
RUNX3, LOX, RB1, and P73) [74]. The process of epithelial-to-mesenchymal transition is
epigenetically regulated by HCV through the inactivation of WNT/β-catenin signaling [75].
In a study of Zhou et al., it was demonstrated that HCV core protein silences secreted
frizzled-related protein 1 (SFRP1), an extracellular signaling molecule that antagonizes
Wnt signaling [76]. SFRP1 expression can be restored using a DNA methylation inhibitor or
its combination with a histone deacetylase inhibitor (HDACI). The expression of DNMT1,
DNMT3A, and DNMT3B was upregulated in HCV-infected liver cancer; however, this
was found only in some patients [77]. Hepatitis C virus core protein downregulates E-
cadherin expression via the activation of DNA methyltransferases 1 and 3b [78]. Other
epigenetic effects of HCV include hepatocyte apoptosis regulation [79] and cell cycle
regulation via promoter hypermethylation of p16 [80] or via growth arrest and DNA
damage (Gadd45) gene family [81]. Another study showed that HCV infection induced
genome-wide epigenetic changes in histone modifications, which altered cellular signaling
pathways in HCC [82]. Interestingly, such changes persisted after curing the viral infection.
Since these changes can be reversed by epigenetic modulators, further research may provide
an opportunity to prevent HCC progression.

Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are
common HCC etiologic factors. Published data indicate that particular epigenetic changes
can be associated with these HCC etiologic factors. NAFLD has been connected with
miR-21, miR-34a, and miR-182 upregulation and miR-122 downregulation [83]. miR-
122 downregulation affects lipogenesis in cellular models. Moreover, in mouse models,
hepatic deletion of miR-122 induces spontaneous development of NASH via increased
lipogenesis and impaired lipid secretion, which subsequently progresses to HCC [84].
miRNAs related to ALD include miR-155, miR-34a, miR-122, miR-212, and miR-21 [85].
As Ambade et al. showed, alcoholic hepatitis accelerates early hepatobiliary cancer by
increasing stemness and miR-122-mediated HIF-1α activation [86]. Increased hepatic
methylation of the peroxisome proliferator-activated receptor γ coactivator 1, involved
in mitochondrial function, has been associated with NAFLD [87]. An epigenome-wide
analysis performed on NAFLD patients’ data identified seven CpG sites whose DNA
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methylation was associated with fibrosis [88]. In another genome-wide study, 208 CpG
islands were found to be differentially methylated when comparing normal and cirrhotic
liver [89]. The level of global DNA methylation was lower in NAFLD patients and tended
to decrease with an increase in hepatic inflammation and fibrosis grade [90].

9. Liver Cancer Stem Cells

Within liver tumor tissue, cells that possess stem cell properties were identified [91].
Cancer stem cells (CSCs) have the ability to self-renew and produce a subset of cells differ-
entiated in different directions [92]. CSCs can recapitulate the tumor when implemented in
immunocompetent mouse models. Early studies were focused on identification of reliable
markers of such a cell population. In liver cancer cell lines, CD133 expression can be used
as a marker of a CSC-enriched cell population [93]. Further studies on HCC tumor samples
confirmed that CD133-positive cells can indeed be found within a cancer cell population in
different amounts, and their presence negatively correlates with clinical outcome [94]. A
CD133-positive cell population is also more resistant to both chemo- and radiotherapy and
has a higher ability to form metastases [95,96]. Other markers of CSC-enriched cells are
CD44, CD24, EpCAM, CD90, CD13, and OV6 [97].

Recently, a new liver progenitor-specific gene, RNA-binding RALY-like (RALYL)
protein, was identified [98]. RALYL belongs to a heterogeneous nuclear ribonucleoprotein
(hnRNP) family of RNA-binding proteins that are involved in transcriptional and post-
transcriptional regulation. It was found that RARYL increases the stemness of HCC by
affecting the mRNA stability of transforming growth factor beta (TGF-β) through the
decrease in N6-methyladenosine modification [98]. The upregulation of other stemness-
related markers, such as CD133, was also associated with RARYL overexpression.

Since HCC self-renewal, chemoresistance, and metastasis formation are strongly af-
fected by cancer stem cells—their function and regulation—these cells constitute a possible
target for therapy. Effective eradication of such cancer cell population could considerably
improve the efficacy of HCC treatment.

10. Targeted Therapies

Although numerous molecular changes were identified in HCC, their use as thera-
peutic targets in the clinics and therapy is still poor. Over the last decade, only sorafenib,
a multikinase inhibitor, was approved for systemic HCC therapy. More recently, new
multikinase inhibitors, such as regorafenib, Lenvatinib, and cabozantinib, were introduced
into the treatment of patients non-responsive to sorafenib therapy [99]. Regorafenib, the
most extensively studied so far, is a multikinase inhibitor with a higher pharmacolog-
ical potency than sorafenib [100]. Interestingly, some genetic polymorphisms of genes
encoding enzymes involved in metabolic pathways as well as miRNAs were found to
correlate with the outcome of the regorafenib therapy [99]. Genetic variability in the genes
CYP3A4 and UGT1A9 was reported to have a predictive value for regorafenib hepatotox-
icity. Cabozantinib is another multikinase inhibitor that can modulate different cellular
pathways, including angiogenesis, as well as oncogenic pathways in HCC, implicated in
tumor progression and metastasis. This drug received Food and Drug Administration
approval in 2018 for the treatment of advanced sorafenib-resistant HCC [101]. Lenvatinib
is an oral, small-molecule tyrosine kinase inhibitor, which targets multiple tyrosine kinase
receptors and is offered to patients with advanced unresectable HCC. Although in clinical
trials, it showed better outcomes than sorafenib did, its treatment efficacy is often unsatis-
factory due to adverse effects [102]. According to the recent guidelines from the American
society of clinical oncology, the combined treatment with atezolizumab–bevacizumab
is recommended as a first-line therapy for advanced HCC [103]. Other drugs, such as
ramucirumab, pembrolizumab, or nivolumab, are also considered.

The reversibility of epigenetic changes is currently broadly investigated as a possible
cancer therapeutic option. For instance, HDAC inhibitors are already approved for the
treatment of cutaneous T cell lymphoma and peripheral T cell lymphoma [104,105]. Clinical
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trials with the HDAC inhibitor resminostat combined with sorafenib in patients with HCC
proved their safety and showed early signs of efficacy [106]. Additionally, resminostat, as
was documented in HCC cell lines, changes the mesenchymal phenotype of cells towards a
more epithelial, and thus less invasive, phenotype, which may contribute to sensitization
to sorafenib-induced apoptosis [107]. Additional leverage of this drug combination is
its influence on the platelet-mediated pro-tumoral effect in HCC [108]. It has been docu-
mented that platelet factors antagonize the action of kinase inhibitors, such as sorafenib. In
a phase I/II clinical trial conducted in patients with advanced HCC previously untreated
with systemic chemotherapy, the combination of resminostat and sorafenib resulted in
longer overall survival than sorafenib monotherapy in patients with a higher baseline
platelet count [109]. Another inhibitor, Panobinostat, has shown encouraging results in
combination with sorafenib in preclinical studies, but this effect has not yet been confirmed
in clinical trials [110]. Belinostat, a pan-HDACI studied in unresectable HCC patients,
demonstrated tumor stabilization and was generally well tolerated in patients, despite its
limited efficacy [111]. Epigenetic drugs have not only antitumor activities but also can
modify antitumor immunity [112]. Preclinical studies in murine HCC models confirmed
enhanced anti-tumor activity when belinostat was used in combination with immune
checkpoint inhibitors [113]. As Llopize et al. showed, belinostat combined with simultane-
ous blockade by two inhibitors, CTLA-4 and PD-1, led to complete tumor rejection in a
subcutaneous murine HCC model. Such encouraging results provide a rationale for testing
belinostat in combination with checkpoint inhibitors to enhance their therapeutic activity
in patients with HCC.

Another HDAC-1 inhibitor with immunomodulating properties is trichostatin A [114].
In vitro studies demonstrated the enhanced killing of HCC cells by NK cells, whereas
in vivo, trichostatin A reduced tumor cell growth in an NK cell-dependent manner. Given
its additional abilities to inhibit the growth of cancer cells and induce apoptosis, this
inhibitor is a promising agent in HCC therapy.

The second class of epigenetics-targeted drugs for HCC are DNA methylation in-
hibitors, DnmtI. First-generation DnmtI, including 5-azacytidine and 5-aza-2’-deoxycytidine
(decitabine), showed efficacy and were approved for the treatment of hematologic neo-
plasms. However, due to their short half-life after administration, their use is limited to
solid tumors [115].

Guadecitabine, a second-generation DNA methyltransferase inhibitor, showed greater
antiproliferative effect in preclinical studies. Both in vitro and in vivo studies on HCC
cell lines and mouse xenograft models confirmed its inhibitory properties on cell growth
as well as delayed tumor growth [116]. An additional combination with oxaliplatin re-
vealed improved efficacy [117]. A clinical study combining guadecitabine and durvalumab
(an anti-PD-L1 monoclonal antibody) to treat solid tumors, including HCC, is currently
ongoing (NCT03257761). As shown by growing evidence from preclinical studies, ther-
apy aimed at HCC epigenetic targets in combination with chemotherapeutic agents or
immunotherapy has a chance to bring a breakthrough in HCC treatment.

11. Conclusions

Taken together, the above results indicate that a comprehensive knowledge of the
molecular changes occurring during HCC pathogenesis may not only have an impact on the
overall survival of patients but also promote the optimal design of targeted therapies. Such
information has also an important predictive value on other aspects of therapy, facilitating
the assessment of possible drug toxicities or the identification of biomarkers associated
with drug response.
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